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Abstract

Zika virus (ZIKV), a neglected tropical disease until its re-emergence in 2007, causes micro-

cephaly in infants and Guillain-Barré syndrome in adults. Its re-emergence and spread to

more than 80 countries led the World Health Organization in 2016 to declare a Public Health

Emergency. ZIKV is mainly transmitted by mosquitos, but can persist in infected human

male semen for prolonged periods and may be sexually transmitted. Testicular Sertoli cells

support ZIKV replication and may be a reservoir for persistent ZIKV infection. Electrical

impedance analyses indicated ZIKV infection rapidly disrupted Vero cell monolayers but

had little effect upon human Sertoli cells (HSerC). We determined ZIKV-induced proteomic

changes in HSerC using an aptamer-based multiplexed technique (SOMAscan) targeting

>1300 human proteins. ZIKV infection caused differential expression of 299 proteins during

three different time points, including 5 days after infection. Dysregulated proteins are

involved in different bio-functions, including cell death and survival, cell cycle, maintenance

of cellular function, cell signaling, cellular assembly, morphology, movement, molecular

transport, and immune response. Many signaling pathways important for maintenance of

HSerC function and spermatogenesis were highly dysregulated. These included IL-6, IGF1,

EGF, NF-κB, PPAR, ERK/MAPK, and growth hormone signaling. Down-regulation of the

PPAR signaling pathway might impact cellular energy supplies. Upstream molecule analysis

also indicated microRNAs involved in germ cell development were downregulated by infec-

tion. Overall, this study leads to a better understanding of Sertoli cellular mechanisms used

by ZIKV during persistent infection and possible ZIKV impacts on spermatogenesis.

Author summary

Zika virus has gained new significance during the past few years when it became associ-

ated with increased numbers of birth defects. Zika virus is primarily transmitted by
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mosquitoes. However, it is becoming increasingly clear that there are other ways the virus

can be transmitted. One of these ways is through sexual transmission. In order to better

understand how Zika virus can persist in humans and may be transmitted sexually, we

examined the interactions between Zika virus and Sertoli cells, a specialized male testicu-

lar cell responsible for sperm production. We examined how Zika virus infection affected

more than 1300 Sertoli cell proteins and found that virus infection altered cellular path-

ways responsible for sperm production. At the same time, Zika virus had little effect upon

overall structure of the cells. This information helps better explain the long-lived persis-

tence of Zika virus in human male reproductive cells and the virus’ capacity to be sexually

transmitted.

Introduction

Zika virus (ZIKV) is considered a neglected tropical disease. It is a small enveloped arthropod-

borne human pathogen (arbovirus) with a small positive-sense single-stranded RNA genome.

ZIKV belongs to the family Flaviviridae, which includes other human pathogens such as West

Nile virus (WNV), Dengue virus (DENV), Yellow fever virus (YFV), and Japanese encephalitis

virus (JEV) [1]. ZIKV was discovered in 1947 in a sentinel monkey [2], and first isolated from

humans in 1952 [3].

Followed by a few sporadic infections in Pakistan and Malaysia reported in 1977, ZIKV re-

emerged in the Pacific islands in 2007 and spread to more than 80 countries/territories world-

wide including regions in Latin America, USA, and Southeast Asia [4–6]. In February 2016,

the World Health Organization (WHO) declared ZIKV a Global Health Emergency [7].

Because of the non-specific nature of ZIKV disease symptoms and that>80% of patients

remain asymptomatic, the virus was neglected for a long time [8]. The virus received recent

major attention due to its association with Guillain-Barré syndrome in adults and microceph-

aly in newborns [3, 4, 8].

ZIKV is mostly transmitted by Aedes mosquitoes (A. aegypti and A. albopictus) in endemic

areas [9], but sexual transmission was suggested from traveler-associated infections in non-

endemic countries/territories [7, 10–12]. ZIKV can persist in infected male semen for pro-

longed periods in the absence of viremia and disease symptoms. Live ZIKV and viral RNA

were detected in semen up to 370 days after disease onset [13–15]. ZIKV infection causes

severe pathological effects in male murine testicular tissues and reduces sperm motility and

fertility [16, 17]. In vitro studies demonstrated that ZIKV can infect human testicular tissue

and replicate in human Sertoli cells (HSerC), which may be a reservoir for long-term viral per-

sistence [16, 18, 19].

Sertoli cells are considered the “mother” for spermatogonial stem cells, as they play critical

roles in testis formation and aid the spermatogenesis process by supplying nutrients and devel-

opmental signals [20]. They also provide structural support to germ cells and create the blood-

testis barrier (BTB) to ensure an immune-privileged environment to protect sperm cells from

immune attack [21]. Unlike other bodily cells, HSerC depend upon fatty acid (FA) oxidation

rather than glucose for energy [22]. The Peroxisome Proliferator-Activated Receptor (PPAR)

signaling pathway plays an important role in energy generation by lactate and lipid oxidization

[23]. Sertoli cells can influence the regulation of hormones, growth factors, and receptor sig-

naling important for spermatogenesis and human fertility [24]. Follicle-stimulating hormone

(FSH) is one of the key endocrine hormones that directly regulates spermatogenesis [25]. Ser-

toli cells secrete inhibin B after induction by FSH [26], but the level of inhibin B also provides
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negative feedback on FSH secretion [27]. The level of serum inhibin B directly correlates with

sperm count and is used as a marker for spermatogenesis [27].

