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Abstract

The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium

tuberculosis (M.tb) infection compared to individuals with more remote, established infec-

tion. We aimed to define blood-based biomarkers to distinguish between recent and remote

infection, which would allow targeting of recently infected individuals for preventive TB treat-

ment. We hypothesized that integration of multiple immune measurements would outper-

form the diagnostic performance of a single biomarker. Analysis was performed on different

components of the immune system, including adaptive and innate responses to mycobacte-

ria, measured on recently and remotely M.tb infected adolescents. The datasets were stan-

dardized using variance stabilizing scaling and missing values were imputed using a

multiple factor analysis-based approach. For data integration, we compared the perfor-

mance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which

was built to the individual adaptive and innate datasets. Biomarkers with non-zero coeffi-

cients from the optimal single data EN models were then isolated to build logistic regression

models. A decision tree and random forest model were used for statistical confirmation. We

found no difference in the predictive performances of the optimal MTP-EN model and the

EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models

built to the integrated dataset and the adaptive dataset yielded identically high AUROC val-

ues (average AUROC = 0.91), while the innate data EN model performed poorly (average

AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers

did not outperform the adaptive biomarkers alone (Likelihood Ratio Test χ2 = 6.09, p =

0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1

cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The

discriminatory ability of this variable was confirmed in both tree-based models.
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A single biomarker measuring M.tb-specific T cell activation yielded excellent diagnostic

potential to distinguish between recent and remote M.tb infection.

Author summary

Tuberculosis (TB) remains a leading cause of mortality in humans worldwide. TB is

caused by Mycobacterium tuberculosis (M.tb) and is spread from person to person through

the air. M.tb infection is asymptomatic, but it can progress to TB disease in some individu-

als, who would benefit from preventive treatment. Progression occurs more often within

1–2 years post-infection compared to remote, established infection, but recent and remote

infection cannot be distinguished with the current diagnostic tools. In this study we mea-

sured many different features of immune responses in adolescents who acquired M.tb
infection over the previous 6 months and compared them with those who were infected

for at least 1.5 years. Data integration and computational modelling allowed us to identify

a single feature (M.tb-specific T cell activation) that could accurately distinguish recent

from remote M.tb infection. This biomarker can be measured in blood with a simple

assay, and would allow targeting of preventative treatment to those at high risk of TB

progression.

Introduction

Tuberculosis (TB) is an airborne bacterial disease that is a leading cause of mortality due to an

infectious agent worldwide [1]. It is estimated that about a quarter of the world’s population is

infected with Mycobacterium tuberculosis (M.tb), the causative agent of TB [2]. Acquisition of

M.tb infection is generally asymptomatic and often remains undiagnosed unless serial diag-

nostic testing is performed. To determine M.tb infection status, the QuantiFERON TB (QFT)

measures the level of interferon-gamma (IFN-γ), a cytokine released by T cells, upon stimula-

tion of blood cells with two immunodominant antigens expressed by M.tb, early secretory

antigen 6 (ESAT6) and culture filtrate protein 10 (CFP10) (here collectively termed E6C10).

The highest risk of progressing to TB disease is during the first two years post-infection [3],

which can be measured as recent QFT conversion by serial testing. However, serial testing for

M.tb infection is not routinely performed in TB endemic settings. A blood-based immune sig-

nature that enables identification of recent M.tb infection would therefore allow targeting of

preventive treatment to those at high risk of TB progression, even without serial diagnostic

testing.

In order to define immunological determinants of recent M.tb infection, data from different

arms of the immune response, namely adaptive, donor unrestricted T (DURT) and innate cell

immunity were combined. Adaptive immunity consists of memory-driven antigen-specific T

cell responses, such as those measured by QFT. In this study we measured functional and phe-

notypic features of classical M.tb-specific T cell responses and refer to these variables as the

adaptive dataset. In contrast, innate immune cells, such as monocytes or natural killer (NK)

cells, provide non-specific cellular defence mechanisms, which are more transient in nature.

DURT cells display features of both adaptive and innate immune cells and bridge both arms.

In this study, we included measurements of B cell, monocyte, NK and DURT cell functions in

the innate dataset. We hypothesized that the integration of multiple immune measures from
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the adaptive and innate immune arms, measured on the same individuals, would outperform

individual data types in stratifying individuals with recent or remote M.tb infection.

Data integration presents several challenges, such as: i) different scales from different data

types, which is typically overcome by employing data standardization or transformations

methods; ii) missing values that arise due to some individuals or time points not being avail-

able in each data table, which can be meaningfully replaced using imputation methods; and iii)

high dimensionality of the dataset post-integration.

