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Abstract

Objectives

To evaluate the interobserver reliability and value of diffusional kurtosis imaging (DKI) in the

assessment of uterine tumors compared with those of conventional diffusion-weighted

imaging (DWI).

Methods

This retrospective study was approved by our institutional review board, which waived the

requirement for informed consent. Fifty-eight women (mean age: 55.0 ± 13.6 years; range:

30–89 years) with suspected malignant uterine tumors underwent 3-T magnetic resonance

imaging using DKI and DWI. Twelve had coexisting leiomyoma. Two observers analyzed

region-of-interest measurements of diffusivity (D), kurtosis (K), and the apparent diffusion

coefficient (ADC) of uterine lesions and healthy adjacent tissues. Interobserver agreement

was evaluated using the intra-class correlation coefficient (ICC). The mean values were

compared using one-way analysis of variance with a post-hoc Tukey’s honestly significant

difference test. The diagnostic accuracy of D and ADC in differentiating malignant tumors

from benign leiomyomas was analyzed using receiver operating characteristic (ROC)

analysis.

Results

The ICCs between the two observers in evaluating D, K, and the ADC of the malignant

tumors were higher than 0.84, suggesting excellent interobserver agreements. The mean

D (×10−3 mm2/s) of uterine cancers (1.05 ± 0.41 and 1.09 ± 0.40 for observers 1 and 2,

respectively) were significantly lower than those of leiomyoma (1.40 ± 0.37 and 1.56 ± 0.33,

respectively; P < 0.05), healthy myometrium (1.72 ± 0.27 and 1.69 ± 0.30, respectively; P <
0.001), and healthy endometrium (1.53 ± 0.35 and 1.42 ± 0.37, respectively; P < 0.005).

There was no significant difference in the area under the ROC curve between D and ADC.

The mean K of uterine cancers (0.88 ± 0.28 and 0.90 ± 0.23, respectively) were higher

than those of myometrium (0.72 ± 0.10 and 0.73 ± 0.10, respectively; P < 0.001), healthy
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endometrium (0.65 ± 0.13 and 0.60 ± 0.18, respectively; P < 0.001), and leiomyoma (0.76 ±
0.14 and 0.77 ± 0.16, respectively; not significant, P > 0.1).

Conclusions

Interobserver agreements in evaluating D, K, and ADC were moderate to excellent. D per-

formed equally to conventional DWI in differentiating between benign and malignant uterine

lesions. The mean K of malignant uterine lesions was significantly higher than that of non-

tumorous myometrium or endometrium.

Introduction

Uterine cancers include cervical cancers and corpus cancers. Cervical cancer is the second

most common cancer in women worldwide with nearly 530,000 new cases and 275,000 deaths

attributed to the disease annually [1]. Corpus cancers, also referred to as endometrial cancers,

are the most commonly diagnosed gynecologic malignancy among women in the US; an esti-

mated 60,050 new cases and 10,470 deaths are expected in 2016 [2].

Over the last decade, several studies on functional magnetic resonance (MR) imaging have

demonstrated the utility of functional MR imaging sequences, such as diffusion-weighted

imaging (DWI), in the diagnosis, and pre- and post-operative assessment of uterine cancers

[3–10]. Tumors are frequently more cellular than the tissue from which they originate, thus

appearing to have a relatively high-signal intensity on DWI [3]. Conventional DWI studies the

motion of water molecules assumed to undergo Gaussian diffusion. However, water in bio-

logic tissues is restricted by its interactions with other molecules and cell membranes; there-

fore, the assumption of Gaussian water diffusion may be inadequate to describe the actual

diffusion in tissues [11].

Diffusional kurtosis imaging (DKI) is a new and promising diffusion imaging technique

that extends DWI through the quantification of non-Gaussian water diffusion and requires the

use of multiple and higher b values. Recently, DKI was developed with the aim of characteriz-

ing the diffusional heterogeneity emerging from multiple tissue compartments with different

diffusivities [11, 12]. DKI provides novel in vivo diffusion properties that describe tissue micro-

structure by analyzing not only diffusivity (D) but also kurtosis (K), which is a unit-less index

of non-Gaussianity [13, 14]. DKI has been widely applied in recent years because of its clinical

utility and robust theoretical framework [13, 15]. To the best of our knowledge, however, the

utility of DKI for the evaluation of uterine tumors has not yet been investigated. The purpose

of this study was to evaluate the interobserver reliability and the value of DKI in the assessment

of uterine tumors compared with that of conventional DWI.

