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Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan
(GAG) in the human body. As a component of proteoglycans (PGs) it has numerous
roles in matrix stabilization and cellular regulation. This chapter highlights the roles of
CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has
specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS
contains a diverse range of CS-PGs which direct the development of embryonic neural
axonal networks, and the responses of neural cell populations in mature tissues to
traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-
rich scar tissue is laid down at the defect site to protect neural tissues, which are
amongst the softest tissues of the human body. Unfortunately, the CS concentrated
in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well
known inhibitory properties over neural behavior, and animal models of CNS/PNS injury
have demonstrated that selective degradation of CS using chondroitinase improves
neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form
denser regions of extracellular matrix termed perineuronal nets which surround neurons.
Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures,
which provide neural protection, synapse, and neural plasticity, and have roles in
memory and cognitive learning. Despite the generally inhibitory cues delivered by
CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-
D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and
functional recovery. CS/DS thus has varied cell regulatory properties and structural
ECM supportive roles in the CNS/PNS depending on the glycoform present and
its location in tissue niches and specific cellular contexts. Studies on the fruit fly,
Drosophila melanogaster and the nematode Caenorhabditis elegans have provided
insightful information on neural interconnectivity and the role of the ECM and its PGs
in neural development and in tissue morphogenesis in a whole organism environment.
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INTRODUCTION

This chapter highlights the roles of chondroitin sulfate (CS) and
dermatan sulfate (DS)-proteoglycans (PGs) in neural biology,
heparan sulfate (HS)-PGs were outside the scope of this review
and thus are only briefly touched on. However many excellent
reviews exist on HS-PGs and their interactions with extracellular
matrix (ECM) components in neural development, neural
function and potential in neural repair biology (Condomitti and
de Wit, 2018; Zhang P. et al., 2018; Roppongi et al., 2020; Xiong
et al., 2020; Kamimura and Maeda, 2021; Sakamoto et al., 2021).
Roles for HS-PGs in model developmental organisms such as
Drosophila melanogaster and Caenorhabditis elegans have also
been reviewed (Díaz-Balzac et al., 2014; Blanchette et al., 2017;
Kamimura and Maeda, 2017; Saied-Santiago et al., 2017) and the
interested reader is referred to these excellent publications for
further information.

With the identification of the multiple molecular determinants
that provide neuronal connectivity, and with new insights
into the modulatory extracellular information regulating axon
guidance, neural network and synapse formation, a better
understanding of the complexity that neurons face in a living
organism is beginning to emerge. Attention is now returning
to an ancient regulator of cell-cell interaction: the ECM
(Dityatev and Schachner, 2006; Dityatev et al., 2010; Miyata
and Kitagawa, 2017; Nicholson and Hrabětová, 2017; Ferrer-
Ferrer and Dityatev, 2018; Quraishe et al., 2018; Cope and
Gould, 2019; Long and Huttner, 2019; Chelyshev et al., 2020;
Jain et al., 2020; Wilson et al., 2020; Carulli and Verhaagen, 2021;
Kamimura and Maeda, 2021; Shabani et al., 2021; Su et al., 2021).
Among the many matrix components that influence neuronal
connectivity, recent studies on the CS-PGs and HS-PGs indicate
these ancient molecules form dynamic scaffolds that not only
provide a protective environment around cells but are also a
source of directive cues that modulate neuronal behavior and
synaptic plasticity in tissue development (Haylock-Jacobs et al.,
2011; Hayes and Melrose, 2018; Hayes et al., 2018; Karamanos
et al., 2018; Hayes and Melrose, 2020a; Shabani et al., 2021).

Roles of GAGs in the Evolution of Life
and Electrochemical Properties of
Tissues
Glycosaminoglycans (GAGs) and PGs are ancient molecules
that evolved over a 500 million year period of invertebrate and
vertebrate evolution (Yamada et al., 2011). Natural selection
processes ‘chose’ GAGs with molecular recognition, information
storage and transfer properties. The PGs that populated the
glycocalyx surrounding cells thus had cell instructive properties
through their GAG side chains that interacted with morphogens,
growth factors, cytokines, cell receptors, cell adhesion molecules
and neurotrophic peptides facilitating regulatory roles in
embryonic neural development. GAGs also have electro-chemical
properties through their sulfate and carboxyl groups that are
ionized at physiological pH. GAG-electroconductive gels in the
sensory pores of the skin of elasmobranch fish species (i.e., sharks,
rays, and skates) have the capacity to detect protons produced by

the muscular activity of prey fish species and this equips them
with the ability to undergo electro-location to detect prey species,
even under highly turbid water conditions where these are not
visible (Bellono et al., 2017). Such gels have ultrasensitive proton
detection capability, this information is transferred to a sensory
nerve interface in the skin pores and then to the brain stem for
signal interpretation.

All GAGs have proton detection capability (Josberger et al.,
2016; Selberg et al., 2019) and are ancient molecules that
were present during the early stages of the evolution of life
(Yamada et al., 2011). It has been proposed that proton
electrochemical ion gradients across membranes drove cellular
metabolism and energy production during early evolution
(Lane, 2017). In prokaryotic evolution, GAGs were mainly
unsulfated or poorly sulfated; however, when eukaryotic cells
evolved, sulfated GAGs predominated. Evolution of membrane
polarization became possible in eukaryotic cells and membrane
energetics emerged (Wilson and Lin, 1980; Niven and Laughlin,
2008; Dibrova et al., 2012; Lynch and Marinov, 2017). Membrane
polarization involves the controlled movement of ions across
cell membranes, GAGs had fundamental roles to play in these
processes through their proton binding properties. All cells
in multicellular organisms utilize membrane polarization when
undergoing cell signaling, adhesion, proliferation, migration, and
cytokinesis. Some cells such as neurons have developed electrical
processes to a high level of precision, and this is the basis of
the generation of electrical impulses in neural networks that
remotely control cells and tissues in higher animals. Further
eukaryotic evolution resulted in the development of a glycocalyx
around cells. This contained PGs containing GAG side chains
with the ability to instruct cellular behavior. The development
of pericellular and extracellular matrices populated by PGs
facilitated the development of tissues with variable biophysical
properties due to these PGs and their co-operative interactions
with structural proteins thus driving specialization with the ECM.
Neural networks subsequently evolved to control these tissues
of increasing complexity. Neurons are highly energetic cell types
that utilize Na(+)/K(+)-ATPase pumps to generate energy. This
process also generates chemical and electrical gradients across
cell membranes. This membrane polarization process is essential
for cell signaling and is aberrantly controlled in neurological
diseases. Examination of the ECM PGs that control these neural
processes has uncovered valuable therapeutic targets (Soleman
et al., 2013; Maćkowiak et al., 2014; De Luca and Papa, 2016;
Miyata and Kitagawa, 2016; Yang, 2020; Dityatev et al., 2021).

Glycosaminoglycan were fundamental entities in the
formation and regulation of neural networks and tissues and
the control of cell behavior during morphogenesis, tissue
development and in ECM remodeling in tissue repair (Melrose,
2019b). The sulfation patterns of GAGs have roles in cellular
molecular recognition and the regulation of physiological
processes (Melrose, 2019b). GAG sulfotransferases and glycosyl
transferases in progenitor/stem cell niches support the assembly
of GAGs of diverse structure and sulfation patterns and are
important in the development of pluripotent stem cell lineages
with migratory properties (Stanley, 2016). This allows these
cells to participate in tissue development and tissue repair.
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Sulfate groups are important functional determinants on GAGs.
Knock-out sulfotransferase and glycosyl transferase mice have
demonstrated the important functional roles of GAGs in tissues
(Stanley, 2016). Variable sulfation positions and densities on
GAGs convey a range of functional attributes to tissues including
an ability to act as electrical conduits to the cell. Sulfate groups are
relatively bulky space-filling entities on GAGs, it was pertinent
that all spatial orientations and permutations were explored
during natural evolutionary selection processes to select GAGs
with optimal interactivity. Natural selection forces thus explored
many permutations of GAG structural form to optimize cell
regulatory capability. Sulfate groups convey interactive molecular
recognition and information transfer capability to GAGs and
their interactions with growth factors, receptors, morphogens,
ECM components, proteases, and protease inhibitory proteins
regulate cell signaling processes in tissue morphogenesis and
skeletogenesis. Knockout of glycosyl transferases, that are
required for GAG assembly, has produced GAG-deficient mice
(Stanley, 2016) that have allowed examination of the roles
GAGs play in tissue form and function and how these regulate
physiological processes in health and disease. The inherent
charge transfer and storage properties of GAGs is a “glyco-
code” that provides sophisticated cell instructive information
(Gabius, 2018; Hayes and Melrose, 2018; Hayes et al., 2018;
Kaltner et al., 2019).

CNS/PNS ECM PGs/GAGs, Cellular Regulation, and
Neural Tissue Development
As already discussed, GAGs have electrochemical properties
equipping them with cell regulatory abilities (Lane, 2017; Selberg
et al., 2019). At the individual cell level, voltage gradients
occur across cell membranes as so-called, action potentials
(Strbak et al., 2016) which form part of the cell signaling and
communication machinery of cells, i.e., membrane polarization-
depolarization underlying the generation of electrical signaling
in neural networks. Proton conductivity is important in many
natural cellular processes including oxidative phosphorylation in
mitochondria and energy production, uncoupling of membrane
potentials during membrane polarization-de-polarization and
neural potentiation, as well as in the priming of cells for
proliferative events, apoptosis or cell migration (Wilson and
Lin, 1980; Vellai et al., 1998; Niven and Laughlin, 2008;
Dibrova et al., 2012; Lynch and Marinov, 2017). Electrochemical
reactions control cell and tissue polarity and regulate cell
behavior, ECM PGs facilitate electrocommunication between
cells and their extracellular microenvironments. Cells sense
changes in their microenvironments through micromechanical
and electrochemical cues from the ECM allowing the cell
to maintain a homeostatic tissue compositional balance thus
providing optimal tissue functional properties (Guilak et al.,
2021; Melrose et al., 2021). GAGs can detect proton gradients and
are electroconductive entities that participate in microelectronic
events during membrane polarization forming the basis of cell
signaling (Wilson and Lin, 1980; Vellai et al., 1998; Niven
and Laughlin, 2008; Dibrova et al., 2012; Lynch and Marinov,
2017). Neurons are particularly sensitive to electrostimulation in
microelectronic events leading to polarization of the activated

neuron cell membrane, however, membrane polarization occurs
in all cells to some extent and is the basis of cell signaling
during cellular attachment, migration and transmission of signals
from cell to cell not only during development but also in neural
repair and functional nerve recovery from trauma (Hortobágyi
and Maffiuletti, 2011; Hayes and Melrose, 2020b). The GAG
components of PGs participate in neurotrophic regulation of
cellular movement in the development of neural networks
and also in neural repair processes. A diverse collection of
neuroregulatory molecules participate in these processes guided
by cues from ECM PGs, which are discussed later in this chapter.

THE CHONDROITIN SULFATE AND
DERMATAN SULFATE COMPONENTS OF
NEURAL PROTEOGLYCANS

Chondroitin sulfate is the most abundant GAG of the human
body and CS side chains are found on a diverse range of PGs.
CS is a linear GAG consisting of D-glucuronic acid glycosidically
linked to N-acetyl galactosamine to form repeat disaccharides
assembled into CS side chains (Zhang, 2010) on PGs up to
∼20 kDa in size (Figure 1). D-glucuronic acid also undergoes
epimerization and inversion in structure to form L-iduronic acid
in the related GAG, DS also known as CS-B (Figure 2).

Chondroitin sulfate is O-sulfated at C-4 or C-6 of the
GalNAc, whereas in DS GalNAc is almost exclusively 4-O-
sulfated and minor proportions of L-idoA may be O-sulfated
at C-2 (Malmström et al., 2012). The conversion of GlcA into
IdoA is variable ranging from one to almost 99% conversion
of GlcA to IdoA (Malmström et al., 2012). IdoA residues are
not regularly distributed along the CS/DS chain and occur in
blocks of ≥6 IdoA residues, alternating IdoA/GlcA units, or as
isolated IdoA units interspersed within stretches of unmodified
GlcA (Tykesson et al., 2018). DS epimerase-1 and dermatan 4-O-
sulfotransferase-1 form complexes that generate long epimerized
4-O-sulfated blocks. The presence of idoA in CS/DS alters
its properties since a more flexible chain is generated that
is more able to explore spatial orientations that maximize
binding opportunities with prospective ligands (Ferro et al.,
1990). IdoA substituted CS/DS influences cellular properties,
such as migration, proliferation, differentiation, angiogenesis
and regulates cytokine/growth factor activities (Thelin et al.,
2013). CS and DS occur in significant amounts in the brain
and have important roles to play in CNS development. DS
sulfate epimerase 2 (DS-epi2) is ubiquitously expressed in the
infant brain whereas DS epimerase 1 (DS-epi1) expression is
faint at all developmental stages (Akatsu et al., 2011). DS-epi2
but not DS-epi1 plays dominant roles in the epimerization
of CS/DS and has crucial roles to play in postnatal brain
development. CS/DS hybrid chains have roles in the development
of the cerebellum with the expression of crucial disulfated
CS/DS disaccharides spatiotemporally regulated by specific
sulfotransferase enzymes (Mitsunaga et al., 2006). Ubiquitous
expression of chondroitin 4-O-sulfotransferase-1 (C4ST-1) and
C4ST-2 in the postnatal mouse brain contrasts with dermatan
4-O-sulfotransferase-1 (D4ST-1) and uronyl 2-sulfotransferase
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FIGURE 1 | Structure of the CS/DS disaccharides (A) and nomenclature of the CS and DS disaccharide glycoforms (B) as proposed by Malavaki et al. (2008).

