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Self-organization, where spontaneous orderings occur under driven conditions, is one of the hallmarks of
biological systems. We consider a statistical mechanical treatment of the biased distribution of such
organized states, which become favored as a result of their catalytic activity under chemical driving forces. A
generalization of the equilibrium canonical distribution describes the stationary state, which can be used to
model shifts in conformational ensembles sampled by an enzyme in working conditions. The basic idea is
applied to the process of biological information generation from random sequences of heteropolymers,
where unfavorable Shannon entropy is overcome by the catalytic activities of selected genes. The ordering
process is demonstrated with the genetic distance to a genotype with high catalytic activity as an order
parameter. The resulting free energy can have multiple minima, corresponding to disordered and organized
phases with first-order transitions between them.

D
espite enormous progress in understanding the characteristics of life’s building blocks and their interac-
tions1, many aspects of processes occurring in living organisms continue to pose challenges to physics-
based explanations. A major difficulty is in characterizing their organization and function, which tend to

appear spontaneously under suitable conditions, in stark contrast to common experience with nonliving matter
ruled by increasing disorder. The term self-organization has been used widely to describe these spontaneous
appearances of highly ordered structures, not only within biological systems but also in higher-level organizations
including networks2–6, and complex dynamical systems exhibiting phenomena such as disease progression7–9 and
neural computation10. Different directions of theoretical approaches include wide-ranging studies of driven
systems showing self-organized criticality11,12 with implications to extinction dynamics13, dynamical systems
views with analogies to equilibrium phase transition14, and concepts centered on autocatalysis, evolution, and
selection15. Further studies in this interdisciplinary field include models of genetic regulatory networks and cell
differentiation16, dynamic clustering in active media17, and the study of Boolean network dynamics18. However,
one characteristic common to current approaches of studying self-organization is the lack of concrete connec-
tions to equilibrium statistical mechanics.

We focus in this paper on chemically driven systems and describe an approach extending the equilibrium
statistical mechanical concepts to cover the stationary distribution of self-organized states. Our approach, which
is based on a combination of equilibrium theory and enzyme kinetics, will allow us to distinguish self-organiza-
tion from self-assembly, a related but distinct class of phenomena in which ordered structures are favored in
equilibrium because of certain structural features present within the constituents. A familiar example is the
formation of micelles and lipid bilayers stabilized by hydrophobic interactions19, for which well-established
and quantitative theories now exist20.

Self-organization, in contrast, is a sustainable nonequilibrium process in which a system spontaneously
increases and maintains its degree of ordering as a result of interactions and exchanges of matter with its
surrounding. Typically the system is in thermal and barometric equilibrium with its surrounding, but is driven
by supply and extraction of chemical species; the ‘food’ and ‘waste’ molecules. The point of view adopted in this
paper is that the ordering occurs when the system has the potential to catalyze reactions involving these externally
controlled species in the favored direction. We use a simple description of this effect to derive a biased distribution
of system configurations away from equilibrium. The driving force increasingly favors organized states that
would have negligible probabilities of occupation in equilibrium.

One immediate consequence of such effects amenable to current experimental investigations is the shift in
conformational distributions of protein enzymes while under stationary working conditions compared to
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equilibrium. Recent developments in single-molecule experimental
techniques21,22 have uncovered many surprises challenging the tra-
ditional views on how enzymes operate, including the classical
‘induced fit’ mechanism, which assumed that an enzyme mostly
inhabits a single conformation, only changing it as a result of sub-
strate binding. Increasing body of experimental evidence suggests
that many enzymes instead sample a wide range of conformational
states without ligands, while a substrate binding event shifts the
equilibrium into states optimal for catalytic activities (‘conforma-
tional selection’ mechanism)23–25. Theoretical studies so far have
focused mostly on the effects this conformational heterogeneity
has on kinetic velocity25,26. The theoretical consideration presented
in this paper provides a simple statistical mechanical description of
the nonequilibrium enzyme conformational distribution that can be
used to interpret single-molecule experiments.