Materials and methods

Ethics statements

This retrospective study was approved by the Osaka University Hospital institutional review

board (approval number: 14395), which waived the necessity for informed consent.

Patients

We retrospectively searched the radiology database of our institution for patients with sus-

pected malignant uterine tumors who underwent MR imaging, including multi-b value DWI,
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before therapy between November 15th, 2013 and February 4th, 2015. Fifty-eight women

(mean age 55.0 ± 13.6 years [standard deviation], range 30–89 years) with suspected malignant

uterine tumors were included in the study. After surgery (N = 26) or biopsy (N = 32), 53 had

histopathologic proof of malignancy and the remaining five had no histopathologic proof of

malignancy. For five of the 53 women who had histopathologically proven malignant tumors,

it was difficult to measure signal intensity of the tumor on diffusion-weighted images because

the tumor was too small to be observed on MR images. Of the 48 malignant tumors for which

signal intensities could be measured on MR images, the most frequent lesions were squamous

cell carcinoma of the uterine cervix (N = 24), adenocarcinoma of the uterine cervix (N = 9),

and endometrioid adenocarcinoma of the uterine corpus (N = 5; Table 1). Twelve of the 58

women had typical leiomyomas, for which signal intensities could be measured on diffusion-

weighted images.

Magnetic resonance imaging protocol

A 3T MR scanner was used (Achieva 3.0T X; Philips Healthcare, Best, The Netherlands) using

32-channel torso/cardiac coils. Unless contraindicated, patients received 20 mg of intramuscu-

lar butylscopolamine to prevent artifacts resulting from peristalsis. A parallel imaging technique

(SENSE) was used. Axial images of the pelvis were initially obtained using two-dimensional

(2D) T2-weighted single-shot turbo spin-echo and three-dimensional T1-weighted gradient-

echo MR imaging, with and without fat-suppression sequences. The patients then underwent

T2-weighted imaging with 2D turbo spin-echo (TSE) sequences. TSE images were obtained at a

thickness of 4 mm in both the parasagittal (parallel to the longitudinal axis of the uterus) and

axial oblique (orthogonal to the longitudinal axis of the uterus) planes. DWI images were

acquired using a single-shot spin-echo echo-planar sequence (b = 0, 700, 1000, 1700, and 2500

s/mm2) in the parasagittal planes (Table 2). We used a maximum b value of 2500 s/mm2 accord-

ing to Jensen et al [11]. Dynamic contrast-enhanced images were obtained for all patients, but

those images were not used in our study.

Table 1. Histopathologic findings of uterine malignant tumors that can be measured on diffusion-

weighted images.

Histopathologic findings of uterine malignant tumors Number

Squamous cell carcinoma of the uterine cervix 24

Adenocarcinoma of the uterine cervix 9

Poorly differentiated carcinoma of the uterine cervix 3

Small cell carcinoma of the uterine cervix 1

Endometrioid adenocarcinoma of the uterine corpus 5

Mixed carcinoma of the uterine corpus (endometrioid adenocarcinoma and serous

adenocaricnoma)

2

Clear cell adenocarcinoma of the uterine corpus 1

Adenosquamous carcinoma of the uterine corpus 1

Carcinosarcoma of the uterine corpus 2

Total 48 *

Note

*Of the 58 women, 5 had no histopathologic proof of malignancy and 53 had histopathologic proof of

malignancy. For 5 of the 53 women who had histopathologically proven malignant tumors, it was difficult to

measure signal intensity of the tumor on diffusion-weighted images because the tumor was too small to be

observed on magnetic resonance images.