In vitro and in vivo studies demonstrated that ZIKV persists in Sertoli cells [16, 18], but the

mechanism(s) underlining persistence is/are unknown. Although Sertoli cells play many criti-

cal roles in germ cell development, the impact of ZIKV infection on the spermatogenesis pro-

cess is not well understood. In this study, we determined the impact of ZIKV infection on

proteins known to be important for HSerC function and spermatogenesis.

We used Slow Off-rate Modified Aptamers (SOMAmers; SomaLogics, Inc., Denver, CO), a

multiplexed proteomic technique that measures 1305 unique proteins in up to 88 different

samples simultaneously with high precision [28], and found that numerous proteins involved

in multiple bio-functions were dysregulated. Bioinformatic analyses predict that many of these

proteins, and upstream regulatory elements, are involved in germ cell development and sper-

matogenesis, which has important implications for male fertility and reproduction.

Results

ZIKV infectivity and cytopathic impact on primary HSerC

Primary HSerC were infected with ZIKV at MOI = 3, then virus infectivity and impact on cells

were monitored up to 9 days post-infection (dpi). There was no observable ZIKV-induced

cytopathic effect (CPE) throughout the tested infection course (Fig 1A). Cell viabilities

declined to approximately 80% on days 5, 7 and 9 but were not statistically different from non-

infected mocks (Fig 1B). Supernatant virus titers were determined by plaque assay. The num-

ber of progeny viruses started rising by 1 dpi, reached a peak of 4.4 × 106 PFU/ml by 5 dpi, but

dropped below 105 PFU/ml by 7 and 9 dpi (Fig 1C). The rise in viral titer also corresponded

with increased appearance of viral non-structural protein 1 (NS-1; Fig 1D), a marker of pro-

ductive infection.

The lack of apparent ZIKV-induced HSerC CPE even after 9 days, and the function of

HSerC to form the BTB led us to more quantitatively assess the impact of virus infection on

cellular barrier function. We used electric cell-substrate impedance sensing (ECIS) to obtain

real-time measurements of impedance and of CPE. We also used Vero cells, which, although

they do not normally form tight-junction barriers, are highly susceptible to ZIKV and experi-

ence rapid CPE. The Vero cells experienced a total loss of electrical resistance by 75 hpi when

infected at MOI 0.3, and lost resistance sooner at a higher MOI of 3 (Fig 2A). Disruption was

also observed microscopically (Fig 2C). Conversely, HSerC infection with ZIKV at MOI 0.3

resulted in no changes in resistance during the first 47 h of infection, and only a small loss in

resistance at 51 hpi (75h post-plating), which mimicked the trend seen in mock-infected cells

(Fig 2B). HSerC infected with ZIKV at higher MOI of 3.0 showed no loss in resistance until 40

hpi (64h post-plating) and only moderate loss of resistance later, confirming that ZIKV infec-

tion of HSerC has only moderate effects on cell barrier integrity, which also was reflected by

considerably lower CPE (Fig 2D). Based on these collective observations, we selected day 1

(early), day 3 (mid) and day 5 (peak virus titer) for subsequent global proteomic screens.

Proteomic dysregulation in HSerC after ZIKV infection

We used SOMAscan, a multi-plexed targeted system that can detect 1305 proteins simulta-

neously from each of up to 88 samples, to examine ZIKV infection-induced HSerC proteomic

dysregulation. Samples were collected at 1, 3, and 5 dpi and time-matched non-infected mock

samples, from each of three biological replicates. P values were determined by T-test and Z-

scores, as detailed in Materials and Methods. A total of 358 proteins were deemed significantly

dysregulated at any time point (Table 1). Almost 300 proteins were significantly dysregulated
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more than 1.3-fold, and more than 125 proteins were significantly dysregulated more than

2-fold. Irrespective of whichever fold-change cut-offs we choose, we generally found that most

dysregulated proteins were downregulated at 3 dpi, whereas most were upregulated at 5 dpi

(Table 1; Fig 3A and 3B). For subsequent bioinformatics analyses we considered fold-change

cut-offs of ± 1.3-fold and fold-change cut-offs of ± 1.5-fold, both with p< 0.05, compared to

mock. Apart from differences in numbers of significantly considered proteins at these two cut-

off levels, there were no major changes in identified pathways, networks and bio-functions;

thus, for more completeness, we consider significant cut-offs of ± 1.3-fold below. Collectively,

Fig 1. Zika virus (ZIKV) infectivity and cytopathic impact on human primary Sertoli cells (HSerC). HSerC were

infected with ZIKV at an MOI of 3. Cell morphology, cell viability, and virus titer were measured every alternate day

from day 1 to 9. (A) Cells were visualized under bright-field microscopy at 200× magnification and assessed for

cytopathic effect. Scale bar is 50 μm. (B) HSerC viability was measured after ZIKV infection by WST-1 assay. (C) Virus

titer in the infected cell supernatant was determined by plaque assay. The experiment was done in three replicates. (D)

HSerCs were fixed after Day 1, 3 and 5 days post ZIKV infection, and viral protein expression was determined by

fluorescent microscopy using ZIKV-NS1 monoclonal antibodies. Images were taken at 200× magnification. Scale bar is