As a second, more fundamental application, we address the issue
of how modern proteins capable of exhibiting such ordering that
defies entropic costs – e.g., via conformational changes leading to
the activation of its enzymatic activity – or rather the biological
information encoding their structure and function, could have arisen
spontaneously. Viewed from the information theoretic perspective27,
the generation of such biological information is a self-organization
process where random heteropolymers with maximum entropy were
replaced by highly conserved genes. Considerations of this process
can serve as a bridge between equilibrium statistical mechanics and
current well-developed statistical approaches to modeling evolu-
tion28, as well as highly successful recent developments in data-driven
characterizations of biological genotype-phenotype spaces29,30 and
reconstruction of the evolutionary history of extant metabolic
pathways31.

There are two broad classes of approaches put forward to describe
such an ordering of biochemical sequences. One highly influential
perspective is to center on the properties of the minimal networks of
autocatalytic species15,32–36, where self-organization becomes possible
when the degree of diversity of the autocatalytic set exceeds a criti-
cal value. A different approach, represented by the quasispecies
theory37,38 and theoretical works based on it39–45, takes the self-
replication population dynamics of sequences as a starting point.
The order-disorder transition of genetic information occurs as the
mutation rate of the replication process crosses a threshold value.

Based on the general consideration of the stationary distribution
under driven conditions, we consider in this paper the question of
whether the ordering in sequence space can occur purely from chem-
ical driving forces without the mechanism of competition based on
self-replication postulated in quasispecies theory. It is shown that
there exists a first-order transition from the phase characterized by
random sequences to those dominated by the few active sequences
irrespective of the specific population dynamics of heteropolymers.
Our thermodynamic consideration thus connects the biochemical
self-organization more directly to chemical driving forces and reveals
its close correspondence to equilibrium phase transitions, comple-
menting the autocatalytic kinetics-based and population-based
approaches.

Results
Self-organization. We consider a system in thermal equilibrium
with a reservoir (Fig. 1), characterized by a set of (coarse-grained)
states n and corresponding (free) energy En. The equilibrium cano-
nical distribution of finding the system in state n is P eqð Þ

n !e{En (we
measure energy and entropy in units of temperature and Boltzmann
constant, respectively). An example of n is a variable indicating
whether an enzyme is in one conformational state or another, de-
fined for instance in terms of an angle or distance between certain
subdomains within the protein. When driven by the reservoir, each
state n has some degree of catalytic activity toward a reaction R R P
imposed by the reservoir:

RzSn '
k 1ð Þ

n

k {1ð Þ
n

Sn
:R '

k 2ð Þ
n

k {2ð Þ
n

SnzP, ð1Þ

where Sn is the system in state n, Sn?R denotes a complex with a

bound R, and the rate constants k +1,2ð Þ
n vary depending on n. This

scheme of enzyme catalysis under different conformational states
corresponds to the conformational selection mechanism (as
opposed to the induced fit), now supported by a growing body of
experimental evidence24,46. The system also equilibrates between
different states n and m:

Sn '
kmn

knm

Sm, ð2Þ

where kmn is the rate of conversion from n to m. The rate equation for
the probability P rð Þ

n of being in state n with a bound R is

_P
rð Þ

n ~crk 1ð Þ
n P 0ð Þ

n {k {1ð Þ
n P rð Þ

n {k 2ð Þ
n P rð Þ

n zcpk {2ð Þ
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n , ð3Þ

where P 0ð Þ
n is the probability for n without R, and cr, cp are the

concentrations of R and P, respectively. At steady state,

P rð Þ
n ~znP 0ð Þ

n , ð4Þ

where

zn~
crk 1ð Þ

n zcpk {2ð Þ
n

k {1ð Þ
n zk 2ð Þ

n

, ð5Þ

or if cp 5 0, zn 5 crkn 5 cr/Km where k{1
n ~Km~ k {1ð Þ

n zk 2ð Þ
n

� �.
k 1ð Þ

n is the Michaelis constant.
In the absence of driving forces from the reservoir, the set of states