Twelve of the 58 women had coexisting leiomyoma.

https://doi.org/10.1371/journal.pone.0188434.t001
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Image analysis

Using Philips Research Integrated Development Environment (PRIDE) software (Philips

Healthcare), we conducted region-of-interest (ROI) measurements of D, K, and the apparent

diffusion coefficient (ADC) of malignant tumors of the endometrium and uterine cervix, leio-

myoma, healthy myometrium, and healthy endometrium. Two radiologists with different

years of experience in abdominal imaging (9 and 5 years) independently drew circular ROIs

for each lesion and adjacent non-tumorous regions (healthy myometrium and endometrium)

at a b value of 0 s/mm2 in the region of highest contrast that was devoid of intratumoral necro-

sis. These ROIs were then automatically copied for other b values (b = 700, 1000, 1700, and

2500 s/mm2). The ROI areas ranged from 12.5 mm2 to 314.2 mm2. D and K were calculated

using the following formula:

S ¼ S0 � e
� b�Dþ� b2þD2 �K

6

where S and S0 represent the signal intensities of the images acquired at b and b0, respectively

(s/mm2). D and K represent diffusivity (mm2 /s) and kurtosis, respectively. Standard ADC

(mm2/s) was obtained using a conventional mono-exponential fit with the following equation:

S ¼ S0 � e
� b�ADC

where S and S0 represent the signal intensities acquired at b and b0, respectively. DKI parame-

ters (D and K) were calculated using b values ranging from 0 to 2500 s/mm2. The ADC was cal-

culated using b values of 0 and 700 s/mm2.

Statistical analysis

The intra-class correlation coefficient (ICC) (2,1) was used to assess interobserver agreement

between the two radiologists. The mean values for uterine malignant tumor, leiomyoma,

healthy myometrium, and healthy endometrium were calculated; the differences in mean val-

ues were tested using one-way analysis of variance (ANOVA) with a post-hoc Tukey’s honestly

significant difference test. An unpaired t-test was used to evaluate the differences in D, K, and

ADC between squamous cell carcinoma and adenocarcinoma. The diagnostic accuracy of D

and the ADC in differentiating malignant tumors from benign leiomyomas was compared

using DeLong’s test for two correlated receiver-operating characteristic (ROC) curves.

For all statistical analyses other than the ROC analysis, IBM SPSS software (Version 21:

IBM, Somers, NY, USA) was used. For ROC analysis, R software (Version 3.2.2: R Foundation

for Statistical Computing, Vienna, Austria) was used. A two-tailed P value of<0.05 was con-

sidered to indicate a significant difference.

Table 2. Diffusional kurtosis imaging parameters.

b

values

(s/

mm2)

Imaging

plane

Acqusition

Time (s)

Repetition

Time /

Echo Time

(ms)

Flip

Angle

(deg)

Field

of

View

(cm)

EPI

factor

Fat

saturated

Section

Thickness

/ Gap (mm)

Matrix No. of

Slices

No. of

Signals

Acquired

Parallel

Imaging

Factor

Bandwidth

(pixels)

0,

700,

1000,

1700,

2500

Parasagittal 420 4000 / 77 90 28 51 Yes 4 / 0 96 x

96

16 3 2 14

Note: Diffusional kurtosis imaging was acquired using a single-shot spin-echo echo-planar sequence.

https://doi.org/10.1371/journal.pone.0188434.t002
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Post-hoc power analysis using the two-sided independent t-test was performed to evaluate

the statistical power for detecting significant differences in K between malignant tumors and

leiomyomas or between squamous cell carcinomas and adenocarcinomas with the PS software

package (version 3.1.2; http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize).