20 μm. Cell nuclei were visualized by DAPI stain. dpi = days post-infection.

https://doi.org/10.1371/journal.pntd.0008335.g001
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299 proteins were significantly dysregulated at any of the three different time points, with 12

(9 up- and 3 down-regulated) dysregulated at 1 dpi, 95 (25 up- and 70 down-regulated) dysre-

gulated at 3 dpi, and 218 (201 up- and 17 down-regulated) dysregulated at 5 dpi (Table 1, Fig

3A, S1 Table). Protein abundance heat maps and clustering analysis showed there were 14 sig-

nificantly down-regulated proteins at day 3 dpi that were significantly up-regulated at 5 dpi,

whereas 3 proteins were up-regulated at both time points (Fig 3B; Table 1; S1 Fig). We vali-

dated several proteins’ dysregulation by Western blot, based on high fold-changes and

Fig 2. Electrical impedance of ZIKV-infected Vero (A) and HSerC (C). Cells were added to 96-well ECIS plates and

allowed to grow for 24h to create monolayers. Cells were then treated, at time indicated with small vertical arrows, with

media alone (positive control; black line), 1% Triton X-100 (negative control; red), or with ZIKV at MOI of 0.3 (teal)

or 3.0 (dark blue) and cultures maintained with continuous impedance monitoring for another 66–80 hours. Values

represent the averages obtained from 8 wells for each condition, and HSerC were analyzed twice. Micrographs of Vero

(B) and Sertoli (D) cells at 72 hpi demonstrating observable CPE.

https://doi.org/10.1371/journal.pntd.0008335.g002

Table 1. Numbers of significantly dysregulated ZIKV-infected HSerC proteins.

Number that are significant Total Unique 1 dpi 3 dpi 5 dpi

and Fold-change > 1.00 358 16 46 213

and Fold-change < -1.00 5 90 21

and Fold-change > 1.10 354 13 45 212

and Fold-change < -1.10 5 89 21

and Fold-change > 1.30 299 9 25 197

and Fold-change < -1.30 5 67 17

and Fold-change > 1.50 216 4 19 152

and Fold-change < -1.50 0 51 12

and Fold-change > 2.00 128 0 10 100

and Fold-change < -2.00 0 30 6

and Fold-change > 3.00 71 0 5 53

and Fold-change < -3.00 0 21 1

Significance was determined by T-test and Z-score (p < 0.05) as detailed in Methods

https://doi.org/10.1371/journal.pntd.0008335.t001
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Fig 3. Proteomic analyses of ZIKV-infected HSerC by SOMAscan. (A) Volcano plots showing the expression fold changes and the significance of

differentially expressed proteins at 1, 3 and 5 dpi (P-value< 0.05). Up- and down-regulated proteins are highlighted in red and green, respectively.

(B) Heat map of selected differentially expressed (fold change> 4 or< -4) proteins at 1, 3 and 5 days post ZIKV infection. Up- and down-regulated

proteins are highlighted in red and blue, respectively. (C) Validation of SOMAscan results by Western blot of 5 selected differentially regulated

proteins. (D) Expression value of the proteins from Western-blot were quantified from three replicates and plotted side-by-side to SOMAscan
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antibody availability (Fig 3C) and confirmed similar patterns of expression (Fig 3D). For

example, STAT1 was not significantly dysregulated by 1 dpi as measured by both SOMAscan

and immunoblot, and, although absolute fold-change values differed between SOMAscan and

immunoblot, both methods indicated STAT1 was significantly up-regulated by 3 and 5 dpi.

ZIKV dysregulates cellular functions and signaling pathways in HSerC

The list of significantly dysregulated proteins was uploaded into IPA to determine ZIKV-

induced impacts on cellular protein networks, signaling pathways and cellular functions. IPA

could not predict any networks with confidence at 1 dpi because of the low numbers of dysre-

gulated molecules. A total of 11 networks were predicted by IPA at 3 dpi (n = 5) and at 5 dpi

(n = 6) that had scores >20 and comprised 11 or more focus molecules (S2 Table, S2 Fig).

Changes in protein expression as a function of progressing infection were constructed for

three of these networks (Cell-to-cell signaling, Cell death and survival, and Post-translational

modification; S3 Fig) and demonstrate little, if any dysregulation at 1 dpi, general down-regu-

lation at 3 dpi and general activation at 5 dpi. Proteins expressed differentially after ZIKV

infection at 3 dpi and 5 dpi were classified into three functional categories, including biological

processes, cellular components, and molecular functions by GOTERM and PANTHER. A

wide range of biological process subcategories were enriched at 3 dpi, with some of the highest

enrichment scores from up-regulated proteins attributed to JAK-STAT cascade, chromatin

assembly, and negative regulation of apoptotic process (S4 Fig). The vast majority of these bio-

logical processes were not enriched later at 5 dpi; instead up-regulated proteins at this later

time showed higher enrichment for entirely different classes of biological processes, such as

gluconeogenesis, angiogenesis, glycolysis, and protein phosphorylation. Similar differential

biological process enrichment patterns also were observed for down-regulated proteins, and in

molecular functions at 3 dpi compared to 5 dpi. Cellular growth and proliferation, post-trans-

lational modification, cellular development, and cell signaling were significantly decreased and

immune cell trafficking, and cell death by apoptosis were significantly increased at 3 dpi (S3

Table).