Regularized regression with sparsity is a common approach for modeling high-dimensional

datasets with multicollinearity. The most popular regularized regression models include Ridge

Regression [4], which minimizes the residual sum of squares subject to an L2 bound; the least

absolute shrinkage and selection operator (LASSO) model [5], which imposes an L1 penalty

on the regression coefficients; and the Elastic Net (EN) model [6], which is a combination of

the two. The latter two models are particularly advantageous as they perform both parameter

estimation and feature selection simultaneously, by shrinking the effect of some coefficients to

zero. If there is a group of highly correlated variables in the dataset, the LASSO model will

select one of these variables at random and ignore the rest. Hence, the EN model was designed

to overcome this issue. Liu et al. (2018) [7], however, observed that the standard EN approach

tends to shrink all features simultaneously and does not consider differing effect sizes in pre-

dictors from different datasets. The authors hypothesized that the Multiple Tuning Parameter

Elastic Net (MTP-EN) model, that allows for different degrees of shrinking for variables from

different data sets, could account for the differences between each dataset and result in a

model with higher predictive performance than a standard EN approach. We therefore tested

whether the MTP-EN did improve the predictive performance of the integrated dataset, by

directly comparing the MTP-EN and standard EN models.

Tree-based algorithms are a common collection of machine learning classification models,

consisting of simple decision trees [8] or the popular random forest (RF) model [9]. A classifi-

cation decision tree is a supervised model that aims to predict a target by learning decision

rules from features in a dataset. Decision trees allow easy interpretation of data, clearly ranking

the importance of features and relations between predictors. A downfall, however, is that they

suffer from high sampling variability [10]. RF models extend decision trees by building multi-

ple trees on bootstrapped samples of the data and merging them together for making decisions

to achieve stable and accurate predictions. RF models also introduce additional randomness

by considering a random subset of m< p predictor variables, where p is the total number of

predictors in the dataset, as potential split candidates. The importance of each predictor vari-

able can then be quantified by averaging the total amount by which the Gini Index, a measure

of node homogeneity, is decreased for a split over a given predictor over all trees. A large value

will be indicative of an important predictor. The misclassification error is a natural measure of

performance for the RF model.

Biomarkers identified by the regression models were validated via an internal validation

procedure and further confirmed using tree-based algorithms.

Results

Based on longitudinal QFT results, we compared two groups of healthy adolescents. One

group had persistent QFT+ results (four 6-monthly measurements over 18 months, n = 30)

and the other experienced QFT conversion, indicative of recent M.tb infection (two QFT- tests

6 months apart followed by 2 QFT+ test 6 months apart, n = 29). Participants were healthy for

the duration of the study, and the groups were balanced for age, sex, ethnicity, school of

recruitment (indicative of socio-economic status), and TB exposure, all factors that have been
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associated with a higher risk of M.tb infection in the larger cohort from which these partici-

pants were selected (S1 Table and [11]). No significant associations were found between these

clinical parameters, which included body mass index (BMI), and group status, hence we did

not need to adjust for any of these variables. Adaptive and innate immune responses were

independently measured by two different flow cytometry panels on samples collected from the

same participants.

An overview of the data analysis pipeline is provided in Fig 1.

Data pre-processing

In order to successfully integrate the adaptive and innate datasets, several data pre-processing

steps needed to be addressed.

Biologically meaningful variables were selected based on a combination of pre-defined cri-

teria to identify which effector functions (cytokines) and phenotypic markers were expressed

by each cell type (detailed in S1 Text). Data filtering of the adaptive immune response features

using COMPASS (S1 Text Section 1.1.1 and S1 Fig) and MIMOSA (S1 Text Section 1.1.2)

retained 132 out of the 259 original variables in the dataset. Further, our novel filtering method

(S1 Text Section 1.1.3 and S2 Fig) identified 61 biologically meaningful innate features from

the 304 variables in the raw dataset. These included 6 features of monocytes, 15 features of NK

cells, 12 mucosal associated invariant T (MAIT) cell, 10 gamma-delta (γδ) T cell, 6 NKT cell

and 12 B cell features comprised the innate dataset. Therefore, the filtered integrated dataset

(innate and adaptive combined) consisted of 193 variables in total.

We standardized the raw values between the adaptive and innate dataset, which had

immensely different scales, using variance stabilizing (vast) scaling and employed a multiple

factor analysis (MFA)-based imputation method [12] to account for missing data points. We

found MFA imputation to outperform all other imputation methods tried based on its ability

to successfully replicate the distribution of the raw data (S2 Table and S3 Fig).

Regularized regression, biomarker discovery and model validation

An MTP-EN model was built using the 193 variables of the integrated dataset in order to assess

whether applying differential penalties to each dataset improved the predictive performance of

the model, measured by the average area under the receiver operating characteristic curve

(AUROC) on the testing data. The standard EN model and MTP-EN model yielded identically

high average AUROC values (S4 Fig) and hence, in terms of predictive performance and com-

putation time, we found no added benefit of fitting the MTP-EN model over the standard EN

model for this specific dataset. The EN model was therefore used for further analyses.