(UST) expression which are restricted to the developing
cerebellum. The proportions of DS-specific, 4-sulfated IdoA-
GalNAc (iA) and 2-sulfated IdoA-GalNAc (iB) produced by
sequential D4ST-1 and UST activity has been shown to be
highest in CS/DS chains isolated from the developing cerebellum
with a 10-fold increase in iB evident. GlcA/IdoA(2-O-sulfate)-
GalNAc(6-O-sulfate) (D/iD) and GlcA/IdoA-GalNAc (4,6-O-
disulfate) (E/iE) levels, however, decrease to 50 and 30%,
respectively, in the developing cerebellum. Thus IdoA-containing
iA and iB and D/iD and E/iE units in CS/DS hybrid chains both
have important roles to play in the development of the cerebellum
and postnatal brain development. The diverse structures that
are possible with CS provide multifunctional properties to CS-
PGs (Abbott and Nigussie, 2020), with dynamic changes in
CS structure providing adaptable regulatory properties to PGs
in tissue development and in pathological conditions (Galtrey
and Fawcett, 2007). CS-PGs as components of perineuronal
nets (PNNs) have neuroprotective properties and regulate
neural plasticity and cognitive learning through specific CS
mediated interactions (Dyck and Karimi-Abdolrezaee, 2015).
PGs are ubiquitous secreted ECM components (Figure 3) that
also occur attached to cell surfaces either as transmembrane
or glycophosphatidylinositol (GPI)-anchored structures, and
intracellularly as granular deposits in some cells (Figures 4, 5).
Perlecan is referred to as a HS-PG, however, in many tissues it is a
hybrid CS/HS PG and is thus included in this review, particularly
in view of its many interesting properties in neural tissues. The
chain length of CS, 3D spatial presentation and density of its
sulfate groups control its physicochemical and cell interactive
and biological properties in tissues through interactions with
a diverse range of ligands that regulate many physiological

processes (Galtrey and Fawcett, 2007; Dyck and Karimi-
Abdolrezaee, 2015). GAGs represent major ECM components
of the brain, constituting up to 60% of its mass during early
embryonic development and 20% in the adult central nervous
system/peripheral nervous system (CNS/PNS). CS substituted
PGs are one of the most abundant components of the CNS/PNS.
HA is also a major component. HA has a simple structure and
is the only non-sulfated GAG, but nevertheless has important
biophysical properties which are important in the hydration
and compartmentalization of the CNS/PNS. High molecular
weight HA is anti-inflammatory, minimizes neuroinflammation
and exhibits cell interactive properties that regulate cellular
migration, proliferation and differentiation (Sherman et al.,
2015). HA is also a component of the sub-ventricular and sub-
granular dentate gyrus of the hippocampus which are two regions
of the brain containing neuroprogenitor stem cell populations in
niches known as fractones (Mercier et al., 2012; Mercier, 2016;
Sato et al., 2019).

DEVELOPMENTAL ANIMAL MODELS
USED TO EXAMINE NEURAL
DEVELOPMENT AND REGULATION IN A
WHOLE ORGANISM ENVIRONMENT

Studies on the fruit fly, D. melanogaster (FitzGerald et al., 2006;
Nishihara, 2010; Losada-Perez et al., 2016; Davis et al., 2019) and
the nematode C. elegans (White et al., 1976; Mulcahy et al., 2018;
Schafer, 2018; Kovács et al., 2020; White, 2020) have provided
insightful information on the role of the ECM and some
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FIGURE 2 | The biosynthesis of CS and DS chains showing their diverse disaccharide glycoforms that are functional in the juvenile and adult CNS/PNS and during
the development and repair of the CNS/PNS. Biosynthesis of the tetrasaccharide linker sequence by addition of a xylose residue to a serine residue in the
proteoglycan core protein followed by addition of two Galactose and a GlcA residue (a). Initiation of CS chain elongation occurs by addition of a GalNAc residue by
chondroitin N-acetylgalactosaminyltransferase-1 or chondroitinpolymerase (b). Elongation of the CS chain occurs by sequential additions of GlcA and GalNAc to the
nascent non-reducing terminus by chondroitin polymerases (c). The CS chain is sulfated by chondroitin-4 and 6-sulphotransferases, or the GlcA residue of the
O-disaccharide unit is epimerized to IdoA with inversion in structure from a β-D conformation to an α-L conformation followed by a series of sulphotransferases and
uronyl-2-sulphotransferase to form the CS-A, CS-B, CS-C, CS-D, CS-E and DS-iA, DS iB, CS-iC, DS-iD, and DS-iE isoforms as shown (d–f). The 4-O-sulfation
pathway is most active in the adult brain (d) while various DS isoforms regulate brain development and repair processes (e). The 6-sulfation pathway (f) is most
active in the juvenile brain. The DS-iO and DS-iC units have yet to be confirmed. Figure modified from Malmström et al. (2012) and Miyata and Kitagawa (2017).
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FIGURE 3 | Composite schematic depicting the structural organization of secreted CS-proteoglycans in the CNS/PNS. The lectican proteoglycans aggrecan,
versican, neurocan, brevican (A–D), selected members of the small leucine repeat proteoglycans, decorin, biglycan and epiphycan (E–G), serglycin (H), bikunin
precursor protein and bikunin (I,J), testican (K) and endocan (L).

of its specific components in neural development and tissue
morphogenesis in a whole organism environment. White et al.
(1986) undertook the first complete mapping study of the
nematode’s nervous system using manual reconstruction of
serial electron micrographs, to characterize the morphology
of each of the 302 neurons in the adult nematode and their
interconnected chemical and electrical synapses. This study is
an invaluable guide on the C. elegans neural network and
has significantly influenced studies on behavioral neurobiology

and network science. The nervous system of C. elegans has
a total of 302 invariantly organized neurons, that have been
grouped into 118 categories. Neurons in C. elegans have
simple morphologies displaying few, if any, branches and are
generally highly connected through local synaptic connections
with neighboring neurons, ∼ 5000 chemical synapses, 2000
neuromuscular junctions and 600 gap junctions have been
identified in C. elegans. The specific patterns and functional
properties of electrical synapses of the C. elegans nervous system
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FIGURE 4 | Composite schematic depicting the structural organization of cell membrane attached CS-proteoglycans in the CNS/PNS. Phosphacan precursor,
receptor protein tyrosine phosphatase (RPTP)-1A and 1B forms (A,B) and soluble phosphacan released by proteolysis of (A) as shown (C). A non-glycanated
truncated phosphacan variant has also been described (D). Syndecan-1 (SDC-1) (E) and syndecan-3 (SDC-3) (F). The transmembrane form of NG2 proteoglycan
(CSPG4) (G) and its soluble form released from cells by protease cleavage close to the cell membrane (H). The soluble form of CSPG4 becomes lodged in the ECM
through interactions mediated by its LamG N-terminal motifs and by interactions of its central cysteine-rich domain with type IV and VI collagen. Thrombomodulin
showing its terminal lectin-like domain, six EGF repeat modules, thrombin binding region which allows it to act as an anti-coagulant in the brain microvasculature and
transmembrane cell attachment domain (I). Appican (J), neuroglycan-C (K), and the HA-receptor CD-44 (L) with protease cleavage sites that results in the
generation of soluble forms of these proteoglycans. The CS-E chains of appican bind strongly to the growth factors midkine and pleiotrophin, neuroglycan-C binds
to ephrin cell surface receptors resulting in induction of cell signaling mediated by the ephrin cytoplasmic regions while sCD44 binds to HA in the ECM through its
disulphide stabilized A, A′ and Ig folds. Several CAMs also act as CS-PG receptors through interaction with the CS side chains of these PGs (see Figure 7).

have been systematically examined through a genome- and
nervous-system-wide analysis of the expression patterns of the
invertebrate electrical synapse constituents, the innexins (Hu,
2007; Güiza et al., 2018; Bhattacharya et al., 2019). Innexins are

transmembrane proteins that form gap junctions in invertebrates.
Highly complex expression patterns are evident throughout
the nervous system, and when animals enter an insulin-
dependent arrest stage due to exposure to harsh environmental
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FIGURE 5 | Schematic depictions of the structural organization of the
transmembrane CS-PG receptors CD47 showing its interactions with
macrophages, integrins and thrombospondin-1 (TSP-1) (A), betaglycan dimer
(B) and endocan (C). Betaglycan forms an active dimer on the cell surface.
Protease cleavage sites are indicated which release fragments of the
betaglycan ecto-domain. Endocan has an EGF-like and a phenylalanine rich
domain and a single CS/DS GAG chain attached to its C-terminus.

conditions, termed the dauer stage, C. elegans larvae undergo
Dauer arrest at the second molt (Cassada and Russell, 1975).
Many insights into the signaling pathways and the molecular
mechanisms that govern this developmental transition have been

uncovered in the last decade. Dauer pheromone the major
physiologic signal that promotes Dauer arrest, has been purified,
identified, and synthesized and the vast majority of Dauer
regulatory genes are now known (Jeong et al., 2005). Dauer
pheromone (daumone, ascr#1) is the first C. elegans pheromone
identified. Electrical synapse remodeling is responsible for the
altered locomotory and chemosensory behavior of Dauer affected
neurons (Starich et al., 2009). These neurons are regulated
by a mechanism that involves FoxO transcription factors that
mediate dynamic innexin expression plasticity in a neuron-
type- and environment-specific manner (Hobert, 2010; Amran
et al., 2021). C. elegans is a useful model for the examination
of developmental processes regulated by ECM components
(Hobert, 2010; Amran et al., 2021). HSPGs and chondroitin
proteoglycans (CPGs) both have prominent roles to play in
developmental processes in C. elegans (Saied-Santiago et al.,
2017). Most ECM molecules in C. elegans are conserved and
are homologues to mammalian proteins, however, fewer ECM
protein isoforms are present and these exhibit less redundancy
compared to in mammalian tissues. Furthermore, mutations
in C. elegans produce comparable developmental defects to
those evident in mammals. The small size, short lifespan of 3–
4 days and defined neural interconnectivity of the C. elegans
nervous system facilitate its use in systematic functional studies
that have yielded valuable insights into neuronal differentiation
(Chisholm and Jin, 2005). This information is also relevant to
more complex neural systems since the basic cellular machinery
of synaptic transmission is highly conserved across species. In
C. elegans, 719 out of∼20,000 genes (∼4%) of its genome encode
matrisome proteins, including 181 collagens, 35 glycoproteins, 10
proteoglycans, and 493 matrisome-associated proteins, 173 out of
the 181 collagen genes are unique to nematodes and are predicted
to encode cuticular collagens (Teuscher et al., 2019).

Comparative genomic studies on human and C. elegans has
identified orthologous genes in C. elegans that have comparable
regulatory properties to human genes and demonstrated
mechanisms relevant to human biology. C. elegans represents
an experimental system that can be used in genetic approaches
to address biological questions relevant to human development,
physiology, and disease. Genetic based phenotype screens have
identified C. elegans genes homologous to human disease-
associated genes, and fundamental properties about their roles
and mechanisms of action in pathological human tissues. Reverse
genetic methods developed in C. elegans have expanded the
repertoire of genetic approaches to examine the roles of specific
genes in human disease processes. These methods have the ability
to phenocopy loss-of-function mutations by feeding worms
bacteria expressing double-stranded RNA, RNAi. Studies in
C. elegans have also facilitated genome-wide screens or screens
specifically targeting human disease genes and the large-scale
generation of deletion or point mutations for functional genetic
studies (Kim et al., 2018).

The Drosophila matrisome consists of 641 genes, 27 are
homologs/orthologs to human core matrisome genes, 219
are homologs/orthologs to mammalian matrisome genes and
the remaining 395 are genes are specific to Drosophila
(Davis et al., 2019). Comparative genomic analyses have been

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 August 2021 | Volume 9 | Article 696640

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-696640 July 27, 2021 Time: 12:11 # 9

Hayes and Melrose CS/DS Controls CNS/PNS Biology

undertaken between human and Drosophila genomes and core
promoter regions. Although fruit flies have a genome that
is 25 times smaller than the human genome, many fruit fly
genes have comparable genes in humans that control the
same biological functions. Twelve fruit fly genome sequences
are available in the FlyBase database1, a collaboration of
Harvard, Cambridge, Mass.; Indiana, Bloomington; and the
University of Cambridge, United Kingdom. The fruit fly
genome sequences are also available from NIH’s National Center
for Biotechnology Information2, European Molecular Biology
laboratory’s Nucleotide Sequence Database, EMBL-Bank3, and
DNA Data Bank of Japan, DDBJ4 (FitzGerald et al., 2006).

As found in higher organisms, PGs have important roles
in cellular regulation critical to the development of metazoan
organisms. C. elegans, however, produces a large amount of
non-sulfated chondroitin (Chn) in addition to a small amount
of low sulfation CS. Until recently, C. elegans was known
to express nine Chn/CS-PGs dissimilar to vertebrate CS-PGs.
A recent glycoproteomic study identified 15 additional CPGs
in C. elegans and three of these were homologous to human
proteins, thus selected CS-PG core proteins appear conserved
throughout evolution (Noborn and Larson, 2021). Bioinformatic
analysis of primary amino acid sequence data identified a broad
range of functional domains in these C. elegans PGs, thus specific
PG core protein mediated functional properties appeared to have
evolved early in metazoan evolution.