Bio-function analysis by IPA also predicted that development of gap junctions, assembly of

intercellular junctions and protein phosphorylation were significantly downregulated, whereas

protein fragment hydrolysis and organismal death were increased (Fig 4A). At 5 dpi, cell death

by necrosis, post-translational modification and protein synthesis were significantly decreased

and cellular movement, immune cell trafficking, cell viability, cell-to-cell signaling, cell prolif-

eration, cell cycle, cellular development and maintenance, cellular assembly and inflammatory

response were significantly increased (Fig 4B, S4 Table).

Based on the dysregulated proteins, IPA predicted a total of 383 canonical pathways that

were significantly affected by 5 dpi. Among them, the top 20 pathways are Il-6, IGF-1,

HMGB1, IL-3, IL7, GM-CSF, Telomerase, EGF, NF-kB, PPAR, 14-3-3 mediated, VEGF, FGF,

Thrombopoietin, IL-8, Renin-Angiotensin, ERK/MAPK, Integrin, Growth hormone, and

JAK/Stat signaling pathways (Fig 4D). The PPAR pathway was the only significantly down-

regulated pathway at this time point. HSP90AA1, HSP90AB1, IL1R1, ILRAP, IL36A, IL37,

MAPK1, PTGS2, SHC1, and TNFRSF11B, all involved in PPAR pathway, were significantly

up-regulated at 5dpi (Fig 4E). Direct and indirect IPA-predicted protein interactions suggest

metal ion, synthesis of nitric oxide, and LDH levels will significantly decrease, but antigen pre-

sentation will increase in HSerC by 5dpi (Fig 4F). IPA predicted another 205 proteins that

expression values. In both techniques, expression value of each protein in infected cells was compared with time-matched mock for quantifying

significant dysregulation. ��� = P-value<0.001, �� = P-value< 0.01, � = P-value< 0.05. dpi = days post-infection.

https://doi.org/10.1371/journal.pntd.0008335.g003
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Fig 4. IPA-predicted activation and inhibition of bio-functions, upstream molecules, and canonical pathways. (A) Top bio-functions and predicted

activation or inhibition Z-Scores (upper x-axis) and Log10 p-values (lower x-axis) are indicated at 3 dpi and (B) 5 dpi. Activation is indicated by positive

Z-Score and the inhibited bio-functions are indicated by negative Z-scores. Major bio-function categories are indicated at right. (C) Top upstream

molecules and prediction of their activation or inhibition based on Z-Scores. (D) Top affected canonical pathways with Log10 p-value indicated at the top.
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were up-regulated and 75 down-regulated by upstream analysis by 5 dpi. These proteins

belong to G-protein receptor, kinases, enzymes, transmembrane receptors, transcription regu-

lators, cytokines, microRNAs, and endogenous chemicals. Many of the predicted upstream

molecules are involved in maintenance of HSerC function and spermatogenesis (Fig 4C).

Because of the large numbers of dysregulated proteins and pathways described earlier, we

then focused on those proteins significantly dysregulated >5-fold. Of the 26 proteins that

exceeded this threshold, 20 were dysregulated at 5dpi, 7 at 3 dpi, only 1 (ISG15) was dysregu-

lated>5-fold at both time points, and no proteins were dysregulated >5-fold at 1dpi. The dys-

regulated proteins belong to cytokines (TIMP1, CXCL11, CXCL8), enzymes (ANXA1,

CHI3L1, CHI3L1, CAT), growth factor (MDK), kinases (STC1, PKM), peptidase (HTRA2),

phosphatase (PGAM1), transcription regulator (STAT1), transporter (NAPA), and others (S5

Fig). The five top-most dysregulated proteins are phosphoglycerate mutase 1 (PGAM1), pro-

tein S (PROS1), stanniocalcin 1(STC1), NSF attachment protein alpha (NAPA) and TIMP

metallopeptidase inhibitor 1(TIMP1), with expression levels >11-fold compared to non-

infected at 5dpi. Sixteen of the 26 top dysregulated proteins are predicted to affect cell-to-cell

signaling and interaction, immunological disease, organismal injury and abnormalities in cel-

lular networks.

ZIKV disrupts the expression of Inhibin B by HSerC

In light of the many dysregulated proteins being involved in maintenance of Sertoli cell func-

tion and spermatogenesis (Fig 4C) and to better delineate potential functional consequences of

ZIKV infection on spermatogenesis, we determined inhibin B levels in culture supernatants

after infection and follicular stimulating hormone (FSH) treatment. FSH concentrations of

62.5 and 125ng/ml caused 1.1- and 2.4-fold increases in inhibin B expression, respectively (Fig

5). However, ZIKV infection caused significant reductions in inhibin B expression.

Discussion

ZIKV is an arbovirus, transmitted by mosquitoes, but unlike other known members of the Fla-
viviridae family, can also be transmitted sexually [29–31]. Although sexual transmission is not

the main mode of ZIKV transmission, patients may be infected this way in non-endemic

areas. Long term ZIKV persistence in semen after disappearance of disease symptoms

increases the chances of sexual transmission. In vivo studies demonstrate that ZIKV can repli-

cate in murine [17, 32, 33], hamster [34] and macaque testes [35, 36]. The virus caused severe

inflammation and tissue destruction in murine testes [17, 32, 33], but similar effects have not

been observed in humans. ZIKV can replicate in HSerC, which likely support viral persistence

[18, 37], but the mechanism underlying this is not well understood.