EN models were subsequently built to test whether an integrated model outperforms or

adds to the single dataset models. Three EN models were built to the integrated (adaptive and

innate dataset combined), and to the adaptive and the innate data types separately. The final

EN model built on the adaptive variables had tuning parameter values of α = 0.21 and λ = 0.82

and identified three candidate biomarkers corresponding to an average AUROC value of 0.91

(S5 Fig). The biomarkers which had non-zero coefficients in the model were proportions of

total Th1 cells expressing the phenotypic marker human leukocyte antigen (HLA)-DR, identi-

fied by stimulation with either E6C10 or M.tb-lysate, and the frequency of interleukin (IL)2

+CD107-CD154-IFN-γ- tumor necrosis factor (TNF)+ CD4+ T cells stimulated with EspC,

EspF and Rv2348c (collectively termed Esp). Due to the non-parametric nature of the raw

data, the two groups (recent versus persistent QFT+ individuals) were compared using Wilcox-

on’s test [13] and the raw values for these variables were found to be significantly higher
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Fig 1. Workflow showing data pre-processing steps (A) and regression modeling (B). PID: participant ID; AUC: area under the curve;

LR: logistic regression; CB: candidate biomarkers; CV: cross validation; LRT: likelihood ratio test.

https://doi.org/10.1371/journal.pcbi.1009197.g001
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(p< 0.001) in recent compared to persistent QFT+ individuals (Fig 2A). Hence, these vari-

ables were promising biomarkers for recent infection.

For the EN model built on the innate dataset, the optimal values for α and λ were 0.18 and

0.41 respectively. This model retained 10 variables with non-zero coefficients, which yielded a

poor average AUROC of 0.62 (S5 Fig). These 10 candidate biomarkers consisted of different

Fig 2. Candidate biomarkers of recent M.tb infection identified by the adaptive and innate EN models. Boxplots

comparing the raw values of recent (red) and persistent (blue) QFT+ individuals for the three candidate biomarkers

with non-zero coefficients in the adaptive EN model (A) and the 10 biomarkers with non-zero coefficients in the

innate EN model (B). Wilcoxon tests were used to compare the two groups and the resulting p-values are shown.

https://doi.org/10.1371/journal.pcbi.1009197.g002
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functional subsets of MAIT cells, B cells and γδ T cells (Fig 2B). The raw values for recent and

persistent QFT+ individuals for these variables were not significantly different.

The final EN model, which was built on the integrated innate and adaptive variables,

yielded identical parameter values to the EN model of the adaptive data, with the same

three candidate biomarkers with non-zero coefficients corresponding to an average AUROC

of 0.91.

All non-zero coefficients from the integrated EN model were features from the adaptive

dataset. In order to further quantitatively evaluate whether a combination of adaptive and

innate features would improve the predictive performance of the model, a Likelihood Ratio

Test (LRT) was used to compare a Logistic Regression (LR) model built to the 13 candidate

biomarkers (three from the adaptive EN model and 10 from the innate model) to a LR model

built to the three biomarkers from the adaptive EN model only. The results indicated that a

combination of the non-zero coefficients from both EN models did not significantly improve

model fit (LRT χ2 = 6.09, p = 0.808). The LR model built to the adaptive biomarkers was there-

fore the preferred model.

Backwards variable selection on this preferred adaptive LR model further identified propor-

tions of M.tb-lysate-specific total Th1 cells expressing HLA-DR as a statistically redundant bio-

marker, since HLA-DR expression on either E6C10- or M.tb-lysate-specific T cells were highly

correlated (S6 Fig).

The coefficients from the final LR model are shown in Table 1, model i. By exponentiat-

ing the coefficients, we can most easily interpret the coefficients in terms of the odds.

Hence, holding all other variables fixed, for every one standardized unit increase in either

HLA-DR or CD4+IL2+CD107-CD154-IFN-γ-TNF+ T cells in response to their specific

stimuli, the odds of being a persistent QFT+ individual (the default class) decreases by

99% or 94% respectively. Accordingly, as the value of either one of these biomarkers

increases, the odds that an individual was recently infected, i.e. recent QFT+, increases.

The performance of this model was then assessed via an internal validation procedure and

produced satisfactory results (average AUROC and Brier scores = 0.89 and 0.008

respectively).

Candidate biomarkers from the innate dataset did not improve the adaptive model fit and 2

variables from the adaptive dataset were sufficient to distinguish between the different stages

of infection.

Since including the frequencies of Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T

cells as a predictor variable in the LR model statistically improved model fit (LRT χ2 = 12.76,

p< 0.001) compared to E6C10-specific HLA-DR frequencies alone, we explored whether the

successful discriminatory ability of this cell subset was dependent on the subset being negative

for CD107, CD154 and IFN-γ. This was tested by comparing the predictive performance of an

LR fitted to E6C10-specific HLA-DR and IL2+TNF+ CD4+ T cell when stimulated with Esp,

Table 1. Model estimates and the average performance metrics after internal validation of the final LR model (i) and the LR model built to E6C10-specific total Th

1 cells expressing HLA-DR only (ii).