{n} satisfies the detailed balance condition, kmnP 0ð Þ
n ~knmP 0ð Þ

m , which
remains valid even when P rð Þ

n w0, because Eq. (3) does not couple n
and m. This assumption could be violated if for instance the reaction
scheme Eq. (1) is generalized such that Sn ? R could turn into states m
? n, which may yield useful models for molecular motors47–49. We
will not consider such cases in this paper. In contrast to Eq. (2), the
two main reaction steps in Eq. (1) do not satisfy detailed balance
except in equilibrium.
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Figure 1 | Self-organization under chemical driving force. A

nonequilibrium driving force of reservoir biases the equilibrium inside the

system, where ingredients for an enzyme switches between disordered (D)

and organized (O) states. The enzyme becomes active only in the latter

state, catalyzing the reaction from substrate R into product P. The reservoir

supplies R in excess quantities versus P.
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We have P 0ð Þ
m

.
P 0ð Þ

n ~kmn=knm~P eqð Þ
m

.
P eqð Þ

n ~e{EmzEn , and may

thus write

P 0ð Þ
n ~

e{En

Q
, ð6Þ

where Q is a normalization constant. From Eqs. (4) and (6), the total
probability Pn to be in state n is

Pn~P 0ð Þ
n zP rð Þ

n ~
1zzn

Q
e{En:

e{E�n

Q
, ð7Þ

where

E�n~En{ln 1zznð Þ ð8Þ

is a generalized free energy. Since SnPn 5 1, we have

Q~
X

n

1zznð Þe{En~
X

n

e{E�n , ð9Þ

which is therefore a generalized partition function. The significance
of partition function in equilibrium statistical mechanics carries over
to this nonequilibrium extension: the expectation value of a state-
dependent quantity qn,

qh i~
X

n

qnPn~
1
Q

X
n

qne{E�n , ð10Þ

can be calculated from Q fð Þ~Sne{E�nzf qn by Æqæ 5 h ln Q/hfjf50.
From Eq. (1), the stationary velocity v can be written as

v~
X

n

k 2ð Þ
n P rð Þ

n {cpk {2ð Þ
n P 0ð Þ

n

h i

~
1
Q

X
n

crk 1ð Þ
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n {cpk {1ð Þ
n k {2ð Þ

n

k {1ð Þ
n zk 2ð Þ

n

e{En ,

ð11Þ

which is a constitutive relation connecting the nonequilibrium flux v
to thermodynamic forces: at steady state, the system entropy is con-
stant, and the total entropy production rate is _S where S 5 S(nr, np) is
the entropy of the reservoir, a function of the number of species ni (i
5 R, P). Its rate of change due to the catalyzed reaction is
_S~{mr _nr{mp _np~Fv, where mi are the chemical potentials50 and
F 5 mr 2 mp since _np~{ _nr~v. With the concentrations ci~c0i emi

where c0i is a constant, Eq. (11) gives a closed-form relation of the net
flux v to mi.

A simplest special case is where there are only two states, n 5 D, O,
each corresponding to disordered and organized states (Fig. 1), and

DE 5 EO 2 ED . 0. From Eq. (8), if k +1ð Þ
D ~0 and cp 5 0, the relative

stability of D over O is reversed when crwc�r ~Km eDE{1
� �

. Typical
Km values of enzymes range from mM to mM ranges1. For an enzyme
with Km 5 1 mM, for instance, c�r^22 mM for DE 5 10. It is worth
noting that in contrast to self-assembly, the stabilization of states
with DE . 0 arises strictly from the chemical driving force of the
reservoir. If the matter flow is cut off, the system would quickly revert
to D: the organized structure in the system ‘dies’.

For the two state model, Eq. (11) becomes

v~
k 2ð Þcr{cpk {1ð Þk {2ð Þ�k 1ð Þ

1zeDEð ÞKmzcrzcpk {2ð Þ
�

k 1ð Þ , ð12Þ

where the rate constants are those for state O. When cp 5 0, Eq. (12)
reduces to the Michaelis-Menten expression with the substrate con-
centration for half-maximum velocity increased by a factor of 1 1 eDE

due to the presence of the noncatalytic state D. Equilibrium is
reached when cr/cp 5 k(21)k(22)/k(1)k(2) and v 5 0.