Drosophila melanogaster has also proved to be a useful
model for the investigation of developmental GAG functions
in vivo confirming in vitro findings. HS and CS GAG side
chains of PGs are structurally conserved between Drosophila
and mammals, including humans. Mutant and RNAi fruit flies
show that HS-PGs and CS-PGs play key roles in the regulation
of developmental signaling pathways involving FGF, Wingless
(Wg)/Wnt, Hedgehog, and Decapentaplegic (Dpp, a ligand of
the TGFβ superfamily). Glycosyl transferases, sulfotransferases,
sugar-nucleotide transporters including 3′-phosphoadenosine 5′-
phosphosulfate (PAPS) transporters, all have important roles
to play in GAG biosynthesis and the functional status of PGs
in neuronal development and maintenance (Nishihara, 2010).
It should be noted, however, that the major non-sulfated Chn
in C. elegans has crucial roles in embryonic cell and tissue
development and tissue morphogenesis. Since Chn is present on
mammalian PG core proteins along with CS no studies have
been possible to specifically target the functional roles of Chn
in these PGs, however, insights into the biological properties
of Chn in mammals can be gleaned from the use of Chn as
a drug in the treatment of osteoarthritis (OA) (Singh et al.,
2015). A meta-analysis of 43 reviews which analyzed the use
of Chn for the treatment of OA and alleviation of joint pain
yielded moderate to inconclusive results. However, Chn elicited
a significant improvement in the anti-inflammatory profile of
synoviocytes and chondrocytes in an OA model analyzed by

1http://flybase.bio.indiana.edu
2www.ncbi.nlm.nih.gov
3www.ebi.ac.uk/embl/index.html
4www.ddbj.nig.ac.jp

multiplex and Western blot analysis. Chn significantly decreased
the levels of several pro-inflammatory cytokines (IL-1β, IL-5, 6, 7,
9, 15, 17), anti-inflammatory cytokines (IL-4, IL-10), chemokines
(IL-8, MCAF, MIP-1a, MIP-1b, RANTES) in synovial fluid
samples and decreased expression of the OA biomarkers MyD88
and MMP-13 (Vassallo et al., 2021). Evidence therefore exists
that Chn displays anti-inflammatory properties in mammalian
tissues. However in C. elegans where Chn predominates over
CS the biological properties of Chn have more profound effects
on neural biology. A number of studies have demonstrated the
fundamental biological roles played by Chn, CS, and DS, attached
to the core proteins of cell surface and ECM PGs (Sugahara
et al., 2003). PGs decorated with CS, DS, or HS have diverse
roles in growth factor, morphogen and cytokine-mediated cell
signaling through cellular receptors that play critical roles in the
development of the CNS (Melrose et al., 2021). As discussed
later in this chapter, these functions of PGs are closely associated
with GAG sulfation patterns. Surprisingly, non-sulfated Chn
is indispensable in the morphogenesis and cell division of
C. elegans, as revealed by RNA interference experiments of the
recently cloned chondroitin synthase gene and by the analysis
of squashed vulva (sqv) gene mutants. It should be noted that
while orthologous forms of human perlecan/HS-PG2 exist in
C. elegans (UNC-52) and D. melanogaster (Trol) these have a
different modular structure to human perlecan and are devoid
of domain-I and thus they lack HS substitution (Celestrin et al.,
2018). Thus the interactive properties provided by the HS chains
of human perlecan do not occur in these orthologs and the
interactive properties conveyed by these form of perlecan is due
to modular components in their core proteins (Condomitti and
de Wit, 2018; Martinez et al., 2018).

The Instructional Properties of CS- and
HS-PGs in Neural Development and
Tissue Morphogenesis in Caenorhabditis
elegans
Blocking of chondroitin synthesis results in cell proliferative
defects in early embryogenesis in C. elegans and leads to early
embryonic death (Mizuguchi et al., 2003). Mutations in eight sqv
genes in C. elegans causes defects in embryonic cytokinesis and
in vulval morphogenesis during postembryonic development.
Sqv-1, 2, 3, 4, 6, 7, 8 control CS and HS biosynthesis, while
sqv-5 encodes a bifunctional glycosyltransferase responsible for
the biosynthesis of Chn, but not HS (Hwang et al., 2003a,b).
Sqv mutations in C. elegans have lethal consequences due to
disruption in cell proliferation and the lack of the formation
of an extracellular space between the egg and the eggshell,
apparently due to disruption in the normal GAG containing
ECM structures. Cloning and characterization of the sqv-2
and -6 genes showed that sqv-6 encoded a protein similar
to human xylosyltransferase, while sqv-2 encoded a protein
similar to human galactosyltransferase II. SQV-6 and SQV-2
proteins act in concert with other SQV proteins to catalyze the
stepwise formation of the PG core protein linkage tetrasaccharide
GlcAβ1,3Galβ1, 3Galβ1,4Xylβ-O-(Ser), common to CS and HS
(Hwang et al., 2003a,b). This linkage tetrasaccharide acts as an
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acceptor molecule for the assembly of the CS and HS chains.
Chain elongation is initiated by the addition of GlcNAc or
GalNAc, with the former addition resulting in the biosynthesis
of HS chains by sequential additions of GlcA and GlcNAc,
while if GalNAc is the initial sugar added to the acceptor
group this results in the synthesis of CS chains. These GAG
chains are sulphated in a later biosynthetic stage at various
positions on GlcNAc or GalNAc by specific sulfotransferases.
GlcA can also be epimerised to IdoA and sulphated at O-2 in
HS chains. HS chains can be sulphated at multiple positions.
CS sulfation is an important functional determinant in the
regulation mammalian neural tissue development and repair,
however, in C. elegans and D. melanogaster the Chn chains are
not sulphated but nevertheless have essential roles to play in
early embryonic development and tissue morphogenesis in later
developmental stages.

Vertebrates produce multiple CS-PGs with important roles
in development and the mechanical performance of tissues.
The Chn chains in C. elegans are not sulfated, but nevertheless
they still play essential roles in embryonic development and
vulval morphogenesis (Olson et al., 2006). C. elegans Chn PG
core proteins, do not share sequence similarities with PGs from
D. melanogaster or Hydra vulgaris. The C. elegans CPG-1 and
CPG-2 PGs are expressed during embryonic development and
bind chitin, which may have a structural role to play in the egg
(Olson et al., 2006). Chitin is a widespread polymer in nature
and is a polymer composed of N-Acetyl glucosamine. Chitin
is a primary component of fungal cell walls, the exoskeletons
of arthropods such as crustaceans and insects and the scales
of fish. Depletion of CPG-1/CPG-2 results in multinucleated
single-cell embryos in C. elegans, this is also observed with
depletion of the SQV-5 chondroitin synthase protein, Chn
chains of CPG1/CPG2 play essential roles in cytokinesis. This
is achieved through regulation of GAG biosynthetic enzymes.
C. elegans microRNA mir-79, an ortholog of mammalian miR-
9, controls sugar-chain homeostasis by targeting two proteins
in the PG GAG biosynthetic pathway: a chondroitin synthase
(SQV-5; squashed vulva-5) and a uridine 5′-diphosphate-sugar
transporter (SQV-7). Loss of mir-79 causes neurodevelopmental
defects through dysregulation of SQV-5 and SQV-7. This results
in a partial shutdown of HS biosynthesis that effects the LON-
2/glypican pathway and disrupts neuronal migration. MicroRNA
thus represents a regulatory axis that maintains PG homeostasis.
Sqv genes 1–8 control the invagination of vulval epithelial cells,
normal oocyte formation and embryogenesis. Sequencing of sqv-
3, sqv-7, and sqv-8 genes indicated potential roles for the proteins
they encode in glycolipid or glycoprotein biosynthesis. sqv-3, -
7, and -8 affect the biosynthesis of GAGs and the bioactivity of
PGs establishing their essential roles in tissue morphogenesis and
pattern development in C. elegans (Bulik et al., 2000).

Sulfation of PG GAG side chains has critical roles to play in the
cell regulatory properties of PGs and their roles in many essential
physiological processes. Sulfation reactions involves activated
sulfate, and the universal sulfate donor 3′-phosphoadenosine
5′-phosphosulfate (PAPS). In animals, PAPS is synthesized from
ATP and inorganic sulfate by PAPS synthase, genetic defects in
PAPS synthase 2, one of two PAPS synthase isozymes, causes

dwarfism. In order to better understand the developmental
role of sulfation in tissue PGs, a C. elegans PAPS synthase-
homologous gene, pps-1 has been cloned and the depleted
expression of its product, PPS-1 examined (Dejima et al., 2006).
PPS-1 protein exhibits specific roles in the formation of PAPS
in vitro. Disruption of the pps-1 gene by RNAi methods causes
widespread developmental tissue defects, a decrease in GAG
sulfation in the pps-1 null mutant exhibits larval lethality.
Sulfation is essential for normal growth and the integrity of
the epidermis in C. elegans and has been used as a model to
demonstrate the role of HS modifications in a defined biological
process. Genetic analyses suggest that syndecan/sdn-1 and HS
6-O-sulfotransferase, hst-6, function in a signaling pathway and
glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function in
a parallel pathway. HS modifications may be part regulated at
the level of tissue expression of genes encoding for HS-PGs and
HS modifying enzymes. There is a delicate balance in such HS
modifications that may deleteriously effect cell migration, HS
is a critical regulator of cell signaling in normal development
and disease. HS-PGs have roles in the structural organization
of neurochemical synapses, involving interactions with the core
protein as well as the HS side chains (Cizeron et al., 2021).
Specific modifications to HS contribute to a sugar code which
provides specificity to synaptic interactions. SDN-1 is a unique
C. elegans syndecan ortholog found in synaptic junctions. 3-O
sulfation of SDN-1 maintains the ECM protein punctin/MADD-
4/ (MAP kinase-activating death domain protein) that defines the
synaptic domains, however, in mammals 3-O sulfation is a rare
modification in HS despite the seven HS modifying enzymes that
can produce 3-O sulfation.

Punctin/MADD-4, a member of the ADAMTSL ECM protein
family, is a synaptic organizer in C. elegans. MADD is an enzyme
encoded by the MADD gene. The Ig-like domain of MADD is the
primary determinant for N-MADD-4B interactions with NLG-
1 in vitro (Platsaki et al., 2020). At GABAergic neuromuscular
junctions, the short isoform MADD-4B binds the ectodomain
of neuroligin (NLG-1), which is also a postsynaptic organizer of
inhibitory synapses (Tu et al., 2015). Proteolysis of MADD-4B
generates N-MADD-4B, which contains four thrombospondin
domains and one Ig-like domain that bind NLG-1 (Maro et al.,
2015). A second processing event eliminates the C-terminal
Ig-like domain of N-MADD-4B and its ability to bind NLG-
1. The death domain of the type 1 tumor necrosis factor
receptor (TNFR1) mediates the downstream effects of TNF.
MADD interacts with TNFR1 residues and is a component
of the TNFR1 signaling complex. The MADD death domain
stimulates ERK and c-JUN N-terminal kinase MAP kinases
inducing phosphorylation of cytosolic phospholipase A2. Thus,
MADD links TNFR1, MAP kinase activation and arachidonic
acid release, which may explain the pleiotropic effects of TNF.

Growth cones facilitate the repair of damaged neural tissue by
promoting axon regeneration, syndecan, is required for growth
cone function during axon regeneration in C. elegans (Edwards
and Hammarlund, 2014; Gopal et al., 2016, 2021). In the absence
of syndecan, regenerating growth cones are unstable and they
collapse, impeding regrowth to target cells. Syndecan has two
distinct functions during axon regeneration: (i) axon guidance
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requiring its HS-dependent expression outside the nervous
system (ii) intrinsic growth cone stabilization mediated by the
SDC core protein independently of HS.

The Instructional Properties of CS- and
HS-Proteoglycans in Neural
Development and Tissue Morphogenesis
in D. melanogaster
Blocking Chn synthesis results in defects in cytokinesis
and embryogenic development in D. melanogaster leading
to early embryonic death. This demonstrates the essential
developmental roles Chn plays in Drosophila embryonic
cytokinesis and cell division. Drosophila has proved to be a useful
model for the investigation of developmental GAG functions
in vivo confirming in vitro findings with GAGs (FitzGerald
et al., 2006; Nishihara, 2010). HS and CS GAG side chains
of PGs are structurally conserved between Drosophila and
mammals, including humans. CS sulfation is an important
functional determinant in the regulation of mammalian neural
tissue development and repair; however, in C. elegans and
D. melanogaster the Chn chains are not sulfated but, nevertheless,
have essential roles to play in early embryonic development and
tissue morphogenesis in later developmental stages.

Windpipe (Wdp) is a novel CS-PG recently identified in
Drosophila. Wdp is a single-pass transmembrane protein with
leucine-rich repeat (LRR) motifs and has three extracellular CS
chain attachment sites (Takemura et al., 2020). Wdp modulates
the Hedgehog (Hh) cell signaling pathway. In the wing disk,
overexpression of Wdp inhibits Hh signaling an effect that
is dependent on its CS chains and protein interactive LRR
motifs. The JAK/STAT (Janus Kinase/Signal Transducer and
Activator of Transcription) signaling pathway regulates adult
stem cell activities and is essential for the maintenance of
intestinal homeostasis in Drosophila. Wdp interaction with the
receptor Domeless (Dome) promotes its internalization and
lysosomal degradation. Wdp thus acts as a negative feedback
regulator of JAK/STAT cell signaling and is a novel regulatory
component of JAK/STAT signaling in Drosophila adult intestines
(Ren et al., 2015).