We explored the impact of ZIKV infection on the HSerC proteome to complement earlier

ZIKV-induced transcriptomic studies [18]. Unlike murine Sertoli cells [38], HSerC support

high levels of ZIKV replication without any notable CPE up to 9 dpi (Fig 1A), as observed in

other studies [18, 37]. ZIKV induced more dysregulation of the cellular proteome over time.

Most dysregulated proteins were downregulated at 3 dpi whereas more proteins were upregu-

lated at 5 dpi. Notably, at least 4 of these proteins (CASP3, HTRA2, SERPINE1, and SNCA)

are associated with cell death, which is predicted to be increased by 3 dpi but decreased by 5

dpi. Thus, initially during active virus replication, cells were pushed towards cell death but

Orange corresponds to activation, and blue corresponds to inhibition, with the degree of coloration corresponding to Z-Score. (E) ZIKV-induced inhibition

of selected proteins within the PPAR signaling pathway as a function of time post-infection. Note that by 5 dpi, all proteins are dysregulated� 1.3-fold. (F)

Predicted effects of indicated PPAR pathway proteins on various bio-functions.

https://doi.org/10.1371/journal.pntd.0008335.g004
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later recovered, while virus titers started dropping after 5 dpi (Fig 1B and 1D). IPA also pre-

dicted similar observations based on the whole dataset analysis (S2 Table–S4 Table). These

data are suggestive of a switch from an acute infection to a non-CPE persistent infection.

ZIKV disrupts proteins involved in HSerC functions related to

spermatogenesis

A large number of proteins known to play critical roles in HSerC functions, including innate

immunity and spermatogenesis, were dysregulated by ZIKV infection. Pyruvate kinase

(PKM2), an important regulator of the glycolysis pathway, was elevated in ZIKV-infected

HSerC at 3dpi. Phosphoglycerate mutase 1 (PGAM1), another important regulator of glycoly-

sis, was the most dysregulated protein at 5dpi. PGAM1 is a critical enzyme that plays impor-

tant roles in cell proliferation, migration, and apoptosis [39]. Elevated expression often is

associated with cancer [40–42] and spermatogenic dysfunction [39, 43].

Metalloproteinase inhibitor 1 (TIMP1) is a glycoprotein inhibitor of Matrix Metalloprotei-

nases (MMPs) [44] that was expressed >10-fold higher in ZIKV-infected HSerC compared to

mock. MMPs and TIMPs participate in matrix remodeling, fibrosis, semen liquefaction [44–

47] and regulate Sertoli cell-tight junction dynamics [48]. TIMP1 is an important regulator for

both testicular development and spermatogenesis [49]. TIMP1 was highly expressed in ZIKV-

infected endothelial cells [50], is intimately involved in maintaining fetal membrane integrity

until labor [51], and amniotic fluid levels decrease during pregnancy with advancing gestation

[52]. Coordinated regulation of MMPs and TIMPs are required to maintain tissue architecture

and normal ovarian function [53, 54]. Thus, ZIKV-induced abnormal expression of TIMP1

may hinder spermatogenesis, the ovulation process, and may cause premature fetal delivery.

Thus, the impact of ZIKV infection on ovarian development and premature fetal delivery also

needs to be investigated. However, the impact of over expression of TIMP1 on the BTB is not

well understood as it regulates collagen degradation by a negative feedback mechanism [48].

Fig 5. Inhibin B secretion by HSerC after FSH treatment and ZIKV infection. Cells were infected (I) with ZIKV at

MOI = 3, or non-infected mock (M), and treated with indicated concentrations of follicular stimulating hormone

(FSH) for 48 hours. Impact of infection and FSH on inhibin B production monitored by ELISA and compared to non-

infected/non-treated controls. n = 3. �� = p-value< 0.01, � = p-value< 0.05.

https://doi.org/10.1371/journal.pntd.0008335.g005
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Vitamin K-dependent protein S (PROS1), Stanniocalcin-1 (STC1), and Alpha-soluble NSF

attachment protein (NAPA) were also among the top 5 most dysregulated proteins in ZIKV-

infected HSerC. PROS1 is an anticoagulant cofactor to activated protein C in blood coagula-

tion regulation [55], involved in leukocyte migration, apoptosis, and activation of complement

[56]. Over expression of PROS1 may cause inhibition of macrophage-mediated killing of

ZIKV-infected cells and protect the cells from apoptotic death. Stanniocalcin-1 (STC1) is an

estrogen-regulated gene expressed by Sertoli, Leydig and spermatogonias in rat testes [55, 57]

and important for testis development [58, 59]. STC1 also is strongly linked with pregnancy

complications [60]. NAPA is critical for the fertility of both male and female mice [61, 62].

Further study is necessary to better understand the roles of STC1 and NAPA in ZIKV

pathogenesis.

The IL-6 signaling pathway was predicted as the most significantly upregulated at 5dpi.