Results

The DKI and ADC measurements were possible in 48 women with uterine malignant tumors,

12 with leiomyoma, 41 with healthy myometrium, and 19 with healthy endometrium. Fig 1

illustrates representative images from a woman with poorly differentiated carcinoma of the

uterine cervix. Of the 58 women, D, K, and ADC values of uterine malignant tumors could not

be measured in 10 because of (a) no pathological proof of malignancy (N = 5) or (b) no visible

tumor on MR images (cervical cancer, 4; corpus cancer, 1). Values of healthy myometrium

could not be measured in 17 women because of (a) small size of myometrium due to large

tumors (N = 4), (b) small size of myometrium due to hydrometra or pyometra (N = 5), (c)

Fig 1. A 38-year-old woman with poorly differentiated carcinoma of the uterine cervix and coexisting posterior corporeal leiomyoma. (a) Sagittal

T2-weighted image (TR/TE = 4500/80 ms), (b) sagittal diffusion-weighted image at b = 0 s/mm2, (c) sagittal diffusion-weighted image at b = 2500 s/mm2, (d)

sagittal diffusivity map (D map), and (e) kurtosis map (K map) show the uterine cervical cancer (arrow). The tumor appears as a hyperintense mass on the

diffusion-weighted image at b = 2500 s/mm2 with decreases in values on the D and K maps, whereas the leiomyoma (arrow head) has a low signal on the

diffusion-weighted image, and an intermediate value on the D and K maps.

https://doi.org/10.1371/journal.pone.0188434.g001
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high degree of susceptibility artifact associated with bowel gas (N = 7; Fig 2), and (d) severe

abdominal wall ghosts (N = 1, Fig 3). Values of healthy endometrium could not be measured

in 39 women because of (a) small size of healthy endometrium (N = 17), (b) small size of endo-

metrium due to large tumors or endometrial hyperplasia (N = 9), (c) hydrometra or pyometra

(N = 7), (d) high degree of susceptibility artifact associated with bowel gas (N = 4), and (e)

severe abdominal wall ghosts (N = 2).

The ICCs between the two radiologists in evaluating D, K, and the ADCs of the 48 malig-

nant tumors were higher than 0.84, suggesting excellent interobserver agreement (Table 3).

The ICCs for leiomyoma, myometrium, and endometrium ranged from 0.43 to 0.87, suggest-

ing moderate to excellent interobserver agreement (Table 3).

Fig 2. A 65-year-old woman with mixed carcinoma of the uterine corpus (serous adenocarcinoma, grade 2; endometrioid

adenocarcinoma, grade 2). (a) Sagittal diffusion-weighted image at b = 0 s/mm2, (b) sagittal diffusion-weighted image at b = 2500 s/mm2, and (c)

sagittal T2-weighted image show the tumor in the endometrium. Because of severe susceptibility artifacts due to bowel gas in the rectum and the

sigmoid colon (arrows), it was hard to calculate diffusivity and kurtosis values for the myometrium. However, those values could be calculated for

the endometrial tumor because of the lesser degree of artifacts at the center of the uterine corpus.

https://doi.org/10.1371/journal.pone.0188434.g002

Fig 3. A 67-year-old woman with squamous cell carcinoma (keratinizing type) of the uterine cervix. (a) Sagittal diffusion-weighted image at b = 0 s/

mm2, (b) sagittal diffusion-weighted image at b = 2500 s/mm2, and (c) sagittal T2-weighted image show the tumor in the uterine cervix. Because of a severe

ghost artifact from the abdominal wall (arrow), it was hard to calculate diffusivity and kurtosis values for the myometrium. However, those values could be

calculated for the cervical tumor because of the lesser degree of artifacts of the uterine cervix.

https://doi.org/10.1371/journal.pone.0188434.g003
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The mean Ds (×10−3 mm2/s) of malignant tumors (1.05 ± 0.41 [standard deviation] and

1.09 ± 0.40 for observers 1 and 2, respectively) were significantly lower than those of leio-

myoma (1.40 ± 0.37 and 1.56 ± 0.33, respectively), healthy myometrium (1.72 ± 0.27 and