More general cases can be illustrated further by a simple toy model
of an enzyme with a continuous angular degree of freedom h. This

angle represents the degree of closing of the binding pocket at the
center. As h becomes smaller, the catalytic activity increases linearly,
while the thermal stability decreases:

E hð Þ~g0 1{h=pð Þ, K{1
m ~k 1{h=pð Þ, ð13Þ

and cp 5 0 such that z 5 cr/Km. Figure 2 shows the changes in angular
distribution and mean angle from the equilibrium to driven cases as
the driving force f 5 crk increases.

Information generation. Virtually all self-organized structures in
biological systems are based on biopolymers, including proteins
and nucleic acids (RNAs and DNAs), which carry biological
information that are copied over generations with mutations. A
satisfactory theory of self-organization therefore must address how
such biological information could have been generated. We show
below that the chemical driving force imposed by the reservoir
induces an order-disorder transition in sequence space, where the
stationary distribution of genotypes becomes dominated by sequen-
ces with catalytic activity.

We consider a chemically driven environment where nucleotide
sequences of a fixed length l are continually synthesized and
degraded, e.g., against a solid support. Each nucleotide at different
sites on the chain can contain one of four possible bases, b 5 a, g, c, u,
with the total number of all possible sequences sn 5 {b1, ..., bl},V5 4l.
Without additional driving forces other than the chain synthesis, the
resulting sequences would be mostly random. This pool of random
sequences corresponds to the system in the disordered D state in
Fig. 1. The stationary probability Pn for an RNA chain randomly
picked from the population to have sequence sn is Pn!e{En , where
En describes the intrinsic relative stability of each sequence.

If the reservoir exerts a driving force F 5 mr 2 mp . 0 for a reaction
R R P, Eq. (1) describes the catalysis with Sn referring to a chain with
sequence n: RNA chains with suitable sequences can fold and
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Figure 2 | Organization induced under driven conditions. The model

defined by Eq. (13) was used with g0 5 5. (a) Angular distribution P(h).
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concentration f 5 crk.
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catalyze reactions, as does the catalytic core of modern ribosomes
carrying out the synthesis of proteins during translation51,52.
Equation (8) gives the biased energy E�n under the driven condition,
where we assume En 5 0 for simplicity. We note that zn given by Eq.
(5) in this case represents the enzymatic activity of the sequence n, or
its fitness: the generalized free energy E�n is more negative for
sequences with higher fitness. Equation (7) therefore implies that
as the system reaches the stationary state under the influence of
reservoir driving force, the distribution would become peaked
around sequences with low energy, or high fitness. The analogy of
the evolution of populations toward genotypes with higher fitness –
the climbing of peaks on the fitness landscape – to the minimization
of energy in equilibrium systems has been observed before, notably
by Kauffman15 (but also note the proposal that fitness landscapes are
intrinsically dynamic quantities53). Here, we see this correspondence
more directly from thermodynamic considerations.

This identification of the fitness of genotypes as their catalytic
activity contains its common definition in evolutionary theories –
the replication rate – as a special case where R R P is the self-
replication reaction. The order-disorder transition we describe
below, on the other hand, does not rely on the assumption of the
existence of self-replication machinery, and may provide an under-
standing of how the large variety of genes found in modern genomes
coding for enzymes with many different functions could have
originated.

Emergence of a gene. To describe the biased population of sequences
under driven conditions in more detail, the fitness (or energy)
landscape E�n needs to be specified. Physically, we only need to be
convinced of the existence of sequences with high catalytic activities
toward the reaction imposed by the reservoir. The fitness landscape
describes the dependence of fitness values as we depart from these
genotypes in sequence space. The theory of self-organization allows
for a quantitative description of the dominance of highly fit
genotypes with a discontinuous first-order transition.

For concreteness, we adopt the class of landscapes widely
studied in applications of the quasispecies theory28,37,39,41,42,54, where
the fitness is given as a function of Hamming distance to the
master sequence, which becomes the natural order parameter. It
is worth emphasizing, however, that in contrast to the error cata-
strophe transition in the quasispecies theory, the order-disorder
transition we derive below is thermodynamic in origin independ-
ent of specific population dynamics, and is applicable to any reac-
tion for which a sufficiently strong enzymatic genotype exists in
the sequence space.