Glycosaminoglycans such as HS and CS have roles in
intercellular signaling thus disruptions of genes encoding
enzymes that mediate GAG biosynthesis have severe
consequences in Drosophila and mice. Mutations in the
Drosophila gene sugarless, encoding a uridine diphosphate
(UDP)-glucose dehydrogenase, impairs developmental signaling
through the Wnt family member Wingless, and FGF and
Hedgehog signaling pathways. Undersulfated and oversulfated
CS chains are implicated in neural development, cloning of a
chondroitin synthase homolog in Caenorhabditis elegans and
depletion in Chn expression results in defects in cytokinesis in
early embryogenesis and early embryonic death demonstrating
the essential role Chn plays in early developmental processes
(Mizuguchi et al., 2003).

Drosophila has an NG2 homologue called kon-tiki (kon), that
promotes CNS repair (Losada-Perez et al., 2016). Crush injury
upregulates kon expression and induces glial cell proliferation

and differentiation by activating glial genes and prospero (pros).
Negative feedback loops with Notch and Pros allow Kon to drive
the homeostatic regulation of neuronal repair with modulation
of Kon levels in glia, potentially preventing or promoting
CNS repair (Losada-Perez et al., 2016). The interplay between
Kon, Notch, and Pros is therefore essential in neural repair in
Drosophila. Prospero homeobox protein-1 is encoded by the
PROX1 gene in humans. This pan-neural protein has essential
roles to play in the proper differentiation of neuronal lineages
and in the expression of genes in the Drosophila CNS. Prospero
is a sequence-specific DNA-binding protein that can act as
a transcription factor through interaction with homeodomain
proteins to differentially modulate their DNA-binding properties
(Hassan et al., 1997; Yousef and Matthews, 2005). Functional
interactions between Prospero and homeodomain proteins is
supported by observations showing that Prospero, together
with the homeodomain protein, Deformed, are required for
proper regulation of a Deformed-dependent neural-specific
transcriptional enhancer (Hassan et al., 1997). The DNA-binding
and homeodomain protein-interactive properties of Prospero are
localized in its highly conserved C-terminal region.

Syndecan (Sdc) is a conserved transmembrane HS-PG
bearing CS chains on its ectodomain. In vertebrates, this
extracellular domain of Sdc is shed and acts as a soluble effector
of cellular communication events, and the Sdc cytoplasmic
domain participates in intracellular signaling needed to maintain
epithelial integrity. In Drosophila, Sdc has been shown to be
necessary for Slit signaling-dependent axonal guidance during
CNS development (Chanana et al., 2009). Sdc acts in a
cell-autonomous manner in Slit-receiving cells and that its
membrane-anchored extracellular domain is sufficient to mediate
Slit signaling. The HS-PG Dally-like protein (Dlp), which lacks
CS on its extracellular domain, can only partially substitute for
Sdc function but its activity is not restricted to the Slit target cells.
Sdc and Dlp act in a cooperative but non-redundant manner in
neural tissues with Dlp transferring Slit from its site of expression
to the target cells, where it interacts with CS-modified Sdc.

Caenorhabditis elegans Netrins and
Neural Development
UNCoordinated-6 (UNC-6) was the first C. elegans member
of the netrin family that was discovered (Krahn et al., 2019).
UNC-6 shares homology to human netrin-1, and is a key
signaling molecule in the regulation of directional axonal
migration in nematodes (Krahn et al., 2019). Similar to netrin-
1, UNC-6 interacts with multiple receptors to guide axonal
migration (Moore et al., 2007; Rajasekharan and Kennedy,
2009; Ogura et al., 2012). Netrin is a key guidance protein
regulating the orientation of axonal growth during neural
network formation in C. elegans. LON-2/glypican, modulates
UNC-6/netrin signaling through interactions with the UNC-
40/DCC (deleted in colorectal carcinoma) receptor (Yang et al.,
2014). LON-2 expressed on the cell surface in the intestine
and hypodermis in C. elegans and in D. melanogaster promotes
growth factor binding in several developmental processes,
negatively regulating the TGF-β receptor signaling pathway and
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BMP-like signaling that regulates tissue growth and body length.
N-terminal sequencing of the signal peptide of LON-2, identified
a 14 cysteine domain of functional importance, SGXG GAG
attachment site and C-terminal GPI anchor site showing that
LON-2 is a member of the glypican family (Eisenhaber et al.,
2000; Gumienny et al., 2007). The other C. elegans glypican,
gpn-1, has no significant effect on the body size (Blanchette
et al., 2015). Null mutations in C. elegans genes encoding
HS biosynthetic enzymes that process the HS side chains of
LON-2, significantly reduce body size. hse-5, hst-2, and hst-
6 encode C. elegans counterparts to mammalian glucuronyl
C5-epimerase, 2 O-sulfotransferase, and 6 O-sulfotransferase,
respectively. This demonstrates the important functional role HS
plays in neural development in C. elegans and the importance
of the HS sulfation patterns for this activity (Bülow and Hobert,
2004; Gysi et al., 2013; Díaz-Balzac et al., 2014; Saied-Santiago
et al., 2017). HS chains of HS-PGs carry multiple structural
modifications due to sulfation and epimerization of GlcA that
influence their ligand binding properties. This is why HS-PGs
have such diverse effects in tissue and axonal development. The
core proteins of C. elegans SDN-1 and glypican/LON-2 and HS
modifying enzymes thus both have roles in axonal guidance
through interactions with UNC-6/Netrin (Rhiner et al., 2005).
C. elegans SDN-1/syndecan control of neural migration and
axonal guidance also occurs through regulation of Slit/Robo
signaling in parallel with C5-epimerase HSE-5, and/or the 2O-
sulfotransferase HST-2 activity, which provide distinct regulatory
HS modification patterns on SDN-1.

MAMMALIAN NEURONAL
PROTEOGLYCANS

Neural PGs occur as large and small extracellular, cell surface
and intracellular components. The salient features of neural PGs
are summarized in Table 1 and their structural organizations are
shown schematically in Figures 3–5.

Roles for the CS-Rich Lectican PG
Family in Perineuronal Net Structures
The lectican family of neural PGs have similar structures
to aggrecan but do not contain keratan sulfate (KS) or a
G2 globular domain. Furthermore, their molecular dimensions
are smaller due to shorter core proteins and less extensive
distributions of CS side-chains (Yamaguchi, 2000). Lectican PGs
occur as diffuse ECM components and as dense PNN structures
attached to HA through interactions with lectican N-terminal
HA-binding regions. This aggregate is stabilized by tenascin-
R and Bral-1 (Hyaluronan and Proteoglycan Link Protein 2;
HAPLN2). The form of aggrecan found in brain differs from
that of cartilage aggrecan in that it contains less KS chains,
and its CS chains are less densely distributed along the CS1
and CS2 core protein regions (Hayes and Melrose, 2020a).
Some CS chains in neural aggrecan are replaced by HNK-
1 trisaccharide which also attaches to the same core protein
linkage tetrasaccharide as CS. Once the HNK-1 trisaccharide
is assembled chain elongation ceases resulting in a reduction

in CS chain density but introduces cell interactive properties.
Neural aggrecan guides neural crest progenitor cell migration
during embryonic neurogenesis and formation of the neural
tube and notochord (Hayes and Melrose, 2020a). Preclinical
spinal cord injury (SCI) and traumatic brain injury (TBI) animal
model studies demonstrate that the enzymatic degradation of
CS-PGs from gliotic scars using chondroitinase ABC improves
neuronal functional recovery (Bradbury and Carter, 2011; Cheng
et al., 2015; Muir et al., 2019). Endogenous degradation of the
core protein of CS-PGs by ADAMTS-4 also improves neuronal
functional recovery (Tauchi et al., 2012). While the CS-A and CS-
C side chains of the lecticans inhibit neural repair, not all CS-PGs
inhibit axonal re-growth (Mencio et al., 2021). PGs containing
over-sulfated CS-B, and CS-E promote neurite outgrowth and
functional recovery (Bovolenta and Fernaud-Espinosa, 2000).
The EGF-like motif in the G3 domain of the lecticans has also
been shown to regulate cell migration and tissue repair (Aguirre
et al., 2007; Du et al., 2010). Overexpression of human EGFR
in CNP (hEGFR) mice accelerates remyelination and functional
recovery following focal demyelination. Progenitor cells over-
expressing NG2 PG also improve re-myelination through EGFR
mediated cell signaling (Keirstead and Blakemore, 1999; Aguirre
et al., 2007). PNNs surrounding the soma and dendrites of
a number of neuronal cell types are prevalent during neural
development and maturation (Carulli and Verhaagen, 2021).
A similar structure, the perinodal ECM surrounds the axonal
nodes of Ranvier and appear after re-myelination, acting as
a protective ion-diffusion barrier (Bekku and Oohashi, 2019;
Fawcett et al., 2019). Perinodal structures in the Nodes of Ranvier
also contain PNN components such as brevican and versican V2
(Bekku et al., 2009; Dours-Zimmermann et al., 2009).

Perineuronal net are variably distributed in the brain, the
somatosensory frontal lobes of the cerebral cortex have a
particularly high density of PNNs, however, they are sparsely
distributed in the sub-ventricular and sub-granular dentate gyrus
of the hippocampus. These regions contain neuro-progenitor
stem cell niches termed fractones (Mercier and Arikawa-
Hirasawa, 2012; Sato et al., 2019). Abnormal PNN formation
impacts on neural development and may result in degenerative
synaptic pathology in schizophrenia (Pantazopoulos et al.,
2021), bipolar disorder, major depression, and autism spectrum
disorders (Sorg et al., 2016). CS-PGs in PNNs control synaptic
plasticity, and have roles in memory in the aging brain,
deterioration of PNNs contribute to the age-dependent decline
in brain function. Recent work has revealed the importance of
PNNs in the control of CNS plasticity. Digestion, blocking or
removal of PNNs impedes functional recovery after a variety of
CNS lesions. Deficient PNN numbers are implicated in a number
of psychiatric disorders and suggested as therapeutic targets
in their treatment (Dityatev et al., 2021). Incorrect assembly
of PNNs or degradation of PNN components by excessive
MMP activity can lead to the development of epilepsy (Rankin-
Gee et al., 2015; Dubey et al., 2017; Mencio et al., 2021).
Deficient levels of HA in PNN structures promote epilepsy
and spontaneous convulsions in animal models (Perkins et al.,
2017). The CS-PGs of PNNs have important functional roles
to play in perisynaptic structures that prevent the development
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TABLE 1 | Extracellular, cell associated and intracellular CS-proteoglycans of the CNS/PNS.

Protein Distribution Roles References

Large lectican neural proteoglycans

Aggrecan (ACAN)
(CSPG1)

Present as diffuse ECM component between
the dense ECM of PNNs which contain HA and
the lecticans

Roles in tissue hydration, space-filling in
CNS/PNS, neuroprotective in PNNs, synapse
formation, roles in synaptic plasticity memory,
cognitive learning

Kiani et al., 2002; Hayes
and Melrose, 2020a

Versican
(VCAN)
(CSPG2)

Widespread in CNS/PNS occurs as V0, V1, V2,
V3 isoforms

Promotes proliferation, differentiation, cell
migration, tissue development, repair, tissue
morphogenesis. G1 and G3 stimulate cell
migration. Versikine G1 fragment of Versican V2
is an Alarmin in innate immunity with TLR4.

Schmalfeldt et al., 1998;
Wu et al., 2004; Xiang

et al., 2006; Schmitt, 2016;
Islam and Watanabe, 2020

Neurocan (NCAM)
(CSPG3) 150 kDa lectican CS-PG

Widespread CNS/PNS PG

Interacts with HA, NCAM, modulates cell
binding, regulates neurite outgrowth through
interactions with Sdc-1, Gpc-3, and PTN.

Margolis and Margolis,
1994; Margolis et al., 1996;
Rauch et al., 2001; Sullivan
et al., 2018; Schmidt et al.,

2020

Brevican
(CSPG7)

Widespread CNS/PNS PG, present in the post
synaptic gap where it may relay
neurotransmitters to adjacent communicating
neurons

Binds to astrocytes and neurons regulates axon
and dendritic maturation, upregulated in glial
scars. GPI anchored brevican described.
BEHAB is a bioactive fragment that promotes
glioblastoma development.

Yamaguchi, 1996; Gary and
Hockfield, 2000; Matthews
et al., 2000; Giamanco and

Matthews, 2020

Large non-lectican neural proteoglycans

RPTPR-ζ
Phosphacan

Populations of phosphacan contain variable
levels of CS, KS, or HNK-1 trisaccharide
substitution
Cell surface (RPTPR-ζ) and soluble PG
(phosphacan) forms

RPTPR-ζ, single pass type 1 TM
PG-phosphatase receptor, regulates SC repair
and neurogenesis, soluble phosphacan
ectodomain, has truncated forms with neurite
outgrowth activity.

Garwood et al., 2003;
Faissner et al., 2006; Eill

et al., 2020

NG2
(CSPG4)

Widely distributed TM Oligodendrocyte PG, a
soluble form is released from cell by proteases

Stimulates endothelial cell proliferation,
sequesters FGF-2 and PDGF. Collagen VI
receptor activates FAK/ERK1/ERK2 signaling.
Up-regulated in SCI and tumors.