Coefficients β (95% CI) eβ (95% CI) Avg. AUC Avg. Brier

i (Intercept) -1.55 (-2.97; -0.13) 0.21 (0.05; 0.88) 0.89 0.008

E6C10 HLA-DR -4.34 (-7.20; -1.47) 0.01 (0.00; 0.23)

Esp CD4+IL2+CD107-CD154-IFN-γ-TNF+ -2.79 (-5.27; -0.30) 0.06 (0.01; 0.73)

ii (Intercept) -0.91 (-1.92; 0.09) 0.40 (0.15; 1.10) 0.87 0.007

E6C10 HLA-DR -4.06 (-6.36; -1.76) 0.02 (0.00; 0.17)

https://doi.org/10.1371/journal.pcbi.1009197.t001
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regardless of CD107, CD154 and IFN-γ expression, to model i in Table 1. We found that the

average AUROC value, hence the predictive performance, of this model was lower (average

AUROC = 0.79) compared to model i. In addition, this model had a higher Akaike informa-

tion criterion score [14] compared to model i (57 compared to 42), thus indicating a poorer fit

to the data. The relative quality of the model was therefore dependent on the CD4+ T cell sub-

set being negative for CD107, CD154 and IFN-γ.

The ability of E6C10-specific HLA-DR expression alone to distinguish between the different

stages of M.tb infection was then assessed. The performance of this model and the model

including Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells were similar and equally

high (average AUROC and Brier scores = 0.87 and 0.007 respectively) (Table 1, model ii).

Tree-based methods

To verify that the final selected variables and model performance were not a result of over-

fitting, a simple classification tree was built to all the 193 features in the vast standardized

and MFA-imputed integrated adaptive and innate dataset (Fig 3A). The tree identified two

features from the set of all variables in the integrated dataset to best discriminate between

recent and persistent QFT+ individuals. The best classifying feature in the dataset was the

level of HLA-DR on total Th1 cells when stimulated with E6C10, followed by the frequency

of Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells. The split value for

E6C10-specific HLA-DR was identified as -0.098 (Fig 3B). Seventeen observations had val-

ues greater than or equal to -0.098 for E6C10-specific HLA-DR expression levels and were

assigned to leaf node 2, where all observations were correctly classified as recent QFT+. Oth-

erwise, out of the seven observations in node 4, six were correctly classified as recent con-

verters. Observations were assigned to this node if they had a value less than -0.098 for

E6C10 HLA-DR but greater than -0.12 for the frequency of Esp-specific CD4+IL2+-

CD107-CD154-IFN-γ-TNF+ T cells (Fig 3C). Any observations that had values less than

both these split values for each of the predictors were assigned to leaf node 5, which cor-

rectly classified 29 out of the total 30 persistent QFT+ individuals, but misclassified 6 recent

QFT+ individuals. These decision rules identified by the tree resulted in 12% (7 out of 59) of

the observations being misclassified.

The final RF model, after hyperparameter tuning via cross validation (CV), was then built

such that 500 decision trees built to 500 random bootstrapped samples of the data made up the

forest, a random subset of 25 out of the 176 features were considered at each split, and each

tree built was allowed no more than 10 nodes from root to terminal node to avoid overfitting.

The Gini Index was then used to measure variable importance. Among the 10 top variables

with the largest mean decrease were nine variables from the adaptive dataset (Fig 3D). The

E6C10-specific HLA-DR variable resulted in the largest mean decrease. One single variable

from the innate dataset, total TNF production in unstimulated γδ T cells, was found to be the

sixth most important.

After an internal model validation procedure, the average AUC for the final RF model was

0.84 and the average misclassification error was 0.12, precisely the misclassification error of

the simple classification tree.

Discussion

This study applied regularized regression modelling approaches and machine learning algo-

rithms to identify biomarkers that could distinguish individuals with remote or recent M.tb
infection, which is associated with higher risk of TB disease.
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Fig 3. Tree-based modeling results. (A) Results from the simple classification tree built to the entire integrated

dataset. Boxplots comparing vast scaled values of recent (red) and persistent (blue) QFT+ individuals were plotted for

the two most stratifying features identified by the decision tree. The split values are superimposed onto the plots at (B)

-0.098 for proportions of E6C10-specific Th1 cells expressing HLA-DR, and (C) -0.12 for frequencies of Esp-specific

IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells. (D) Variable importance plot of the final RF model showing the top

10 variables that resulted in the largest average decrease in the Gini Index.

https://doi.org/10.1371/journal.pcbi.1009197.g003
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Data pre-processing steps were required to successfully integrate the datasets from the

innate and adaptive immune responses measured on the same individuals. To overcome the

high dimensionality of the integrated dataset, filtering methods were applied to each dataset

separately. COMPASS [15] and MIMOSA [16] are very sensitive algorithms that have been

developed to identify biologically meaningful combinations of cytokines produced by rare

antigen-specific T cells, and significant responses over background, respectively. A combina-

tion of these methods was used to pre-filter the adaptive dataset. These methods assume back-

ground immune responses detected in unstimulated samples to be extremely low. This is not

the case for most innate immune cells, which spontaneously produce variable levels of cyto-

kines, even when cultured in absence of stimulation, that can be biologically meaningful.