Overexpression of IL-6 adversely affects differentiation during spermatogenesis [63] and stim-

ulates disruption of the BTB [64]. IGF1 receptors play crucial roles in maintenance of testis

size and sperm production [65]. In vivo studies showed ZIKV reduces murine sperm count

and testis size [17, 32, 33]. Human sperm counts were reduced after ZIKV infection [66] but

the impact on testis size is unknown. The IGF-1 signaling pathway was predicted to be highly

activated in HSerC by 5dpi. Granulocyte macrophage-colony stimulating factor (GM-CSF), a

growth factor that stimulates porcine spermatogonia survival [67], was also highly activated by

5dpi. Blocking epidermal growth factor (EGF) receptors suppresses spermatogonial prolifera-

tion in newts [68].

Apoptotic cell death induced by controlled activation of nuclear factor-κB (NF-κB) signal-

ing is needed to balance testicular germ cell production in healthy individuals [69]. NF-κB

expression is also dependent on spermatogenesis stages [70]. Overactivation of NF-κB signal-

ing induces excess sperm killing and causes infertility [71]. This pathway was highly activated

at 5dpi and could explain low sperm counts in ZIKV-infected semen. Fibroblast growth factor

(FGF) signaling, which was also highly activated by ZIKV infection, is an important pathway

for regulating the male reproductive system [72] and maintenance of undifferentiated sper-

matogonia [73]. Fibroblast growth factors are hormones that stimulate DNA synthesis and

proliferation of Sertoli cells [74], and overexpression can cause testicular tumors [75]. A tran-

scriptomic study also confirmed that fibroblast growth factor-2 (FGF2) gene was highly

expressed in ZIKV-infected Sertoli cells and might be associated with viral persistence [18].

ZIKV infection has not been found associated with testicular tumors in any study to date, but

the long-term effects are unknown, which needs further investigation. Higher activation of

mitogen-activated protein kinases (MAPKs) might also adversely impact the function of sper-

matozoa and spermatogenesis as regulated by the pathway [76].

Germ cell energy homeostasis is regulated through Sertoli cell function [77]. The PPAR

pathway plays an important role in Sertoli energy generation. For example, activation of the

pathway is required for lipid droplet formation, lactate production and metabolism [77, 78].

Downregulation of the PPAR pathway might dysregulate Sertoli energy supplies and adversely

affect spermatogenesis. IPA also predicted downregulation of lactate-dehydrogenase (LDH)

levels and quantity of metal ions (Fig 4C). Lactate and pyruvate are critical substrates for

energy generation supplied by Sertoli cells to spermatocytes [79, 80].

MicroRNAs (miRs) also play critical roles in male fertility and spermatogenesis by control-

ling germ cell gene expression [81–83]. Self-renewal of murine germ cells is regulated by mir-

21 [84]. The absence of miR-17-92 cluster genes in Sertoli cells can change the testicular phe-

notype with an alteration in the whole transcriptome [85]. Upstream IPA analyses predicted

miR-17 and mir-21 were significantly downregulated in Sertoli cells by ZIKV infection, which

might have an adverse impact on spermatogenesis and testes morphology.
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ZIKV disrupts HSerC proteins involved in BTB tight junctions

Overactivation of the ERK/MAPK pathway disrupts the BTB, Sertoli–germ cell anchoring

junction, and increases tight junction permeability [54, 86–88]. ERK pathway activation was

also required for YFV replication [89]. ZIKV infection dysregulated the MAPK pathway in

human neural progenitor cells [90] and in Sertoli cells by transcriptomic analysis [91]. The

over activation of ERK/MAPK pathway indicates the possibility of BTB damage and disruption

of this immune-privileged environment for the spermatogenesis process. The pathway might

also be required for ZIKV replication, as observed in other members of the Flaviviridae [89,

92, 93]. Sertoli cell tight junctions are regulated by nitric oxide synthesis [94], and down regu-

lation might impact BTB integrity. IPA also predicted nitric oxide synthesis was reduced by

ZIKV infection through PPAR signaling.

Cytokine signaling can stimulate the breakdown of tight junctions by hindering junction pro-

tein synthesis [95]. IPA also predicted many cytokines, including IL-15, IL-27, IL-32, C5, IL-18,

and EB13, were significantly up-regulated by ZIKV infection in HSerC. IL-15 was found elevated

in the serum of ZIKV-infected patients [96], and important for maintenance of cellular tight junc-

tions [97]. IL-18 and IL-23 levels in serum of ZIKV infected monkeys were also increased [98].

Testicular cells are specialized to control reactive oxygen species levels [99], but higher levels of

hydrogen peroxide were predicted to accumulate in ZIKV-infected HSerC, which might be the

cause of impaired regulation system. However, the ECIS results (Fig 2) demonstrate that CPE,

and hence the predicted breakdown of HSerC tight junctions, takes considerably longer in HSerC

than does CPE in permissive Vero cells, the model cells used for ZIKV propagation and titration,

which could explain the long-lived persistence of ZIKV in testicular tissues and semen.

Sertoli cells secrete inhibin B, which regulates the expression of FSH, one of the critical reg-

ulator hormones for spermatogenesis. Pierik et al. showed that levels of serum inhibin B

directly correlate with sperm count, which can be used as a marker for spermatogenesis. Low

levels of inhibin B were detected in the serum of infertile males compared to healthy individu-

als [27]. ZIKV-induced reduction of inhibin B (Fig 5) might be the cause of dysregulated sper-

matogenesis, resulting in a decrease in sperm count, as observed in previous studies [66].