Jones et al., 2002; Wigley
et al., 2007; Tamburini

et al., 2019

Betaglycan 250–280 kDa CS/HS TM homodimeric PG
Binds inhibin, FGF-2, Wnt TGF-β HS inhibits
and CS promotes Wnt signaling. Fragments of
betaglycan are released by plasmin and MMPs.
binding to inhibin antagonises activin signaling

Lewis et al., 2000; Gray
et al., 2001; Bilandzic and

Stenvers, 2011; Miller et al.,
2012; Kim et al., 2019

Perlecan
(HSPG2)

HS/CS hybrid PG of BBB, NMJ, BM, and of
fractone stem cell niche

Stabilizes BBB and motor neuron endplate BM.
Regulates neuroprogenitor proliferation by
FGF-2 in SVZ and dentate gyrus fractones.
Domain V promotes neurogenesis, BBB repair

Cho et al., 2012; Kerever
et al., 2014; Celestrin et al.,

2018

Small neural proteoglycans

Neuroglycan-C (CSPG5,
CALEB)
Acidic, Leu-rich EGF Brain
PG

Part-time TM PG, growth and differentiation
factor involved in neuritogenesis

Core protein EGF domain, CS-E side chains,
ligand for ErbB3. Binds PTN to promote neurite
outgrowth.

Watanabe et al., 1995;
Kinugasa et al., 2004; Shuo

et al., 2007; Nakanishi
et al., 2010

Syndecan-1.
Syndecan-3
(Sdc1, Sdc3)

TM CS/HS CNS/PNS PGs
Sdc-1 and 3 interact with midkine, and PTN,
roles in neural development, neurite outgrowth,
neural proliferation

Couchman et al., 2015;
Gopal et al., 2016

Decorin
(DCN)

∼92.5 kDa class I SLRP containing one
N-terminal CS or DS chain, 42 kDa core
protein, and 12 LRRs. Widely distributed in
CNS/PNS and around gliotic scars

Pluripotent, regulates IL-1, VEGF2, CTGF,
TGF-β EGF, IGF-1, participates in ECM
assembly, cell growth, differentiation,
proliferation, adhesion, and migration.
Regulates inflammation, fibrosis, fibrillogenesis,
TGF-β bioavailability. “Mayday” and “Decorunt”
DCN fragments. Mayday attracts MSCs into
tissue defects

Lee et al., 2014; Zhang W.
et al., 2018

Biglycan
(BGN)

∼200 kDa class I SLRP containing two
N-terminal CS or DS chains and a 42 kDa core
protein and 12 LRRs

Structural ECM component, TLR-2, 4
interactive DAMP Alarmin protein in innate
immunity, modulates growth factor (TGF-β,
TNFα, BMP-2, 4, 6; WISP-1) and cytokine
functions and is a stabilizing component of
synapses. also interacts with complement
system. An en silico generated BGN fragment
(P2K) is a TGF-β inhibitor.

Amenta et al., 2012;
Nastase et al., 2012; Chen

et al., 2018, 2020; Xie
et al., 2020

(Continued)
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TABLE 1 | Continued

Protein Distribution Roles References

Epiphycan
(EPN)
DSPG3,PG-Lb

Epiphycan (EPN) also known as DSPG3 or
PG-Lb is a CS/DS substituted 133 kDa SLRP
with a 46 kDa core protein and contains 7 LRR
repeats. EPN is a Cochlear SLRP

Epiphycan (EPN) is a CS/DS 133 kDa SLRP
with a 46 kDa core protein and c7 LRR repeats.
EPN has roles in auditory cochlear neuronal
interactions, EPN deficiency leads to deafness.

Johnson et al., 1997;
Hanada et al., 2017

Appican
(APP)

APP is a 100–110 kDa type I TM PG
alternatively spliced APLP2 is also found in
neural tissues

APP has neuroregulatory properties through
PTN: CS-E interactions

Pangalos et al., 1996

Bikunin/ITI
Bikunin is the light chain of ITI and has a mass
of 25–26 kDa, contains a single CS chain.

Multifunctional Kunitz protease inhibitor PG,
anti-metastatic, immune-modulator, growth
promoter. Stabilizes HA by crosslinking ITI HCs
to HA

Hamasuna et al., 2001;
Lord et al., 2013, 2020

Serglycin
(SGN)

Mast cells, platelets, macrophages, T-cell, NK
cells

Mast cell SGN is substituted with heparin,
macrophage, NK killer, T-cell SGN has CS
(CS-A, CS-E) side chains

Kolset and Pejler, 2011;
Roy et al., 2017

Endocan
50 kDa Endothelial cell DS cell surface PG also
found circulating in bloodstream

DS chain binds L-, P-Selectin FN, chemokines,
cytokines. RANTES, SDF-1β, IL-8, MCP-1,
IFN-γ, PF-4, MK, PTN, FGF-2, FGF -7

Maurage et al., 2009; Kali
and Shetty, 2014; Gaudet

et al., 2020

Testican-1, 2, 3
Testican-1 and -2 are CS/HS PGs, of the
BM-40/SPARC/osteonectin family. Testican 3 is
a brain specific HS PG

Testican-1 is upregulated in neurons and
astrocytes following brain injury. Testican 1-3
regulate MT_MMP and cathepsin L activity in
neural tissues.

Marr et al., 2000; Iseki
et al., 2011; Hartmann

et al., 2013

CD 141 Thrombomodulin is a component of the
endothelium, thrombin inhibitor

Inhibits thrombin in the endothelium protein C-
anticoagulant system. Has anti-inflammatory
barrier-stabilizing properties in ischemic stroke,
enhancing vessel recovery and BBB repair.

CD44 V3 splice variants bear CS chains Binds Ezrin, fibrin/fibrinogen, FN, HA, OPN,
Selectins-P,-E,-L.

Dzwonek and Wilczynski,
2015; Mooney et al., 2016

CD47 Neuron 50 KDa, 4 span TM CS-PG receptor
Neuroimmune regulatory protein, TSP-1
receptor, binds SIRPα. Regulates neuronal
migration, proliferation and vascular cell
survival, in innate and adaptive immunity,
increases tissue resilience

Zhang H. et al., 2015;
Matlung et al., 2017;

Bedoui et al., 2018; Hutter
et al., 2019; Li et al., 2021

Astrochondrin Astrocyte cell surface PG Binds laminin and type IV collagen in
microvasculature and meninges.

Streit et al., 1993

Photomedin
Brain-specific glycoprotein of the eye
neuroepithelium. member of the olfactomedin
protein family

Photomedin interacts with CS-E to regulate
axonal growth and differentiation of neural
sensory epithelium

Furutani et al., 2005

FORSE-1 PG
(forebrain-surface-
embryonic)

LeX-substituted 286 kDa neuro-progenitor cell
glycoprotein/PG

Lewis-X, SSEA-1 or CD15,
Galβ(1-4)Fucα(1-3)GlcNAc-R oligosaccharide
epitopes in FORSE-1 have roles in embryonic
neural development

Gooi et al., 1981; Hakomori
et al., 1981; Allendoerfer
et al., 1995, 1999; Kelly

et al., 2019

ADAM-TS, a disintegrin and metalloproteinase with thrombospondin motifs; BBB, blood brain barrier; BM, basement membrane; BMP, bone morphogenic protein; CNS,
central nervous system; CS, chondroitin sulfate; DS, dermatan sulfate; ECM, extracellular matrix; ERK, extracellular regulated kinase; FAK, focal adhesion kinase; FGF-2,
fibroblast growth factor-2; HA, hyaluronic acid; HS, heparan sulfate; IL1, interleukin-1; LRR, leucine rich repeat; MMP, matrix metalloproteinase; MS, mass spectrometry;
NCAM, neural cell adhesion molecule; PCM, pericellular matrix; PNS, peripheral nervous system; SLRP, small leucine repeat proteoglycan; SV, sub-ventricular; TLR4,
Toll-like receptor-4; TM, transmembrane; TNF-α, tumor necrosis factor-α; MK, midkine; PTN, pleiotrophin; FN, fibronectin; TSP, thrombospondin; SGN, serglycin; ITI,
inter-α-trypsin inhibitor; SVZ, sub-ventricular zone; WISP-1, Wnt1-inducible-signaling pathway protein 1, CCN4; SDF-1, stromal cell derived factor-1, CXCL12; MCP-1,
monocyte chemoattractant protein-1, CCL2; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted, chemokine ligand 5 (CCL5); PF-4,
platelet factor-4; SSEA-1, stage specific embryonic antigen-1; DAMP, danger associated molecular pattern; SPARC, secreted protein acidic and rich in cysteine.

of Alzheimer’s disease (AD) (Morawski et al., 2012), cortical
regions with abundant levels of ECM CS-PGs are less affected
by degenerative features associated with the development of
AD (Bruckner et al., 1999). PNNs also have important roles
to play in Schizophrenia and Bipolar disorder (Berretta, 2012;
Mauney et al., 2013). In unaffected individuals, the density of
PNNs in the prefrontal cortex increases during pre-puberty and
early adolescence. However, in patients with schizophrenia, a
70% reduction in PNN numbers in the prefrontal cortex has
been observed (Mauney et al., 2013). The organization and

function of PNNs is also disturbed in bipolar disorder (Gandal
et al., 2018). Stem cells have been administered to promote
recovery of normal PNN structure in an attempt to reverse
these debilitating conditions (Forostyak et al., 2014). With an
appreciation of PNNs and their important contributions to
synaptic stability (Miyata et al., 2018), plasticity, memory and
cognitive learning in normal brain tissues this has led to the
identification of abnormalities in PNN assembly or expression
of PNN components associated with particular neurodegerative
conditions (Yamaguchi, 2000; Wen et al., 2018). Thus PNNs have
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become a therapeutic focus in the treatment of these conditions
(Dityatev et al., 2006, 2010, 2021).

NEURAL PROTEOGLYCANS

Aggrecan
In the CNS/PNS, aggrecan core protein contains KS, HNK-1
trisaccharide and CS side chains (Hayes and Melrose, 2020a) that
convey unique tissue-specific functional properties (Figure 3A).
Aggrecan’s ability to form macro-aggregates with HA provides
water imbibing, space-filling and matrix stabilizing properties to
the PNS/CNS ECM and in brain establishes ionic gradients and
microcompartments important for the optimal activity of neural
cell populations.

The ability of the aggrecan core protein to assemble CS and KS
chains at high density provides its well-known water-imbibing
properties. Specific arrangements of GAG chains on aggrecan
are functional determinant providing unique tissue context-
dependent regulatory properties over neural cell populations.
The aggrecan core protein KS and CS side chains and N-linked
oligosaccharides all display neurite outgrowth-inhibitory activity
(Hering et al., 2020). The cell mediatory properties of aggrecan’s
GAGs thus convey diverse regulatory roles in tissue development
and in neuroprotective matrix stabilization of PNNs. Variation
in the sulfation position and density on the CS side chains
can influence morphogen and growth factor binding relevant
to tissue development (Reichsman et al., 1996; Nandini and
Sugahara, 2006; Nadanaka et al., 2008; Whalen et al., 2013;
Mizumoto et al., 2015).

Versican
Versican is a large member of the lectican family (Yamaguchi,
2000) with a 400 kDa core protein modestly substituted
with CS side chains (Figure 3B). Versican occurs as four
alternatively spliced isoforms, VO, V1, V2, V3 (Yamaguchi,
2000). Versican was named after its versatile roles as a
cell instructional and ECM organizational functional PG in
tissue development, cell migration, adhesion, proliferation, and
differentiation. Versican V1 promotes neuritogenesis (Wu et al.,
2004). Versican interacts with HA through its G1 globular
domain, C-type lectin G3 motifs interact with tenascin-R to
stabilize HA-versican macro-aggregates (Bignami et al., 1993)
and with HNK-1-substituted cell adhesion proteins (Bignami
et al., 1993), HNK-1 glycolipids (Miura et al., 2001), and sulfated
GAGs (Miura et al., 1999). Free G1, G3 versican domains
released by proteases have regulatory properties in cell adhesion,
proliferation, apoptosis, migration, angiogenesis, invasion, and
metastasis. Versican G3 domain regulates neurite growth and
synaptic transmission of hippocampal neurons by activating
EGFR (Xiang et al., 2006). NgR2 interacts with versican G3
suppressing axonal plasticity (Bäumer et al., 2014) and has
a dominant-negative effect on astrocytoma cell proliferation
(Wu et al., 2001). An 80 kDa N-terminal matricryptic fragment
of versican (versikine) generated by ADAMTS-4 (a disintegrin
and metalloproteinase with thrombospondin motifs) cleavage

acts as an alarmin in the innate immune response (Yamada
et al., 2011). Interactions between myeloma stromal and myeloid
cells generates versikine, a DAMP (damage-associated molecular
pattern) that may facilitate immune sensing of myeloma tumors
(Hope et al., 2016). Versikine also occurs during connective
tissue remodeling during embryonic development (Nandadasa
et al., 2014). Versican V2 is highly expressed in the adult brain
(Schmalfeldt et al., 1998), promotes angiogenesis (Yang and Yee,
2013), and interactions with neurons (Horii-Hayashi et al., 2008).
Versican V1 induces neural differentiation and neuritogenesis
(Wu et al., 2004). Versican isoforms are differentially distributed
in gliomas, medulloblastomas, schwannomas, neurofibromas,
and meningiomas. Versican V2 is the major isoform found in
gliomas. Versican V0 and V1 are found in all tissues, Versican
V3 is found in all tissues except medulloblastomas.