1.69 ± 0.30, respectively), and healthy endometrium (1.53 ± 0.35 and 1.42 ± 0.37, respectively)

for both observers (Fig 4). There were also significant differences between the mean Ds of leio-

myoma and healthy myometrium for observer 1 (P = 0.029), and between the mean Ds of

healthy myometrium and healthy endometrium for observer 2 (P = 0.039). In comparison, the

mean ADCs (×10−3 mm2/s) of malignant tumors (1.00 ± 0.32 and 1.02 ± 0.36 for observers 1

and 2, respectively) were significantly lower than those of leiomyoma (1.34 ± 0.33 and 1.52 ±
0.36, respectively), healthy myometrium (1.55 ± 0.24 and 1.52 ± 0.25, respectively), and healthy

endometrium (1.30 ± 0.34 and 1.25 ± 0.28, respectively) for both observers (Fig 5). There were

also significant differences between the mean ADCs of healthy myometrium and healthy

endometrium for both observers. A comparison of Figs 4 and 5 shows that the mean D and

mean ADC had similar distributions for uterine lesions, healthy myometrium, and healthy

endometrium. In ROC analysis, there was no significant difference in the area under the ROC

Table 3. Inter-rater reliability derived via the calculation of the intra-class correlation coefficients

(ICC) of diffusivity (D), kurtosis (K), and the apparent diffusion coefficient (ADC) of uterine malignant

tumor, leiomyoma, healthy myometrium, and healthy endometrium.

D K ADC

Malignant tumor (N = 48) 0.92 (0.86, 0.95) 0.84 (0.73, 0.90) 0.86 (0.77, 0.92)

Leiomyoma (N = 12) 0.56 (0.06, 0.85) 0.72 (0.26, 0.91) 0.57 (0.07, 0.85)

Healthy myometrium (N = 41) 0.67 (0.47, 0.81) 0.74 (0.56, 0.85) 0.64 (0.41, 0.79)

Healthy endometrium (N = 19) 0.87 (0.58, 0.95) 0.43 (0.00, 0.73) 0.84 (0.64, 0.94)

Note: Data in parentheses are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0188434.t003

Fig 4. Box-and-whisker plot of mean diffusivity (D) of uterine malignant tumor, leiomyoma, healthy myometrium, and healthy endometrium for (a)

observer 1 and (b) observer 2. Outliers are also represented (˚ and *). The top and bottom of each box represent the 25th and 75th percentiles of the

mean D, respectively. The horizontal line inside each box represents the median value. The graphs show a significantly lower mean D for uterine

malignant tumor than for leiomyoma, healthy myometrium, and healthy endometrium. There were no significant differences in D between leiomyoma

and endometrium (P = 0.74), or myometrium and endometrium (P = 0.21) for observer 1. There were no significant differences in D between

leiomyoma and myometrium (P = 0.71), or leiomyoma and endometrium (P = 0.70) for observer 2.

https://doi.org/10.1371/journal.pone.0188434.g004
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curve between the mean D and mean ADC in terms of the accuracy of differentiation between

malignant tumors and benign leiomyomas for both observers (Fig 6).

The mean Ks of malignant tumors (0.88 ± 0.28 and 0.90 ± 0.23 for observers 1 and 2,

respectively) were significantly higher than those of healthy myometrium (0.72 ± 0.10 and

0.73 ± 0.10, respectively) and healthy endometrium (0.65 ± 0.13 and 0.60 ± 0.18, respectively)

Fig 5. Box-and-whisker plot of the mean apparent diffusion coefficient (ADC) of uterine malignant tumor, leiomyoma, healthy myometrium, and

healthy endometrium for (a) observer 1 and (b) observer 2. Outliers are also represented (˚ and *). The top and bottom of each box represent the

25th and 75th percentiles of the mean ADC, respectively. The horizontal line inside each box represents the median value. The graphs show a

significantly lower mean ADC for uterine malignant tumor than for leiomyoma, healthy myometrium, and healthy endometrium. There were no

significant differences in the ADC between leiomyoma and myometrium (P = 0.14 and 1.00 for observers 1 and 2, respectively), or leiomyoma and

endometrium (P = 0.98 and 0.095, respectively).