The distance hnm between two sequences n and m is the total
number of nucleotide positions at which the base identities differ.
For l-mers, 0 # h # l. The probability Ph of sequences with distance h
is

Ph~Vh
e{E�h

Q
~

e{Gh

Q
, ð14Þ

where the free energy

Gh~E�h{Sh ð15Þ

is given in terms of the entropy Sh 5 ln Vh and the number of
genotypes Vh of distance h to the master sequence. This number
can be written as

Vh~Cl
h
:3h, ð16Þ

which gives the number of different ways of choosing h sites within l
nucleotide positions, each site having 3 possible bases that differ from
that of master sequence. The prefactor is the binomial coefficient,
Cl

h~l!=h! l{hð Þ!.

In Fig. 3(a), a model fitness landscape

k hð Þ~ke{h2=2j2

, ð17Þ

where the fitness values are distributed by a Gaussian function cen-
tered at the master sequence (h 5 0) and cp 5 0 such that zh 5 crk(h),
was used to calculate the free energy profile as a function of h for
three different values of the driving force f 5 crk. Under f 5 0, the
minimum occurs near h 5 3l/4, which is the average distance of
random sequences of length l from the master sequence, because
random sequences have the maximum entropy. As f increases, a
new minimum develops near h 5 0, whose location is determined
by the balance of energy E�h and entropy Sh. The stationary distri-
bution Ph peaked at the minimum of Gh can be interpreted physically
as follows: the probability of finding genotypes away from the master
sequence is affected by the fitness cost (the energy increases with
increasing h, reducing Ph) and the number of possible sequences
(the entropy increases with increasing h, making Ph larger).

The qualitative features of Gh for different driving forces resembles
the order-disorder transitions observed in equilibrium fluids, where
a condensed phase can coexist with the disordered phase. In the
corresponding phase diagram shown in Fig. 3(b) as a function of
distance h and driving force f, the coexistence region between the
disordered D phase and the organized O phase shrinks as the fitness
peak width j increases and f decreases, vanishing at a critical point
where the D-O transition becomes continuous. The D phase is char-
acterized by random sequences, while in the O phase, the sequence
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Figure 3 | Stability of catalytic sequences under driven conditions.
(a) Free energy profile Gh as a function of distance h to the master sequence
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distribution is peaked at a short distance from the catalytically active
master sequence. The position of the minimum in Gh in the O phase
in Fig. 3(a) corresponds to the most likely distance value h expected
within this population.

The transition from the disordered to organized phases is accom-
panied by the dominance of catalytically active states leading to a bias
in distribution Pn, under which sequences carry information encod-
ing enzymes. The amount of this information generated is quantified
by the reduction in Gibbs entropy associated with Pn, known as the
information content (per site)27,55,56,

Ic~S eqð Þ
c z

1
l

X
n

Pn ln Pn~ln 4{ ln Qz E�h
� �� ��

l, ð18Þ

where S eqð Þ
c is the entropy of P eqð Þ

n , which is ln 4 (or 2 bits) here with En

5 0. The Gibbs entropy in Eq. (18) is that of the system, which
remains constant over time in stationary states, while entropy is
produced steadily in the reservoir. Figure 4 shows the growth of Ic

with increasing driving force f for different values of fitness peak
width j. The information content makes a jump as the D-to-O trans-
ition occurs, with the asymptotic value increasing with decreasing j.
The information content of 2 bits per site is the upper limit reached
when the final biased distribution is very sharply peaked.

Multiple genes. Equation (1) can be easily generalized to cases where
there are more than one externally imposed reactions, which would
lead to the coexistence of multiple genes. We consider the case of two
reactions (e.g., RNA elongation and another reaction such as ATP
hydrolysis). The order parameter is a vector h 5 (h1, h2) with two
components specifying distances to the master sequences s1 and s2. It
can then be shown that Eq. (8) becomes

E�h~{ln 1zc1k1 h1ð Þzc2k2 h2ð Þ½ �, ð19Þ

where c1 and c2 are the concentrations of two reactants. We adopt
k1,2(h) 5 k(h) with Eq. (17) and let f1 5 c1k and f2 5 c2k be the set of
reduced driving forces.