COMPASS and MIMOSA were thus not appropriate to pre-filter innate variables and we

therefore developed our own filtering method to robustly identify biologically meaningful cell

subsets from innate immune cells, B cells and DURT cells.

The intrinsic biological variability between the adaptive and innate datasets was accounted

for by using vast scaling to standardize the raw values to a common scale, and missing values

were successfully imputed using an MFA-based imputation method. We compared several

imputation methods, to account for missing values, and the MFA-based method performed

the best in this dataset, characterized by non-normally distributed data with missing rows.

Because our focus in this study was less on estimating model coefficients, but more on identify-

ing predictive markers, instead of using Rubin’s rule [17] to take into account imputation vari-

ability, we rather repeated the MFA imputation for each CV run. Therefore, we were confident

that the results found here were not a consequence of the imputation method used. Perform-

ing such data pre-processing steps risks influencing and potentially biasing any results found

in the integrated model. In this paper we hence emphasize the importance of testing different

approaches and taking the time to identify the best suited method for a given dataset such that

unbiased and valid results are yielded.

We first built an MTP-EN model, which applied differential penalties to the adaptive and

innate datasets in the integrated model to account for potentially differing effect sizes. The

results indicated that, in terms of both computing power and predictive performance, there

was insufficient evidence to justify building the MTP-EN model over the standard EN model

for the integrated dataset.

The EN model built to the integrated adaptive and innate dataset retained only adaptive fea-

tures as non-zero coefficients, the same features that were selected by the EN model built to

the adaptive dataset alone. These three candidate biomarkers were the proportions of M.tb-

lysate or E6C10-specific Th1 cells expressing HLA-DR and the frequencies of Esp-specific IL2

+CD107-CD154-IFN-γ-TNF+ CD4+ T cells. TNF and IL2 produced by CD4+ T cells are early

response cytokines that both play an important role in the context of TB [18]. HLA-DR on the

other hand is a cell surface receptor reflecting T cell activation. HLA-DR expression on M.tb-

specific T cells is an excellent biomarker to distinguish individuals with (remote) M.tb infec-

tion from those with active TB disease, and to monitor antibiotic treatment response [19–22].

The robustness of HLA-DR expression as a biomarker to also distinguish recent from remote

asymptomatic M.tb infection was confirmed in response to either E6C10 or M.tb lysate. We

propose E6C10 to be a more appropriate stimulation for use in diagnostic tools, since it only

includes antigens specific for M.tb (the same as in interferon gamma release assays), whereas

M.tb-lysate contains a mix of different antigens that do cross-react with other mycobacteria

and is therefore less specific.

The true effect of these two identified biomarkers on the probability of an individual being

remotely M.tb infected (persistent QFT+ individuals) was estimated through a LR model.

Higher standardized frequencies of both these biomarkers were associated with a larger
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probability, or odds, of an individual being recently infected (recent QFT+). This reflects the

relationship that was seen in the raw data plots, where individuals recently infected with M.tb
had significantly higher values of these features compared to remotely infected individuals.

The performance of the LR model built to these two biomarkers was assessed via an internal

validation procedure and, given the small sample size, was considered sufficiently high to jus-

tify further evaluation of these biomarkers.

A diagnostic test made up of a single biomarker would be simpler and more cost effec-

tive. Therefore, the ability of M.tb-specific T cell activation (HLA-DR expression) to suc-

cessfully distinguish between the two stages of M.tb infection as a biomarker on its own was

tested. Moving forward with HLA-DR as a single diagnostic measure was justified by sub-

stantial literature showing excellent performance of this biomarker to distinguish different

stages of the TB spectrum [20–24], and the small number of markers necessary to measure

this biomarker (as few as four [19]). Further, frequencies of the Esp-specific IL2

+CD107-CD154-IFN-γ-TNF+ CD4+ T cells were extremely low (values range between

0 and 0.006), which is challenging to measure in a robust and reproducible way. Lastly,

because the discriminatory ability of Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4

+ T cells was in fact dependent the subset being negative for CD107, CD154 and IFN-γ, the

flow cytometry antibody panel for a diagnostic test including all these markers would be

complex. Although the final LR model included frequencies of Esp-specific IL2

+CD107-CD154-IFN-γ-TNF+ CD4+ T cells as an additional biomarker of recent infection,

further analyses showed that E6C10-specific HLA-DR expression alone is an equally strong

single biomarker to distinguish recent from remote M.tb infection.

Due to the various variable selection techniques that were applied during this study to get

to the final model, we run the risk of overfitting the model. The performance of the final LR

model was assessed via CV and the estimated coefficient of HLA-DR in the model with multi-

ple variables was similar to the coefficient of the model with HLA-DR alone, indicating that

the relationship between HLA-DR and recent M.tb infection is unchanged after variable selec-

tion. However, we further applied different tree-based algorithms to ensure our approach was

generalizable across statistical methods. The top performance of M.tb-specific T cell activation

over all other immune features as a biomarker of recent infection was found in both the simple

decision tree and random forest model.