Neurocan
Neurocan has a widespread distribution in the CNS/PNS and
is a component of PNNs (Schmidt et al., 2020) and regulates
synaptic signaling (Sullivan et al., 2018). Neurocan (Figure 3C)
has roles in neurodegenerative disorders (Lin et al., 2021).
β-amyloid increases neurocan expression in astrocytes through
Sox9 influencing the development of AD. Mutations in the
neurocan gene predispose to bipolar disorder and schizophrenia
(Mühleisen et al., 2012; Raum et al., 2015). Neurocan regulates
neural migration and axonal development in the cerebral
cortex influencing the folding of the occipital and pre-frontal
lobes and an increased probability of developing schizophrenia
(Schultz et al., 2014).

Brevican
Brevican is the smallest lectican CS-PG family member
(Figure 3D) present in PNNs in some cases, but aggrecan
and versican are the principal lecticans in PNNs (Yamaguchi,
1996). Brain-enriched hyaluronan-binding protein (BEHAB)
is an N-terminally cleaved (Matthews et al., 2000) bioactive
fragment of brevican that is dramatically increased in human
gliomas (Nutt et al., 2001; Viapiano et al., 2008) where it promotes
glial cell motility and the aggressiveness of gliomas (Yamaguchi,
1996; Gary and Hockfield, 2000; Nutt et al., 2001; Viapiano et al.,
2008; Giamanco and Matthews, 2020).

OTHER NON-LECTICAN LARGE NEURAL
PROTEOGLYCANS

Phosphacan/Receptor Protein Tyrosine
Phosphatase-Zeta (RPTP-ζ)
A cell membrane bound precursor form of phosphacan (RPTP-ζ)
(Figures 4A,B) is processed by proteases to release a soluble
PG ectodomain (Figure 4C) called phosphacan (Chow et al.,
2008), truncated and non-GAG substituted forms of phosphacan
have also been described (Figure 4D) with neurite outgrowth
promoting activity (Fujikawa et al., 2017). This property is
thus due to the core protein in some phosphacan species
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while neurite outgrowth activity may also be conveyed by GAG
components, such as oversulfated CS-B and CS-E, in other
phosphacan glycoforms (Dobbertin et al., 2003; Hikino et al.,
2003). Phosphacan populations bearing KS and HNK-1 have also
been described as well as the more common CS-glycanated form
(Melrose, 2019b). Phosphacan promotes PNN formation (Eill
et al., 2020). RPTP-ζphosphacan contain extracellular carbonic
anhydrase (CAH) and fibronectin type III repeat domains,
which foster protein–protein interactions (Milev et al., 1994;
Lamprianou et al., 2011). A truncated 90 kDa phosphacan form is
not a PG, but is substituted with the HNK-1 trisaccharide which
facilitates interactive properties with a number of cell adhesion
and ECM molecules (Garwood et al., 2003). Phosphacan
promotes neuron–glial interactions, neuronal differentiation,
myelination, and axonal repair. The CAH carbonic anhydrase
domain of phosphacan promotes protein–protein recognition,
induces cell adhesion, neurite outgrowth of primary neurons,
and differentiation of neuroblastoma cells (Adamsky et al., 2001);
contactin is a phosphacan neuronal receptor that regulates neural
development and axonal repair.

NG2 Proteoglycan/CSPG4
CSPG4 modular transmembrane CS-PG also occurs as a
soluble protease generated form (Schäfer and Tegeder,
2018; Figure 4G). CSPG4 is expressed by oligodendrocyte
precursor cells (OPCs), NG2 glia (Butt et al., 2019), pericytes
(Girolamo et al., 2013), activated astrocytes in damaged
neural tissues (Anderson et al., 2016) and fibroblasts and
macrophages associated with the meninges (Tamburini et al.,
2019). NG2/CSPG4 is the largest complex macromolecule
of the neuron surfaceome (Tamburini et al., 2019). OPCs
are sensitive to electrophysiological stimulation through
synaptic interactions that induce cellular proliferation
and tissue repair.

The 290 kDa ectodomain of CSPG4 is released from OPCs
by ADAM10 (α-secretase) (Moransard et al., 2011; Clarke et al.,
2012; Huang et al., 2014) and are a major source of neural
CSPG4 (Jones et al., 2002). Neurons, astrocytes, and microglial
cells do not express CSPG4. Glioblastoma cells (Moransard et al.,
2011; Huang et al., 2014), endothelial cells and pericytes in
gliotic scars express CSPG4 (Jones et al., 2002; McTigue et al.,
2006). NG2 PG binds type V and VI collagen through its
central non-globular domain (Clarke et al., 2012; Huang et al.,
2014) and with integrins (Sakry and Trotter, 2016). C-terminal
LamG domains of NG2 interact with BM components and are
crucial for formation of synaptic neuroligin-neurexin complexes
and glial cell signaling (Jeong et al., 2017) and also interact
with matriglycan-dystroglycan, perlecan, agrin and type XVIII
collagen to localize NG2PG in motor neuron endplates in the
neuromuscular junction (NMJ) (Walimbe et al., 2020).

Betaglycan
Betaglycan homo-dimeric transmembrane (TM) CS/HS PG
(Mythreye and Blobe, 2009; Bilandzic and Stenvers, 2011)
contains inhibin, FGF-2, Wnt, and TGF-β binding sites (Boyd
et al., 1990; Segarini, 1991; Massagué et al., 1992; Sandbrink
et al., 1996; Miyazono, 1997; Lewis et al., 2000; Gray et al.,

2001; Kim et al., 2019; Bernard et al., 2020; Figure 5B).
The HS chains of betaglycan bind FGF-2. Wnt signaling is
regulated independently of TGF-β (Jenkins et al., 2018). HS
inhibits Wnt signaling, while CS promotes Wnt signaling
(Jenkins et al., 2016, 2018). Betaglycan N-and O- linked
oligosaccharides and GAG chains, modulate betaglycan’s
growth factor-mediated, vascular and cancer cell migratory
properties (Pantazaka and Papadimitriou, 2014) and Inhibin A
and B binding (Makanji et al., 2007). Fragments of betaglycan
released by plasmin and MMPs act as circulating antagonists
to normal betaglycan interactions. Inhibin/activin subunits and
betaglycan are co-localized in the human brain (MacConell
et al., 2002; Miller et al., 2012). Betaglycan-FGF-2 mediate
neural proliferation and differentiation in neuroblastoma
(Knelson et al., 2013). TGF-β also enhances glioma migration
and invasion. TGF-β TbetaR I-III signaling phosphorylates
Sma and MAD-related protein (SMAD), soluble TbetaR-I-
III antagonize this process (Naumann et al., 2008). TGF-β
enhances adult neurogenesis in the sub-ventricular zone (SVZ)
and supports pro-neurogenic roles for TGF-β (Battista et al.,
2006; Mathieu et al., 2010). Activins and inhibins, stimulate or
inhibit secretion of FSH and the differentiation, proliferation
and function of many cell types (Vale et al., 2004). Activin
receptors highly expressed in neuronal cells, and activin mRNA
are upregulated by neuronal activity. Models of TBI display
enhanced activin A expression exacerbated by hypoxic/ischemic
injury, mechanical irritation, and chemical damage (Florio et al.,
2007). FGF-2 is neuroprotective and prevents apoptosis by
strengthening anti-apoptotic pathways promoting neurogenesis
in the adult hippocampus by upregulation of activin A
activity (Woodruff, 1998; Alzheimer and Werner, 2002;
Florio et al., 2007).

THE SMALL NEURAL PROTEOGLYCANS

Neuroglycan C
Neuroglycan C is a part time (Oohira et al., 2004) brain
specific TM (Watanabe et al., 1995; Yasuda et al., 1998;
Shuo et al., 2004) 150 kDa CS-PG (Figure 4J) with a
120 kDa core protein that can also be shed by MMPs
(Shuo et al., 2007), GAG-free forms of CSPG5 have also
been described. Neuroglycan C, is a novel member of the
neuregulin family (Kinugasa et al., 2004), interacting with
pleiotropin (Nakanishi et al., 2010) producing neurite outgrowth-
promoting activity mediated by phosphatidylinositol 3-kinase
and protein kinase C (Nakanishi et al., 2006). CSPG5 forms
peri-synaptic structures in the postnatal adult rat cortex (Jüttner
et al., 2013). Impaired CSPG5 properties are evident in
schizophrenia (So et al., 2010). Alternatively spliced forms have
been identified in the human brain, recombinant CSPG5 induces
phosphorylation of Erb2 and Erb3 and induces proliferation
of neocorticol neurons (Kinugasa et al., 2004; Nakanishi
et al., 2006). The neurite outgrowth promoting activity of
neuroglycan C resides in its EGF and acidic amino acid domains
(Nakanishi et al., 2006).
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Syndecans
Syndecan transmembrane HS/CS-PGs (Figures 4E,F) modulate
cell adhesion, cell–cell interactions and ligand-receptor
interactions that regulate neural plasticity, promote neural
growth and development (Couchman et al., 2015; Gopal et al.,
2021). Sdc-3 and Sdc-4 are found throughout the nervous
system and have roles in motor neuron development (Liu
et al., 2020), Slit/Robo signaling and guidance of axonal
development (Steigemann et al., 2004). Sdc3 is a co-receptor
for Heparin-Binding Growth-Associated Molecule (HB-
GAM)/midkine-induced neurite outgrowth in perinatal rat
brain neurons. HB-GAM acts as a local, synaptic factor that
promotes presynaptic and postsynaptic differentiation during
neural development. Sdc3 also has roles in adult neuronal
synaptic plasticity in the hippocampus in rat models following
injury and regulates the neuronal internodal axonal ECM
during re-myelination in growth, remodeling and repair
(Steigemann et al., 2004). Sdc3 and Sdc4 promote functional
recovery of neural tissues re-organizing sodium and potassium
channels (Steigemann et al., 2004). Oligodendrocytes are
sensitive to electro-stimulation, and this maintains their
membrane polarization required for the promotion of
axonal repair processes. Sdc1 is upregulated by neurons
following TBI and SCI (Murakami et al., 2015). Sdc1 and
Sdc3 knockdown in dorsal root ganglia (DRG) neurons
induces short neurite extensions suggesting roles in nerve
regeneration, synaptic formation and plasticity (Akita et al.,
2004; Steigemann et al., 2004). Syndecans shed from the cell
surface by MMPs, act as soluble growth factor co-receptors
that regulate cell migration acting antagonistically with cell
surface syndecans competing for FGF and VEGF binding
(Gopal et al., 2021) and interact with integrins potentially
influencing cellular behavior, adhesion, spreading, migration,
proliferation, tissue morphogenesis and pathogenetic tissue
changes (Couchman et al., 2015).

Decorin
Decorin (Figure 3E) regulates cellular survival, migratory,
proliferative and angiogenic signaling and collagen fibril
formation, sequesters TGF-β and antagonizes receptor tyrosine
kinase family members, including EGFR and IGF-IR (Schönherr
et al., 2005; Iozzo et al., 2011; Neill et al., 2012). MayDay,
a ∼12 kDa N-terminal chemotactic factor, generated by
macrophage-induced MMP-12 cleavage of decorin, recruits
mesenchymal stem cells (MSCs) to damaged tissue regions
in vitro and in vivo, promoting tissue repair (Dempsey et al.,
2020). In situ hybridization (ISH) has localized decorin in
areas of microvascular proliferation within gliomas and may
be a therapeutic target in anti-angiogenic therapy (Patel
et al., 2020) or approaches targeting TGF-β activity in tumors
(Birch et al., 2020). Decorin protects neuronal tissue from
the damaging effects of anti-oxidants and neuroinflammation
following TBI by inactivation and has anti-tumor activity by
inhibiting glioma cell migration (Yao et al., 2016). Decorin
inhibits TGF-β activity, fibrous scar formation in neural tissues
following trauma.

Biglycan
Biglycan (Figure 3F) is synthesized by astrocytes (Koops
et al., 1996) and immune cells (Mohan et al., 2010) and has
neurotrophic activity, stimulates glial cell proliferation (Kikuchi
et al., 2000) and neuronal cell survival (Koops et al., 1996).
It is part of the proteome of the normal human retrobulbar
optic nerve (Zhang et al., 2016) and is massively upregulated
around gliotic scars following trauma (Stichel et al., 1995). NF-
κB upregulates biglycan, protecting human neuroblastoma cells
from nitric oxide (NO)-induced cell death by inhibiting AMPK-
mTOR mediated autophagy and intracellular reactive oxygen
species (ROS) production from mitochondrial oxidative bursts
(Wang et al., 2015), targeting Erk1/2 and p38 signaling pathways
to prevent NO-induced neuronal cell apoptosis (Chen et al.,
2020). Biglycan regulates neuroinflammation (Xie et al., 2020)
through M1 microglial cell activation in the early stages of
subarachnoid hemorrhage, targeting Erk1/2 and p38 signaling
pathways (Chen et al., 2018). Biglycan binds to Notch-3
and accumulates in cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL)
(Zhang X. et al., 2015). Transcriptomic profiling of the
hypothalamus and hippocampus, supports a central regulatory
role for biglycan (bgn) in molecular pathways linking metabolic
events with the immune response, and neuronal plasticity
(Ying et al., 2018). Transcriptomic profiling of hypothalamus,
hippocampus, and liver supports regulatory roles for Bgn
in molecular pathways involved in metabolism, the immune
response, and neuronal plasticity (Ying et al., 2018).