In conclusion, Sertoli cells support every step of spermatogenesis by providing environ-

mental support, supplying nutrients, and appropriate signals for proliferation and develop-

ment of germ cells. Any adverse impact on Sertoli cells might affect overall spermatogenesis

(modeled in Fig 6), which could result in male infertility. ZIKV infection of Sertoli cells can

adversely impact different signaling pathways, bio-functions, cytokines, enzymes, and different

cellular proteins that play important roles in spermatogenesis and BTB integrity. For example,

activation of the PPAR pathway (Fig 6, upper left) is required for lipid droplet formation and

lactate production and metabolism [77, 78, 100]. Thus, PPAR downregulation can negatively

affect energy supply. In addition, PGAM1 (Fig 6, left) is a critical enzyme that regulates the gly-

colysis pathway and plays important roles in cell proliferation, migration and apoptosis [39].

Elevated expression is often associated with cancer [39] and spermatogenic dysfunction [39].

Further studies of these various affected pathways and processes are necessary for a deeper

understanding of the impact of ZIKV infection on male and female fertility.

Materials and methods

Cells

Primary human Sertoli cells (HSerC) were purchased from ScienCell Research Laboratories,

USA (Catalog #4520). Cells were grown in poly-L-lysine-coated culture vessels in Sertoli Cell

Medium (ScienCell Cat. #4521) at 37˚C in 5% CO2. Cells were passaged every 2–3 days by
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mild trypsinization as recommended by the company. Cells grown to passage 4 were used for

all experiments.

Virus

The Zika virus strain from Puerto Rico used in this study (ZIKV/Homo sapiens/PRI/

PRVABC59/2015) was a gift from Dr. David Safronetz, Chief of Special Pathogens, the

National Microbiology Laboratory, Public Health Agency of Canada. The virus stock was

amplified by growing in Vero cells (ATCC #CCL-81) and preserved in 10% FBS at -80˚C for

future use. Stock virus titers were determined by plaque assay in Vero cells.

Infection

HSerC were grown to 70% confluency and infected at a multiplicity of infection (MOI) of 0.3

or 3 plaque forming units (PFU) per cell, as detailed in specific experiments. The virus inocu-

lum was adsorbed to cell surface by rocking the culture plates every 15 minutes for 2 hours at

37˚C in a CO2 incubator, followed by adding fresh Sertoli cell medium. For viral growth curve

determinations, supernatants of ZIKV-infected cells were collected every alternating day from

day 1 to 9 post-infection. Virus titers in the supernatants were determined by plaque assay. All

experiments were done in triplicates.

Fig 6. Proposed model for ZIKV-induced impairment of spermatogenesis. ZIKV-induced dysregulation of different proteins and cellular signaling pathways

important for spermatogenesis. Energy supply is predicted to be affected by dysregulation of the PPAR signaling and glycolysis pathways. Testicular development could

be affected by downregulation of microRNAs and upregulation of STC1, TIMP1, and IGF-1 signaling pathways. BTB integrity could be compromised by upregulation of

cytokine (IL-6, IL-15 or ERK/MAPK) signaling pathways. Upregulation of IL-6 and ERK/MAPK signaling could also directly impact the spermatogenesis process. NK-

kB and GM-CSF signaling could reduce the sperm count via apoptosis. However, spermatogonial proliferation and maintenance, regulated by EGF and FGF signaling

pathway, were significantly upregulated by ZIKV infection, which could also adversely impact the spermatogenesis process.

https://doi.org/10.1371/journal.pntd.0008335.g006
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Cell viability

Cell viability was determined using cell proliferation reagent WST-1 (Roche) according to the

manufacturer’s protocol. Briefly, HSerC cells were grown in 96 well plates and infected with

ZIKV at MOI = 3. Nine μl of WST-1 reagent was added to each well various days post infection

and incubated at 37˚C for 2 hours. Colorimetric changes were determined by photo-densitom-

eter and cell viability was calculated compared to time-matched non-infected wells. Each

experiment was done in 3 biological replicates with 5 technical replicates each time.

Protein extraction and quantification

Assessment of proteomic dysregulation was performed by Western blot and SOMAscan-deter-

mined on ZIKV-infected and time-matched mock-treated cells on Day 1, 3 and 5 post-infec-

tion (dpi). Cells were scraped from the culture vessels, washed 3 times in ice-cold PBS and

lysed by sonication in 60 μl MPER detergent, supplemented with 1× HALT Protease inhibitor

solution. Insoluble cellular components were removed by centrifugation at 14,000×g for 10

min at 4˚C. The concentrations of proteins in the clear supernatants were determined by BCA

Protein Assay (Pierce; Rockford, IL) and quantified using bovine serum albumin standards.