Lastly, in contrast to our hypothesis, variables from the innate dataset did not improve model

fit and were unable to outperform the strongest candidate biomarkers from the adaptive dataset.

To our knowledge, this study includes the most comprehensive integrated evaluation of

adaptive and innate immune responses induced by recent M.tb infection in humans published

to date. Limitations include the narrow age range of participants (13–18 years old), the

unknown time of TB exposure for most individuals, the relatively wide interval between QFT

testing (6 months) and the small sample size, which did not allow further stratification for risk

of incident TB. Our results show that the innate immune responses were poor predictors of

recent M.tb infection, and did not improve the performance of the integrated model. Based on

the results reported here, the expression of HLA-DR on E6C10-specific T cells was the stron-

gest candidate biomarker to distinguish between groups of participants with recent or remote

M.tb infection. This biomarker holds the potential to identify individuals at high risk of TB

progression, who would benefit from preventive TB treatment, and its performance has now

been validated in a separate test cohort [24]. However, due to the small sample size in this

study, further validation in a large independent cohort is required, as well as assessment of the

biomarker performance in different populations, including other younger age groups, individ-

uals living with HIV and low transmission settings.

PLOS COMPUTATIONAL BIOLOGY Multidimensional analysis identified biomarkers of recent M.tb infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009197 July 28, 2021 11 / 18

https://doi.org/10.1371/journal.pcbi.1009197


Materials and methods

Ethics statement

This study was approved by the University of Cape Town Human Research Ethics Committee

(protocol references: 045/2005). Written assent from participating adolescents and written

consent from their parents or legal guardians was obtained prior to the study start.

Study design and participants

An epidemiological study was carried out from July 2005 through February 2009, in which

healthy, 12 to 18-year-old adolescents were recruited from local high schools in the Worcester

area, Western Cape, South Africa [25, 26]. Participants who tested human immunodeficiency

virus (HIV) positive, were diagnosed with TB, or had any other acute or chronic medical dis-

eases that resulted in hospitalization during the study period, were excluded from the study.

Pregnant or lactating females were also excluded. Peripheral blood mononuclear cells

(PBMCs) were collected at enrolment and at 6-monthly intervals during the 2-years of follow-

up (termed months 0, 6, 12 and 18) when the QFT tests were performed to determine M.tb
infection. The QFT tests were performed and interpreted according to the manufacturer’s

instructions. Two groups of participants were defined based on their longitudinal QFT results

and taking into account our proposed uncertainty zone to interpret quantitative values [27]:

recent QFT converters (two consecutive QFT negative results, of which at least one is< 0.2

IU/mL, followed by consecutive two QFT positive results, of which at least one is> 0.7 IU/

mL) and persistent QFT positives (QFT positive results� 0.35 IU/mL at four consecutive vis-

its) (S7 Fig). Raw QFT results have been described in detail elsewhere (training cohort in [24]).

Overall, recent QFT converters and persistent QFT positives were matched by age, sex, eth-

nicity, school (indicative of socio-economic status in our community) and known TB expo-

sure, all factors that were associated with QFT+ in the larger cohort from which these

participants were selected [11]. Since all participants were healthy for the duration of the

study, no additional clinical variables could be considered to adjust the analysis.

Definition of recent and remote M.tb infection

Infection with M.tb likely occurred between the second and third sampling occasions in the

recent QFT+ individuals, which was indicated by a QFT test conversion from negative to posi-

tive. Wilcoxon’s signed rank test indicated no difference over time, thus we used the median

value of the two QFT positive time points for each variable in recent QFT+ individuals (n = 29

for the adaptive dataset and n = 16 for the innate dataset).

Time of M.tb infection was unknown in persistent QFT+ individuals (n = 30 for the adap-

tive dataset and n = 17 for the innate dataset). Since the Friedman’s test [28] did not reveal any

significant changes over time, we included median values of each variable measured at all four

QFT+ time points available as representative of remote M.tb infection (S7 Fig).

Immune measurements

Innate and adaptive effector responses were measured in stimulated PBMCs using flow cytom-

etry (S1 Text Section 1.2 and [29]). Five stimulations were used to induce M.tb and non-spe-

cific T cell responses in cells of the adaptive arm (adaptive dataset), including M.tb-specific

peptide pools spanning E6C10 or EspC, EspF and Rv2348c (collectively termed Esp), and M.
tb-lysate, which is a mixture of M.tb-specific antigens, of which some of which are cross-reac-

tive with other mycobacteria; Staphylococcus Enterotoxin B (SEB), as a positive control; or the

cells were left unstimulated as a negative control. This dataset consisted of 259 variables
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including a combination of 5 effector functions, namely interleukin-2 (IL2), CD107, CD154,

IFN-γ and tumor necrosis factor (TNF) produced by CD4+ and CD8+ T cells upon stimula-

tion. Combinations of the phenotypic markers CD45RA, CCR7, CD27, KLRG1, HLA-DR and

CXCR3 were further measured on IFN-γ, IL2 or TNF producing T cells (total Th1). Effector

responses were background subtracted (subtracting the frequencies detected in corresponding

unstimulated samples from frequencies in stimulated samples), while the phenotypic markers

were expressed as proportions of Th1 cells. Further, phenotypes were only measured in

“responding” samples (S1 Text Section 1.1.2).