Epiphycan
The synaptic poles of inner hair cells of the cochlea have audio-
sensory properties and are surrounded by basket-like ECM
structures with similar roles to the PNNs of neurons in the CNS
(Sonntag et al., 2015). Epiphycan (Figure 3G) and aggrecan are
cochlear components and of the gel-filled tectorial membrane
which detects auditory signals and transmits these to sensory
hair cells (Melrose, 2019a). Epiphycan is expressed by cochlear
supporting cells and is necessary for normal hearing. Epiphycan
mRNA is abundantly expressed in the cochlea in the organ of
Corti of neonatal and adult mice. The cochlea of epiphycan
knockout (KO) mice display a normal morphology, however,
the auditory brain-stem response is altered since epiphycan is
necessary for normal auditory function (Hanada et al., 2017).
These PNN like structures surround high function neuron types
which respond to signals received from inner sensory hair cells,
transducing audio signals into mechanical stimuli and receptor-
mediated action potentials which are sent to spiral ganglion
neurons (Sonntag et al., 2015). These neuron types operate at very
high discharge rates and efficiently convey signals to the auditory
brainstem for further processing. The hearing loss evident in
cartilage matrix deficiency (CMD) mice is related to aggrecan
deficiency in the cochlea (Melrose, 2019a).

Appican
Two variants of the related amyloid precursor-like protein 2
(APLP2) carry single CS-E side chains, which bind midkine
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and pleiotrophin (Thinakaran and Sisodia, 1994; Shioi et al.,
1995; Thinakaran et al., 1995). Multiple splice variants of
amyloid-beta precursor protein (APP) (Figure 4I) and APLP2
arise from alternative splicing of three exons in APP and two
exons in APLP2 (Kitaguchi et al., 1988; Ponte et al., 1988).
The CS attachment site on APP/APLP2 is located adjacent to
the membrane-spanning domain through deletion of 18 (APP)
or 12 (APLP2) amino acids (Thinakaran et al., 1995). Splice
variants also occur lacking CS side chains. APP and APLP are
widely distributed in the CNS/PNS, APP is expressed by glial
cells in the CNS/PNS.

Bikunin/ITI
Bikunin (inter-α-trypsin inhibitor light chain) is synthesized by
neurons (Chen et al., 2016), occurring as a tissue form and small
circulating PG containing a single CS chain (Figure 3J). Bikunin
displays anti-inflammatory, anti-protease, anti-microbial, anti-
viral properties and also functions as a growth factor (Fries and
Blom, 2000; Lord et al., 2020). Bikunin is expressed in brain
tissue (Takano et al., 1999; Kim et al., 2020) and accumulates in
brain tumors. Bikunin CS chains contain embedded disulfated
CS-D motifs (Lord et al., 2013, 2020). A related Kunitz protease
inhibitor, placental bikunin (hepatocyte growth factor activator
inhibitor type-2) has been reported to inhibit glioblastoma tumor
invasion (Hamasuna et al., 2001), however, this is a dissimilar
protein to serum bikunin. Traumatic impact to the brain and
spinal cord can release nuclear components such as histone H1
into the circulation or cerebrospinal fluid (CSF). Histone H1
has neuro-stimulatory effects and activates the innate immune
response in the CNS mediated by microglial cells (Gilthorpe et al.,
2013). This promotes neural cell survival, up-regulates major
histocompatibility complex (MHC) class II antigen expression
and is a powerful microglial chemoattractant. Release of histone
H1 from the degenerative CNS drives a positive immune response
(Gilthorpe et al., 2013) but can also be cytotoxic. Plasma immune
tolerance induction (ITI) neutralizes the cytotoxic effects of
histone H1, decreasing histone-induced platelet aggregation
(Chaaban et al., 2015) through complexation of the histone with
the negatively charged CS GAG chains of ITI (Chaaban et al.,
2015). Hypoxic-ischemic encephalopathy predisposes infants
to long-term cognitive decline impacting on life quality and
healthcare resources (Chen et al., 2019). ITI regulates neonatal
inflammation, decreases damage to brain tissues (Chen et al.,
2019) and neuronal cell death, attenuates glial responses and
leucocyte invasion with long-term beneficial effects in neonatal
models of brain injury (Koehn et al., 2020).

Serglycin
Serglycin (Figure 3H) is a small intracellular PG present in
secretory granules of hemopoietic and endothelial cells (Kolset
and Tveit, 2008) with regulatory properties over immune cells
(Kolset and Pejler, 2011). It also promotes the development and
aggressiveness of many tumor types including glioblastoma and
is a glioblastoma biomarker (Roy et al., 2017; Manou et al., 2020).
Suppression of serglycin in LN-18 shSRGN mutant cells results
in retarded glioma proliferation, migration and invasive potential

(Manou et al., 2020). Serglycin expression is elevated in astrocyte-
glioma co-cultures. Astrocytes promote glioblastoma growth and
is a potential glioma therapeutic target (Mega et al., 2020).

Endocan
Endocan (Figures 3L, 5C) is a small endothelial cell surface DS-
PG found in cerebral blood vessels and is a small circulating PG
in the blood stream (Frahm et al., 2013). Human umbilical vein
endothelial cells (HUVECs) produce a truncated, alternatively
spliced form of endocan which is neither glycosylated or secreted
(Tsai et al., 2002). Circulating PGs are relatively rare; examples
include endocan, bikunin, and macrophage colony stimulating
factor-1 (Aitkenhead et al., 2002; Zhao et al., 2004). Endocan
shares no homologies with other ECM PGs (De Freitas and
Lassalle, 2015), does not contain LRRs or C-type lectin domains.
Endocan, endothelial cell specific molecule-1 (ESM-1) encoded
by the ESM-1 gene is an atypical DS-PG, with a single DS chain
and distinctive structural and functional properties (Xing et al.,
2016; Sun et al., 2019). Endocan is expressed by endothelial
cells, regulated by proinflammatory pro-angiogenic molecules,
has matrix-binding properties and is a marker of endothelial cell
activation. TNF-α, IL-1, TGF-β1, FGF-2, and VEGF-2 induce
endocan expression in vitro, IFN-γ inhibits TNF-α induced
upregulation of endocan (Scherpereel et al., 2003). Endocan is
associated with neuroinflamation in highly vascularized tumors
in meningiomas, gliomas and lung cancer (Maurage et al.,
2009) and with new blood vessel development in glioma
(Maurage et al., 2009), pituitary adenoma, renal cell carcinoma,
pediatric brain injury (Lele et al., 2019) and is a biomarker of
cerebral damage (Morleo et al., 2019). Endocan expression is
upregulated in human cytomegaloviral infection which increases
glioma development in brain tissues (Scherpereel et al., 2003;
Xing et al., 2016) leading to its suggestion as a therapeutic
target in glioma (Atukeren et al., 2016). Endocan binds to
lymphocytes and monocytes through high affinity interactions
with integrin CD11a/CD18 lymphocyte function associated
antigen-1 (LFA-1). A protease cleaved form of endocan (p14)
antagonizes these interactions (Gaudet et al., 2020). Endocan
promotes adhesion of monocytes and endothelial cells (Sun et al.,
2019). The DS chains of endocan bind and activate hepatocyte
growth factor (HGF) in vitro (Lyon et al., 1998; Mythreye
and Blobe, 2009), L- and P-Selectins, fibronectin, chemokines,
cytokines, RANTES, Stromal Cell-Derived Factor-1β (SDF-1β),
IL-8, monocyte chemoattractant protein-1 (MCP-1), IFN-γ, and
platelet factor-4 (PF-4), midkine, pleiotrophin, FGF-2, and FGF-7
(Sarrazin et al., 2006).

Testican
Testican-1 and -2 are CS/HS PGs (Figure 3K), of the BM-
40/SPARC/osteonectin family of extracellular calcium-binding
proteins consisting of a signal peptide, a follistatin-like domain,
a central Ca2+-binding domain, a thyroglobulin-like domain,
and a C-terminal GAG attachment region. Testican-1 and
2 are expressed by multiple neuronal cell types in olfactory
bulb, cerebral cortex, thalamus, hippocampus, cerebellum, and
medulla (Marr et al., 2000). Neuronal testican-1 is upregulated
following brain trauma (Iseki et al., 2011) and is also expressed by
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activated astrocytes. Testican-1 modulates neuronal attachment
and MMP activation (Bocock et al., 2003; Edgell et al.,
2004), inhibits membrane type MMPs and cathepsin-L but not
cathepsin-B. Testican-1 contains a single thyropin domain highly
homologous to domains in cysteine proteinase inhibitors, the CS
chains of testican-1 are essential for inhibition of cathepsin-L.
Testican-2 is a HS/CS PG, has GAG-substituted and GAG-free
forms that inhibit neurite extension, regulating neuronal growth
and development (Schnepp et al., 2005). Testican-2 abrogates
the inhibition of metallothionein-1(MT1)-MMP- or MT3-MMP-
mediated pro-MMP-2 activation by testican-1 (Nakada et al.,
2003). Testican-3, a HS-PG exclusive to brain tissues suppresses
MT1-MMP mediated activation of MMP-2 and tumor invasion
(Hartmann et al., 2013).

Thrombomodulin (CD141)
Thrombomodulin (Figure 4H) inhibits thrombin as part
of the anticoagulant protein C-system in the endothelium,
is anti-inflammatory and promotes barrier-stabilization.
Thrombomodulin is a protective factor in the brain during
ischemic stroke, enhancing vessel post-ischemic recovery in
the blood brain barrier. Thrombin’s physiological roles in the
brain stabilize normal brain function in synaptic transmission
and plasticity through direct or indirect activation of Protease-
Activated Receptor-1 (PAR1) and has neuroprotective roles in
neurological diseases (Krenzlin et al., 2016).

Cluster of Differentiation 44
Cluster of differentiation 44 (CD44), a major transmembrane
glycoprotein HA receptor (Figure 4K) in the CNS/PNS,
has roles in cell division, migration, adhesion, and cell–cell
and cell–ECM signaling (Dzwonek and Wilczynski, 2015).
Alternatively spliced CD44v3 is a CS-PG, 20 isoforms of
CD44 have been reported associated with several kinds of
tumors. CD44 expression is highly dynamic and transitions
between different isoforms during tumor development (Lah
et al., 2020). In glioma, CD44 and integrins attach the cell to
ECM forming focal adhesion complexes and generate traction
forces that facilitate cell spreading, essential in the cell migratory
machinery in glioma cell invasion (Mooney et al., 2016).
In the normal brain, CD44 is a major HA receptor that
interacts with osteopontin, collagens, and MMPs stabilisating
and remodeling the CNS/PNS ECM (Dzwonek and Wilczynski,
2015). HA is highly interactive through CD44, conveying cell
instructional cues, and ECM stabilization, hydration and space-
filling properties thus maintaining tissue compartmentalisation,
ionic gradients and niches important in the metabolism of
neural cell populations (Sherman et al., 2015; Peters and
Sherman, 2020), including neural progenitor stem cell niches
(Preston and Sherman, 2011).

Cluster of Differentiation 47
Cluster of differentiation 47 (CD47) (Figure 5A), originally
named integrin-associated protein (IAP) is a receptor for
thrombospondin-1 (TSP-1) regulates cellular migration,
proliferation, and the survival of vascular cells, in innate and
adaptive immune regulation (Barclay and Van den Berg, 2014;

Murata et al., 2014). TSP-1 acts via CD47 to inhibit NO
signaling in the vascular system supporting blood pressure by
regulation limiting endothelial nitric oxide synthase (eNOS)
activation and endothelial-dependent vasorelaxation. CD47 is
a ligand for signal regulatory protein α (SIRPα), also known as
SHPS-1/BIT/CD172a). The CD47-SIRPα signaling system is a
cell-cell communication system (Zhang H. et al., 2015; Matlung
et al., 2017; Weiskopf, 2017). CD47-SIRPα interactions have
been termed an innate immune checkpoint in macrophages
(Li et al., 2021). Blockade of anti-phagocytic CD47-SIRPα

interactions using humanized antibodies to CD47 (Hu5F9-
G4) has yielded promising results in preclinical studies of
a number of human malignancies including pediatric brain
tumors: medulloblastoma, atypical teratoid rhabdoid tumors,
primitive neuroectodermal tumor, pediatric glioblastoma,
and diffuse intrinsic pontine glioma (Gholamin et al., 2017)
and accelerates the clearance of hematomas in experimental
intraventricular hemorrhage (Ye et al., 2021). Thus by targeting
the immunological checkpoint complex CD47-SIRPα, the
development of glioblastoma can be inhibited, the function
of phagocytic, dendritic and T-lymphocytes enhanced and the
efficiency of tumor cell removal improved by innate and adaptive
immune responses (Hutter et al., 2019; Hu et al., 2020; Kuo et al.,
2020; Zhang et al., 2020).

Astrochondrin
Some specialized CNS proteins such as astrochondrin, a
cell surface CS-PG of astrocytes carry L2/HNK-1 and L5
carbohydrate structures interactive with ECM components such
as laminin and type IV collagen this may facilitate interaction
of astrocyte foot processes with the brain microvasculature and
meningeal membranes (Streit et al., 1993).

Photomedin
Photomedin is another brain-specific glycoprotein of the eye
neuroepithelium that interacts with CS-E (Furutani et al., 2005).
Photomedin is a member of the olfactomedin protein family
and has regulatory roles in axonal growth and differentiation of
sensory cilia in the neural epithelium.

FORSE-1 (Forebrain-Surface-Embryonic)
Proteoglycan
FORSE-1 contains LeX-carbohydrate, stage specific embryonic
antigen-1 (SSEA-1) or CD15, terminal Galβ(1-4)Fucα(1-
3)GlcNAc-R oligosaccharide epitopes with roles in embryonic
neural development (Allendoerfer et al., 1995, 1999;
Kelly et al., 2019).