The calculation of Vh involves counting the number of sequences
with given distances h to the master sequences. In Fig. 5, the two
master sequences s1 and s2 are depicted with their sites grouped into
two sections, I and II, where nucleotides are different and identical
between the sequences, respectively. The length of section I is h12 5

d. To count the number of sequences sn with distances h1 and h2 to s1

and s2, we start with s1 and first mutate a subset of length m from
section II, such that h 5 (m, d 1 m). The number of ways of doing
this is Cl{d

m
:3m because there are three nucleotides different from

each site in section II. We then mutate k sites from section I into

the corresponding nucleotides of s2, which results in h 5 (m 1 k, d 1

m 2 k). The number of ways of doing this step is Cd
k without any

nucleotide multiplicity because the target sequence is fixed. By
choosing k 5 d 1 m 2 h2, the distance h2 to s2 is achieved.
Finally, we choose p additional sites from section I and mutate into
nucleotides distinct from both s1 and s2, after which h 5 (m 1 k 1 p,
d 1 m 2 k). The number of ways for this third step is Cd{k

p
:2p

because there are two nucleotides that can be chosen for each site.
Taking p 5 h1 2 m 2 k 5 h1 1 h2 2 d 2 2m, we achieve the distance
h1 to s1. The total number of sequences is then given by

Vh~
Xm1

m~m0

Cl{d
m

:3m:Cd
dzm{h2

Ch2{m
h1zh2{d{2m

:2h1zh2{d{2m, ð20Þ

where the lower and upper limits of the summation can be deduced
by requiring the binomial coefficients to be well-defined:

m0~max 0, h1{d, h2{df g, ð21aÞ

m1~min h1, h2, l{d,th1zh2{d
2 s

	 

, ð21bÞ

where txs is the largest integer not exceeding x.
Figure 6 shows the free energy Gh~E�h{Sh as a function of h for

equilibrium (fi 5 0) and strongly driven (f1 5 f2 5 104) cases. The
landscape is bounded by values of h for which Vh 5 0. The allowed
region can be deduced by requiring m0 # m1 in Eqs. (21): 0 # hi # l,
h1 # h2 1 d, h2 # h1 1 d, and h1 1 h2 $ d. The single minimum in
Fig. 6(a) at h 5 (8, 8) corresponds to the disordered D phase, which is
the only phase in equilibrium. Under strong driving forces, in con-
trast, up to two additional minima develop near the h2 and h1-axes
[Fig. 6(b)], which correspond to organized O1 and O2 phases domi-
nated by sequences close to s1 and s2, respectively. The global min-
imum switches from D to Oi (or both when f1 5 f2) with increasing
fi.

The phase diagram in Fig. 7 shows such stability changes within
the fi-space, where the three phases are separated by boundaries on
which neighboring phases can coexist. There is a triple point where
D, O1 and O2 phases can all coexist. As suggested by the single-gene
case in Fig. 3(b), increasing the fitness peak width parameter j shifts
the D-Oi boundaries toward smaller fi values. The boundaries dis-
appear at a critical point. The symmetry 1 « 2 in Figs. 6 and 7 is a
result of our choice of the same fitness landscape, Eq. (17), for the two
genes, and would be broken in more general cases.
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Discussion
In this paper, we presented a statistical mechanical description of
biological self-organization under chemically driven conditions: the
system possesses a small subset of coarse-grained states which can
catalyze the reactions imposed externally by the reservoir. The entro-
pic cost of observing these organized states is overcome when the
driving forces are sufficiently strong, leading to biased stationary
distributions dominated by such organized states, or phases.

As a major application, we focused on the appearance of biological
information encoded into sequences of nucleotide strands. Chemical
driving forces lead to one or multiple peaks in sequence space, cen-
tered on sequences that can catalyze the externally imposed reac-
tions. In this viewpoint, genes encoding enzymes spontaneously
appear and dominate the nucleotide sequence populations if the
driving forces are sufficiently strong to overcome the Shannon
entropy costs. Our analyses demonstrate that this transition into
self-organization in sequence space has much in common with equi-
librium phase transitions. Although the global stability of phases is
dictated by the phase diagram (Fig. 7) as in equilibrium, metastable
phases (and genes) can still be present together with the dominant
phase outside the coexistence region, with the relative population of
different sequences given by Eq. (7).