In the innate dataset, effector responses were measured in unstimulated PBMC or after

stimulation with M.tb-lysate or Escherichia coli (E. coli), which served as a positive control.

The innate dataset consisted of 283 variables, including a combination of 6 functions, Gran-

zyme B (GB), IL6, IL10, IL12, IFN-γ and TNF produced by NK cells, B cells, monocytes, and

DURT cells: mucosal associated invariant T (MAIT) cells, γδ T cells and NKT cells.

Data integration

Adaptive and innate datasets were generated independently of one another using different

assays. The integration of the adaptive and innate datasets was performed by aligning each

dataset according to participant ID, QFT status (positive or negative) and month of sample

collection (months 0, 6, 12, and 18).

Data pre-filtering

Due to the high dimensionality of the dataset post-integration, we opted to pre-filter the data-

set to identify and exclude biologically irrelevant cell subsets. For the adaptive dataset, we

employed COMPASS (Combinatorial Polyfunctionality analysis of Antigen-Specific T cell

Subsets) to filter the effector functions [15] (S1 Text Section 1.1.1), while the phenotypic mark-

ers expressed on T cells were only measured in stimulated samples from responding individu-

als identified by MIMOSA (Mixture Models for Single Cell Assays [16]; S1 Text Section 1.1.2).

Since innate immune cells and DURT cells have high background (unstimulated) values,

COMPASS could not be used to filter the innate dataset. We designed a novel filtering method

to identify biologically meaningful cell subsets from the innate dataset (S1 Text Section 1.1.3).

All analyses were performed on the pre-filtered dataset. An outline of the data pre-processing

steps is provided in Fig 1A.

Data standardization

The intrinsic biological variability of the measurements in the separate datasets was accounted

for by employing vast scaling to standardize the datasets to a common scale. Vast scaling is

achieved by dividing the Z-score by a coefficient of variation (cv) as a scaling factor. Division

by the cv, which is the sample standard deviation divided by the sample mean of each variable,

gives higher importance to those variables with small relative standard deviations. Vast scaling

method aims to be robust and is typically used on variables that show small fluctuations [30].

Missing value imputation

Fewer samples were used in the innate dataset compared to the adaptive, and only n = 16 of

the n = 29 recent QFT+ individuals, and n = 17 out of the n = 30 persistent QFT+ individuals,

were analyzed. As not all variables were measured for each individual, row-wise missingness

(missing values) arose in the final dataset as a consequence of this integration step.
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Several imputation methods (S2 Table) were considered to meaningfully replace the miss-

ing values in the filtered and vast scaled dataset. The performance of each method was evalu-

ated based on how well the imputed data could replicate the density of the vast scaled,

incomplete data.

Standard elastic net model and elastic net model with multiple tuning

parameters

An outline of the workflow for the modeling portion of this study is summarized in Fig 1B.

The MTP-EN model [7] extends the standard EN model [6] by imposing separate penalties

to coefficients from different data types. It achieves this via the fine tuning of the parameter κ
= λ2/λ1, where λ1 and λ2 are the penalties applied to the coefficients from the adaptive and

innate datasets respectively, which controls the shrinkage of one data type relative to the other.

The model was built to the variables in the integrated dataset using the glmnet R package [31]

via the “penalty.factor” argument.

For each candidate weight parameter κ 2 [0.2, 1.8], 10-fold CV was used to tune the optimal

values for λ and α for this specific value of κ. The CV procedure was repeated 500 times for sta-

ble estimates and the AUROC was used as a measure of performance. The highest AUROC

values after 10-fold CV were stored for each of the 500 repeats, and the performance of the

MTP-EN model for each value of κ was reported as an average of the 500 AUROC values. A

parameter value of κ = 1 (λ1 = λ2 = λ) is equivalent to a standard EN model, and so we could

directly compare the performance of the standard EN model to MTP-EN models with varying

penalties applied to each dataset. The result of this experiment was used to determine whether

an MTP-EN or standard EN model would be the most suitable for the integrated dataset.

Further, two EN models were built using the glmnet package to the individual adaptive and

innate datasets separately. The model parameters were tuned using the same CV protocol as

the MTP-EN, and the average of the selected parameters across the 500 searches were thereaf-

ter defined as the “optimal” parameter values. Relevant candidate biomarkers (CB) for classify-

ing M.tb infection were identified as features with non-zero coefficients in the final model, and

predictive performances in terms of AUROC values of the models were then compared.