CS-PGs REGULATION OF NEURONAL
CELL SIGNALING

Neural cell populations including astrocytes, oligodendrocytes,
neurons, endothelial cells and pericytes of the brain
microvasculature and microglial cells synthesize a range of
CS-PGs that interact with a variety of cell surface molecules
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FIGURE 6 | Schematic depiction of the modular structures of diverse cell surface molecules expressed by neural cells that bind CS-proteoglycans. The fibronectin-III
and Ig repeat transmembrane protein LAR (Leukocyte common antigen-related receptor protein tyrosine phosphatase (A) and homologous contactin-1 (CNTN-1)
(B) Murine paired immunoglobulin receptor B (PirB) and its human ortholog leukocyte immunoglobulin-like receptor B2 (LILRB2) (C), neural cell adhesion molecule
(NrCAM) (D). The ephrin receptor (E), Nogo and its co-receptors (F), semaphorins 3A (G), 5A (H) and the neuropilin (I) and neuroplexin receptors (J).

and receptors (Figure 6). These modulate cellular processes
that control CNS/PNS function and repair (Djerbal et al., 2017;
Figure 7). CS-PGs contribute to the structural integrity and
compartmentalisation of the brain ECM and have important
organizational functional roles in brain regions (Dityatev et al.,
2010). CS-PGs operate at multiple functional levels involving
interactions with growth factors, receptors, adhesion molecules,
neural guidance proteins and ECM proteins (Djerbal et al.,
2017). Transmembrane CS-PGs are active during cell-cell
crosstalk, they may also be secreted or released from the cell
surface by proteases to act remotely from their cells of origin
and may antagonize normal transmembrane PG interactions
(Figure 7F). CS-PGs are not uniformly distributed in the
CNS/PNS but occur concentrated in neural growth cones and
PNNs strategically positioned to control processes occurring at
the cell-tissue interface (Shimbo et al., 2013; Sugitani et al., 2020).
Growth cone receptor protein tyrosine phosphatases (RPTPs)
bind with high affinity to CS-PGs, this controls axonal growth
and provides guidance cues during regeneration, plasticity
and neuronal development and in repair responses (Djerbal
et al., 2017). CS-PGs attached to RPTP members can also exert

repulsive guidance cues and inhibit neuritogenesis (Figure 6A).
Lectican PG family members (neurocan, brevican, versican,
aggrecan) are diffusely distributed in the CNS ECM and are
also components of the denser PNNs. The CS component of
CS-PGs vary in composition with tissue development. During
embryonic development CS-C is a predominant isoform while
CS-A is more abundant in adult neural tissues (Figure 2). The
sulphation patterns and charge density are important functional
determinants of CS glycoforms. The more highly charged CS-E, B
and D are components of PNN PGs, CS-A and CS-C are diffusely
distributed in the ECM distant from PNN structures (Djerbal
et al., 2017). The chemo-repellent semaphorin 3A (SEMA3A), a
component of PNNs (Battistini and Tamagnone, 2016; Fard and
Tamagnone, 2020), interacts with CS-E and B but not CS-D, thus
such interactions are not purely mediated by charge; saccharide
sequences in CS chains also determine the interactive properties
of CS-PGs and their core proteins also contain ECM interactive
modules. Selective binding of midkine (MK) and brain-derived
neurotrophic factor (BDNF) to CS-E of some CS-PGs leads to
neurite outgrowth. The Nogo receptors NgR1 and NgR3 bind
to Nogo and inhibit neurite outgrowth. NgR1 and NgR3 also
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FIGURE 7 | Schematic representation of the structural organization of neural cell adhesion molecules that act as CS-PG receptors (A–C), and the neural NgR1 (D)
and ephrin receptors (E) where binding of CS-PGs results in an inhibitory signal to the neuron. Ephrin acts as a receptor for Neuroglycan-C, while phosphacan binds
to Contactin-1 (B) and NrCAM (C). LAR acts as a receptor for several CS-PGs. Oligodendrocyte-neuronal communication mediated by LAR-NrCAM (Condomitti
and de Wit, 2018) or LAR-contactin-1 interactions (Zhang P. et al., 2018) can be regulated by competitive binding of CS-PGs to these cell surface components (F).

bind specifically to CS-B, CS-D, and CS-E with high affinity,
and this inhibits neurite outgrowth. Cell adhesion molecules are
operative in cell–cell and cell–ECM interactions that regulate
tissue integrity, cellular communication and cellular migration
during CNS development and repair following trauma and
are evident as pathological functional changes in neurological
disorders. Neural cell adhesion molecule (NCAM) in particular,
has specific roles in the promotion of neurite outgrowth of
motor neurons that improves locomotor functional recovery
following SCI. NCAM and neuroglia cell adhesion molecule
(NgCAM) bind with high affinity to the CS-PG phosphacan,
reducing neurite outgrowth and adhesion. Chondroitinase

ABC moderately reduces phosphacan-NCAM binding showing
this interaction is mainly mediated through phosphacan
core protein interactions (Figure 7). Neurocan binding to
NCAM and NgCAM also inhibits neurite outgrowth but unlike
phosphacan, chondroitinase ABC abrogates this, showing that
neurocan-NCAM interactions are mediated through CS. NCAM
and NgCAM act as receptors for phosphacan and neurocan.
Contactin-1 is a further GPI anchored cell adhesion molecule
(CAM) that facilitates axonal growth and dendritic interactions
that promote neurogenesis, CS-E binds contactin-1 with
significant affinity and promotes neural growth. Thus, CS-PG
binding to contactin-1 can modulate contactin-1 interactions
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that normally mediate cell-cell interaction (Figure 7F). CS-
PG5 (neuroglycan C) forms peri-synaptic matrix assemblies that
regulate neuronal synaptic activity in the cerebral cortex of rats
(Pintér et al., 2020).

The semaphorins are a family of guidance proteins of
embryonic peripheral nerve projections and have roles in
synaptogenesis and the maintenance of neural interconnections
in adulthood thus maintaining cerebral homeostasis. SEMA3A is
upregulated following CNS injury, causes growth cone collapse
by signaling through synaptic neuropilin-1 (Nrp-1) and plexin
receptors and is also known as collapsin-1. SEMA3A in PNNs
can modulate synaptic morphology and function (Goshima et al.,
2002; Mecollari et al., 2014; Battistini and Tamagnone, 2016;
Alto and Terman, 2017; Fard and Tamagnone, 2020). SEMA3A
interacts with CS-E with high affinity and neuropilin-1 (Nrp-1)
in SEMA3A-Nrp-plexin signaling complexes to potently inhibit
neural sprouting following SCI, and also inhibits neural growth
factor (NGF) (Mecollari et al., 2014; Fard and Tamagnone, 2020)
(Figure 6). Compared to SEMA3A, SEMA5A is less well studied,
but also has important functional roles in CNS development
and response to injury (Conrad et al., 2010). SEMA5A contains
a cluster of thrombospondin (TSP) repeats which promote
neural outgrowth. CS-PGs interact with this TSP repeat region
producing a neuro-repulsive response whereas HS-PGs produce
a neuro-attractive response. Thus, CS has important SEMA5A
regulatory properties. A proteomic surface plasmon resonance
and microarray study by Conrad et al. (2010), showed that
interactions with neurotrophic factors was not confined to the
highly charged CS-E glycoforms and that significant interactions
also occurred between CS-A and Sema 3E, Sema 6B and ephrin
A3 (Conrad et al., 2010).

CONCLUSION

This chapter has shown the impressive diversity in CS-PG
form and function in the CNS/PNS. CS-PGs undertake many
essential roles in neural tissues through the provision of a
functional ECM for the many different cell populations resident
in the CNS/PNS. The intricacies of some of the cell regulatory
properties conveyed by CS-PGs have been illustrated, as has the
complex interplay between distinct neural cell populations in
the maintenance of CNS/PNS tissue function and homeostasis.
Aberrations in the assembly of the ECM through processing
defects in component CS-PGs can have serious functional
consequences in brain tissues and can lead to neurodegenerative
diseases. Such defects underline the fundamental importance of
the ECM in normal tissue function and the potential of CS-PGs
as promising therapeutic targets for future treatment of many of
these neurodegenerative conditions.
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GLOSSARY

AD, Alzheimer’s disease; ADAM, A disintegrin and metalloproteinase domain-containing protein; ADAMTSL, A disintegrin and
metalloproteinase with thrombospondin motifs; AMPK, 5′ adenosine monophosphate-activated protein kinase; APLP2, amyloid
precursor-like protein 2; APP, amyloid-beta precursor protein; BBB, blood brain barrier; BDNF, brain-derived neurotrophic
factor; BEHAB, brain-enriched hyaluronan-binding protein; Bgn, biglycan; BMP, bone morphogenic protein; C4ST-1, chondroitin
4-O-sulfotransferase-1; C4ST-2, Chondroitin 4-O-sulfotransferase-2; CADASIL, cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy; CAM, cell adhesion molecule; CD44, cluster of differentiation 44; CD47, cluster of
differentiation 47; Chn, chondroitin; CMD, cartilage matrix deficiency; CNP, 2′,3′-cyclic nucleotide 3′-phosphodiesterase; CNS,
central nervous system; CPG, chondroitin proteoglycans; CS, chondroitin sulfate; CSF, cerebrospinal fluid; CS-PG, chondroitin sulfate
proteoglycan; D/iD, GlcA/IdoA(2-O-sulfate)-GalNAc(6-O-sulfate); D4ST-1, dermatan 4-O-sulfotransferase-1; DAMP, damage-
associated molecular pattern; DCC, deleted in colorectal carcinoma; DDBJ, DNA Data Bank of Japan; Dlp, Dally-like protein; Dome,
domeless; Dpp, decapentaplegic, a ligand of the TGFβ superfamily; DRG, dorsal root ganglion/ganglia; DS, dermatan sulfate; DS-PG,
dermatan sulfate proteoglycan; E/iE, GlcA/IdoA-GalNAc (4,6-O-disulfate); ECM, extracellular matrix; EGF(R), epidermal growth
factor (Receptor); eNOS, endothelial nitric oxide synthase; ESM-1, endothelial cell specific molecule-1; FGF, fibroblast growth factor;
FORSE-1, forebrain surface embryonic-1; FSH, follicle-stimulating hormone; GPI, glycophosphatidylinositol; HA, hyaluronic acid;
HAPLN2, hyaluronan and proteoglycan link protein 2; HB-GAM, heparin-binding growth-associated molecule; hEGFR, human
epidermal growth factor receptor; HGF, hepatocyte growth factor; Hh, Hedgehog; HNK-1, human natural killer-1; HS, heparan
sulfate; HS-PG, heparan sulfate proteoglycan; HSPG2, heparan sulfate proteoglycan 2 (perlecan); Hst, heparan sulfate sulfotransferase;
HUVECs, human umbilical vein endothelial cells; iA, 4-sulfated IdoA-GalNAc; IAP, integrin-associated protein; iB, 2-sulfated IdoA-
GalNAc; IFN-γ, interferon-γ; IGF-IR, insulin-like growth factor-1 receptor; IL, interleukin; ISH, in situ hybridization; ITI, immune
tolerance induction; JAK/STAT, Janus kinase/signal transducer and activator of transcription; KO, knockout; Kon, Kon-tiki (NG2
homolog); KS, keratan sulfate; LFA-1, lymphocyte function associated antigen-1; LRR, leucine-rich repeat; MADD, muscle arm
development defective; MAP, mitogen-activated protein; MCAF, monocyte chemotactic and activating factor; MCP-1, monocyte
chemoattractant protein-1; MHC, major histocompatibility complex; MIP, macrophage inflammatory protein; MK, midkine; MMP,
matrix metalloproteinase; MSC, mesenchymal stem cell; MT-1, metallothionein-1; mTOR, mechanistic target of rapamycin; NCAM,
neural cell adhesion molecule; NF-κB, nuclear factor Kappa-light-chain-enhancer of activated B cells; NG2, neuron-glial antigen
2; NgCAM, neuroglia cell adhesion molecule; NGF, neural growth factor; NgR2, Nogo-66 Receptor Homolog2; NLG, neuroligin;
NMJ, neuromuscular junction; NO, nitric oxide; Nrp-1, neuropilin 1; OA, osteoarthritis; OPC, oligodendrocyte precursor cells; PAP,
3′-phosphoadenosine 5′-phosphosulfate; PAPS, 3′-phosphoadenosine 5′-phosphosulfate; PAR1, protease-activated receptor-1, PG,
proteoglycan; PNN, perineuronal net; PNS, peripheral nervous system; Pros, prospero; RANTES, regulated upon activation, normal
T cell expressed and secreted; RNAi, ribonucleic acid interference; ROS, reactive oxygen species; RPTPs, receptor protein tyrosine
phosphatases; RPTP-ζ, receptor protein tyrosine phosphatase-ζ; SCI, spinal cord injury; Sdc, syndecan; SDF-1β, stromal cell-derived
factor-1β; SDN-1, syndecan homolog found in Caenorhabditis elegans; SEMA3A, semaphorin 3A; SEMA5A, semaphorin 5A; SIRPα,
signal regulatory protein α; SMAD, Sma and MAD-related protein; SOX9, SRY-box transcription factor 9; Sqv, squashed vulva gene;
SSEA-1, stage specific embryonic antigen-1; SVZ, subventricular zone; TBI, traumatic brain injury; TGF-β, transforming growth
factor-β; TM, transmembrane; TNFR, tumor necrosis factor receptor; TNF-α, tumor necrosis factor-α; TSP-1, thrombospondin-1;
UDP, uridine diphosphate; UNC, uncoordinated; UST, uronyl 2-sulfotransferase; VEGF, vascular endothelial growth factor; Wdp,
windpipe; Wg, wingless.
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