The phase transition observed here can occur irrespective of how
interconversion between sequences actually takes place (random
synthesis on solid support or replication of existing chains). The

nature of sequence evolution, however, would affect the dynamics
of ordering, which was not considered here. The establishment of
stationary distribution, Eq. (7), requires sufficient exploration of all
sequences via Eq. (2), fastest with random synthesis but still taking
relaxation times that grow exponentially with l. High-fidelity repli-
cations would slow down this relaxation, while allowing for the pre-
servation of information already discovered.

The organized phases in Figs. 6 and 7 consist of groups of hetero-
polymers independently acting as enzymes. One of these groups can
be polymerases catalyzing the synthesis of polymers. An aspect of
evolutionary transitions we may presume to have occurred, in par-
ticular, is that of the emergence of ‘selfishness’, or the ability of the
polymerase gene to limit its action to its own replication only, exclud-
ing others. This assumption is one of the starting points of the qua-
sispecies theory37. The selfishness is also likely to be closely related to
the conjoining of genes into genomes. It will be of interest to see how
we may understand the evolution of selfishness within the statistical
mechanical perspective.

The viewpoint we adopted for biological self-organization – the
stabilization of structures capable of catalyzing reactions imposed by
chemical driving forces – may also have relevance to the question of
how one may usefully define living organisms. Ruiz-Mirazo et al.57

emphasized two main elements in such a definition: autonomy and
open-ended evolution. The former is a subset of self-organization
capable of auto-regulation, while the latter requires the establishment
of a division of labor between record-keeping (DNA) and expression
(proteins) of biological information. The perspective adopted and
elaborated in this paper shows how thermodynamic driving forces
both constrain and enable self-organization, which may prove useful
in understanding higher-level structures.

The statistical mechanical expression for stationary states and its
partition function, Eq. (9), can form a basis for calculating properties
of systems with more complex features than assumed here. In par-
ticular, one may have multiple reactions coupled to each other, a
common situation in biochemical systems, which would lead to an
extension of Eq. (19) to a coupled ‘hamiltonian’. The calculation of
partition function would be akin to that for interacting systems in
equilibrium such as the Ising model. Such an extension would also
allow one to consider fairly large systems in which the system com-
ponents catalyze the formation of one another, forming an autoca-
talytic network15,32,33. In such systems, the thermodynamic phase
transitions studied here may therefore precede and combine with
the transition to self-sustained autocatalytic organizations.
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Methods
For the toy model defined by Eq. (13), after replacing discrete sums with integrals and
adding a field f, Eq. (9) reads

Q fð Þ~
ðp

0
dh 1zcr=Kmð Þe{E hð Þzf h

~
1

g0=pzf
epf { 1zfð Þe{g0 zf

epf {e{g0

g0zpf

� � ð22Þ

and the mean angle (Fig. 2) can be calculated by

hh i~ L ln Q
Lf f ~0



~
p

g0

g0 g0zfð Þ{f 1{e{g0ð Þ
g0 1{ 1zfð Þe{g0½ �zf 1{e{g0ð Þ{1

	 

:

ð23Þ

In obtaining Fig. 3, Eq. (15) was used with Eq. (16) and
Cl

h~C lz1ð Þ=C hz1ð ÞC l{hz1ð Þ, where C(z) is the gamma function, such that
nonintegral values of distances could be included. For the two-dimensional land-
scapes in Fig. 6, h1,2 were restricted to integers because of the summation in Eq. (20).

The phase diagram in Fig. 3(b) was obtained by varying the width parameter j of
the landscape (17), and locating the values of the driving force f for which the two
phases – organized (O) and disordered (D) – have the same free energy. The coex-
istence values of f decreases with increasing j from top to bottom.

The validity of Eq. (20) for the total number of sequences with given distances to
two master sequences was verified by enumerating all genotypes for small l and
counting the number of sequences for each set of possible distance values.
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