https://doi.org/10.1371/journal.pone.0188434.g005

Fig 6. Receiver-operating characteristic curves for diffusivity (D, dashed line) and the apparent diffusion coefficient (ADC, solid line) to differentiate

uterine malignant tumors from leiomyoma for (a) observer 1 and (b) observer 2. No significant differences in the area under the receiver-operating

characteristic curve (AUC) were seen between D (0.79; 95% confidence interval (CI), 0.67–0.91) and the ADC (0.81; 95% CI, 0.68–0.93) for

observer 1 (P = 0.81), or between D (0.86; 95% CI, 0.75–0.97) and ADC (0.89; 95% CI, 0.80–0.98) for observer 2 (P = 0.51).

https://doi.org/10.1371/journal.pone.0188434.g006
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for both observers (Fig 7). No significant differences were observed between the mean Ks of

malignant tumors and those of leiomyoma (0.76 ± 0.14 and 0.77 ± 0.16, respectively), the

mean Ks of leiomyoma and those of healthy myometrium and healthy endometrium, or the

mean Ks of healthy myometrium and those of healthy endometrium, for either observer. The

statistical powers for detecting significant differences in K between malignant tumors and leio-

myomas were estimated as 0.25 and 0.40 for observers 1 and 2, respectively, suggesting that the

sample size was not sufficient.

The Ds, ADCs, and Ks of squamous cell carcinoma of the uterine cervix (N = 24) were com-

pared with those of adenocarcinoma (N = 17) (adenocarcinoma of the uterine cervix, 9; endo-

metrioid adenocarcinoma of the uterine corpus, 5; mixed carcinoma of the uterine corpus, 2;

and clear cell adenocarcinoma of the uterine corpus, 1). The mean D of squamous cell carcino-

mas (0.95 ± 0.18 and 0.98 ± 0.18 for observers 1 and 2, respectively) were significantly lower

than those of adenocarcinoma (1.26 ± 0.59 and 1.32 ± 0.54, respectively) for both observers

(P = 0.045 and 0.020, respectively). The mean ADCs of squamous cell carcinomas (0.89 ± 0.14

and 0.90 ± 0.16 for observers 1 and 2, respectively) were also significantly lower than those of

adenocarcinoma (1.16 ± 0.42 and 1.25 ± 0.49, respectively) for both observers (P = 0.018 and

0.011, respectively). There were no significant differences between the mean Ks of squamous

cell carcinoma (0.87 ± 0.22 and 0.89 ± 0.11, respectively) and adenocarcinoma (0.82 ± 0.29

and 0.82 ± 0.26, respectively) for either observer (P = 0.53 and 0.31, respectively). The statisti-

cal powers for detecting significant differences in K between squamous cell carcinomas and

adenocarcinomas were estimated as 0.08 and 0.13 for observers 1 and 2, respectively.

Discussion

Recently, several scientific studies have focused on DKI to attempt to elucidate the non-Gauss-

ian properties of water diffusion in biologic and pathologic tissues, particularly in cerebrovas-

cular stroke, demyelinating diseases, white matter aging, Parkinson’s disease, prostate cancer,

breast cancer, and kidney cancer [14, 16–26]. However, the application of DKI for the uterus

Fig 7. Box-and-whisker plot of mean kurtosis (K) of uterine malignant tumor, leiomyoma, healthy myometrium, and healthy endometrium for (a)

observer 1 and (b) observer 2. Outliers are also represented (˚ and *). The top and bottom of each box represent the 25th and 75th percentiles of the

mean K, respectively. The horizontal line inside each box represents the median value. The graphs show a significantly lower mean K for uterine

malignant tumor than for healthy myometrium and healthy endometrium. There were no significant differences in K between malignant tumor and

leiomyoma (P = 0.26 and 0.11 for observers 1 and 2, respectively); leiomyoma and myometrium (P = 0.92 and 0.93, respectively); leiomyoma and

endometrium (P = 0.41 and 0.07, respectively); or myometrium and endometrium (P = 0.57 and 0.06, respectively).

https://doi.org/10.1371/journal.pone.0188434.g007
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has not been well investigated. To our knowledge, there is only one recently published report

that investigated the utility of various non-mono-exponential analyses of DWI including DKI

for uterine cervical tumors [27]. In this study, we successfully performed DKI analysis of the

uterus. We found that the mean Ds of cervical and endometrial cancers were significantly

lower than those of leiomyoma, healthy myometrium, and healthy endometrium. ROC curve

analyses (Fig 6) and a comparison among Figs 4 and 5 demonstrated equality in terms of diag-

nostic accuracy between D and the ADC.