Logistic regression

The CBs identified from the innate and adaptive EN models were used to build LR models.

One LR model was built using the biomarkers identified in the adaptive model, and another

using a combination of the biomarkers identified from both the adaptive and innate data EN

models. A LRT was used to assess whether adding the innate biomarkers to the LR model

resulted in a statistically significant improvement in the fit of the model. Backwards variable

selection was performed on the preferred LR model, as established by the LRT in the previous

step, to identify the best subset of predictors and build the final LR model.

Tree-based machine learning algorithms

Decision trees. A simple classification was built to all of the observations in the integrated

dataset using the R package rpart [32]. The decision tree was used to visualize the relationship

between the variables in the integrated dataset and assess feature importance in stratifying the

recent from persistent QFT+ individuals.

Random forest models. We built the RF model to our data using the randomForest R

library [33], and tuned the model using 500x10-fold CV. Similar to the EN models, the “opti-

mal” hyperparameters were taken as the average across the 500 repeats and used to build the
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final RF model. We then used the final RF model to identify the 10 most important features

corresponding to the largest mean decrease in the Gini Index.

Internal model validation

The predictive performance of the final LR model, and subsequently the set of biomarkers, as

well as the final RF models was assessed via an internal validation procedure. We employed

10-fold CV repeated 500 times and used the AUROC and the Brier score [34] as performance

metrics. Results reported are an average of the performance metrics across the 500 CV repeats.

For all instances in this study when CV was performed, the missing values in the dataset

was imputed separately for the training and testing sets using MFA imputation. Therefore, the

dataset was imputed several times to ensure that any results found were not just a consequence

of the imputation method.

Supporting information

S1 Table. The clinical parameters of the two groups of individuals in this study.

(PDF)

S2 Table. The various imputation methods that were tested.

(PDF)

S1 Text. Supplementary methods. Supporting information on PBMC isolation, stimulation

and staining, and on the data pre-filtering methods.

(PDF)

S1 Fig. Filtering the adaptive dataset. The number of observations for CD4+ T cell counts

stimulated with E6C10 in the recent QFT+ individuals that had posterior probabilities (calcu-

lated by COMPASS) greater than 0.1 for each binary combination, stratified according to

month. A subset was classified as biologically meaningful if the number of observations with

posterior probability values greater than 0.1, at one of either month 0, 6, 12 or 18, was greater

than 10 (one third of the number of participants in one cohort).

(TIF)

S2 Fig. Flow chart for the innate data filtering.

(TIF)

S3 Fig. Data imputation methods. The efficacy of each imputation method to capture the dis-

tribution of the raw frequencies of total IFN-γ production in NKT cells stimulated with M.tb-

lysate is shown as an example. The red lines are the raw data in each plot and the blue lines are

(A) MFA, (B) column median, (C) k-nearest neighbours and (D) missForest imputed values.

(TIF)

S4 Fig. Performance of the MTP-EN model. The average of 500 AUROC values is plotted as

a function of κ, the ratio of the penalty parameter for the innate dataset relative to that for the

adaptive dataset. When κ< 1 (λ2 < λ1) a smaller penalty is applied to the innate dataset, and

when κ> 1 (λ2 > λ1) a larger penalty is applied to the innate dataset. A red dashed line is plot-

ted at κ = 1 (λ2 = λ1), which is equivalent to a standard EN model, and a blue line at the “opti-

mal” κ = 1.7, corresponding to the highest mean AUROC.

(TIF)

S5 Fig. Coefficient paths for the final adaptive and innate EN model as a function of log

(λ). Each line in the plots represents the coefficients of one variable for different values of λ,

the overall shrinkage parameter in the EN model, from the respective datasets. An increasing
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value of λ leads to the shrinkage of more regression coefficients and the number of non-zero

coefficients for each λ value are shown at the top of the figure. In the adaptive EN model (A) α
was set to 0.21, where α� 1 is the weight given to the L1 penalty and (1- α) the weight to the

L2 penalty. A dotted line is plotted at log(λ) = -0.2 (λ = 0.82), the optimal parameter values

from the final adaptive EN model. At this point the number of non-zero coefficients are three

and correspond to E6C10-specific or M.tb-lysate-specific HLA-DR expression on total Th1

cells and Esp-specific CD4+IL2+CD107-CD154-IFN-γ-TNF+ T cells. For the final innate EN

(B) α was set to 0.21 and a dotted line is plotted at log(λ) = -0.89 (λ = 0.41) corresponding to

11 non-zero coefficients.

(TIF)

S6 Fig. Correlation between M.tb-lysate (x-axis) and E6C10 (y-axis) stimulation on total

Th1 cells expressing HLA-DR. Spearman’s non-parametric correlation coefficient and its

associated p-value are superimposed onto the plot.

(TIF)

S7 Fig. Cohort definition.

(TIF)
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