Regarding the contribution of K, which relates to microstructural complexity, to the evalua-

tion of uterine tumors, the mean K was higher in uterine cancers than in benign tissues such

as the myometrium, endometrium, or leiomyoma. These findings suggest that diffusion in

malignant uterine lesions shows greater deviation from Gaussian behavior compared with that

in benign tissues, which is similar to that in breast and prostate cancers [19, 20, 28–30]. The

differences were statistically significant between uterine cancer and either the myometrium or

endometrium, although we were unable to demonstrate a statistically significant difference

between cancer and leiomyoma. Because post-hoc power analysis suggested that the sample

size was not sufficient, further studies with a larger sample size are definitely needed in terms

of the role of K in differentiating between malignant and benign tissues. We also investigated

the value of K in discriminating between different pathological types of uterine malignant

tumors (i.e., squamous cell carcinoma and adenocarcinoma). There was no significant differ-

ence in mean K between the two types of malignant tumors. However, post-hoc power analysis

suggested that the sample size was not sufficient; therefore, further studies with a larger sample

size are needed for evaluating the role of K in differentiating between these types.

In terms of the DKI measurements, the interobserver agreements were good when the mea-

surements were successful. Therefore, the application of DKI should be clinically feasible.

However, it was sometimes impossible to measure the necessary values because of severe arti-

facts, as shown on Figs 2 and 3. As DWI with a high b value (such as 2500 s/mm2) has a ten-

dency to have reduced signal intensity and stronger artifacts compared with those with lower

b-value images, clinical application of the DKI technique may be limited due to the occurrence

of stronger artifacts. Improving image quality for high b-value DWI would be crucial for the

future use of DKI of the uterus. In addition to the problem of image quality, the longer acquisi-

tion time of DKI may be a problem in its routine use. Optimization of scan techniques to

reduce acquisition time will also be important from the perspective of practical application

[31].

Recently, Winfield et al. reported that DWI data analyses up to b value of 800 s/mm2

using non-mono-exponential models, such as stretched exponential, kurtosis, statistical,

and bi-exponential models, were useful to distinguish between types and grades of uterine

cervical tumors [27]. They noted that D was significantly different between tumor grades, and

K was significantly different between squamous cell carcinomas and adenocarcinomas. How-

ever, as they described, the use of a maximum b value of 800 s/mm2 was a limitation of their

study because the DKI model was originally developed over a much wider range of b values

[11, 27]. Jensen et al. reported that the precision of DKI estimates rapidly decreased when the

maximum b values were substantially reduced below 2000 s/mm2 in the brain [11]. In our

study, we showed the feasibility of DKI analysis up to a higher b value of 2500 s/mm2 with

interobserver reliability for uterine corpus and cervical tumors, leiomyomas, myometrium,

and endometrium.

There are several limitations to this study. The first is related to its retrospective nature. The

second is related to the limited number of participants, especially for evaluating the role of K.

Third, the findings of this study are preliminary; further studies involving several centers and a

larger sample size are necessary to better understand the value of DKI in the evaluation of
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uterine cancers. Fourth, in some cases, we were unable to perform the ROI measurement of

the uterine tumor because of difficulties detecting or circumscribing the tumor. Fifth, we did

not compare DKI measurements between different kinds of fitting software. Sixth, we did not

evaluate the effect of tumor size or location on DKI measurements. Seventh, we did not con-

duct histogram analysis even though the technique can be useful in characterizing tumors.

In conclusion, the results of this preliminary study on the utility of non-Gaussian DKI in

the assessment of uterine tumors suggest that interobserver agreements in evaluating D, K,

and ADC are moderate to excellent; D performs equivalent to conventional DWI in differenti-

ating between benign and malignant uterine tumors; and the mean K of malignant uterine

lesions is significantly higher than that of non-tumorous myometrium or endometrium.
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