Immunoblotting

Protein concentrations from the cell lysates were measured as described above by BCA assay

and 20μg of protein were resolved in SDS-PAGE gels and transferred to 0.2μm nitrocellulose

membranes. 12% and 6% gels were used for separation of lower and higher molecular weight

proteins, respectively. Rabbit anti-PSMA2 (Cell Signaling, Cat. 2455), anti-THBS2 (Abcam,

Cat. ab84469), and anti–CST3 (Abcam, Cat. Ab109508), and mouse anti-ZIKV NS1 (BioFront

Technologies Cat. BF-1225-06), anti-caspase 3 (Cell Signaling Cat. 3G2), anti-STAT1 (Cell Sig-

naling, Cat. 9176S) and anti-Beta-Actin (Cell Signaling, Cat. 3700S) primary antibodies were

used to detect specific proteins. (HRP)-conjugated horse anti-mouse (Cell Signaling, Cat.

#7076) or anti-rabbit (Cell Signaling, Cat. #7074) secondary antibodies were used for detection

of the immune complexes. Protein bands were imaged with an Alpha Innotech FluorChemQ

MultiImage III after developed with ECL reagents. Band intensities were quantified with

Image J 1.50i (USA) and graphically presented by Graphpad Prism software (La Jolla, Califor-

nia, USA).

Photomicrography

ZIKV-infected and mock-treated HSerC cells were examined every alternate day from day 1 to

9 to observe cytopathic effects (CPE) of the virus infection with a Nikon TE-2000 inverted

microscope and photographs were taken at 200× magnification with a Canon-A700 digital

camera. Slight adjustments were made in brightness and contrast of the images in Power

point, which did not alter image context with respect to each other.

Immunofluorescent microscopy

HSerC cells were grown on spotted slides in Sertoli cell media at 37˚C for 24 hours, and

infected with ZIKV as previously described. Mock-infected cells were used as control. At 1, 3

and 5 dpi, both ZIKV-infected and mock cells were washed 5× with sterile 1× PBS and fixed

with 4% paraformaldehyde for 15min. Paraformaldehyde was removed from cells by 5× wash

with sterile 1× PBS. Cells were permeabilized with 0.1% TritonX-100 in PBS for 5 mins. 20 μl

of 3% bovine serum albumin (BSA) was used overnight at 4˚C for blocking. Cells were then

incubated with primary anti-ZIKV-NS1 antibody in 3% BSA overnight at 4˚C. After overnight
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incubation, cells were washed again 5× with sterile PBS and 0.2% Tween 20 (PBT) and incu-

bated for 60min with Alexa Fluor546-tagged anti-mouse secondary antibody for 20min.

Finally, cells were mounted with DAPI-containing mounting dye. Slides were imaged using a

Zeiss Axio Observer Z1 inverted fluorescence microscope.

SOMAscan analyses

A total of 18 (three biological replicates of each time point) cell lysate samples were collected

from mock- and ZIKV-infected HSerC at 1, 3 and 5 dpi. For SOMAscan analysis, the protein

concentrations were adjusted to 250 μg/ml. Proteomic analyses was performed on a SomaLo-

gics-licensed platform in the Manitoba Centre for Proteomics and Systems Biology, using a

SOMAscan version 1.3 platform capable of measuring 1307 proteins simultaneously from up

to 92 samples. During the SOMAscan assay, each biologic sample was mixed with SomaLogic’s

proprietary SOMAmers. Each of the SOMAmers has the capacity to selectively recognize and

bind to a specific human protein [28, 101]. After mixing and binding each sample in an indi-

vidual 96-well, the SOMAmers are washed, released, hybridized to DNA microarrays and

quantified [101, 102]. The expression values are generated as relative fluorescent units (RFU)

which are directly proportional to the amounts of target proteins in the initial samples, as con-

firmed by a standard curve generated for each protein-SOMAmer pair [28, 101].

Electric cell-substrate impedance sensing of ZIKV infections

Cell barrier integrity was tested by electrical impedance as previously described by Nickol et al.
[103]. Briefly, Vero and HSerC were added to 96-well ECIS plates (Applied Biosystems) and

rested at 32˚C/ 5% CO2 for 24 hours until confluent monolayers were formed. Cells were then

treated with media alone (mock-infected positive control), 1% Triton X-100 (negative control),

or with ZIKV at MOI of 0.3 or 3.0. Electrical impedance of the cultures was continually moni-

tored from 24 hours before treatment to 90 hours post-treatment. Values for each treatment

were determined from a minimum of 8 wells, and the HSerC were tested twice.

Inhibin B levels detection

HSerC were infected with ZIKV (MOI 3) and induced with 62.5ng/ml or 125ng/ml follicular

stimulating hormone (FSH) (Sigma-Aldrich, Canada, Cat. F4021). Mock-infected and FSH-

treated or untreated HSerC were used as control. Cell culture supernatants were collected after

48 hours post-infection and stored at -20˚C before analyzing. The inhibin B level was deter-

mined using manufacturers’ recommendations, inhibin-B ELISA kit (Sigma-Aldrich, Canada,

Cat. RAB0325). This assay has an inter-plate CV <15%, and intra-plate CV<10%, with mini-

mum detection limit of 2pg/ml (n = 3 assays). The fold difference of inhibin B expression was

determined by dividing by Mock-infected inhibin B concentration.

Statistical and bioinformatics analyses

Data from the 18 ZIKV-infected and time-matched mock samples were imported into Excel

and converted to Log2 values. Fold-changes of each of the proteins in each infected sample

were determined by comparing each to its time-matched mock sample. Students T-test (2

tails) and Z-score analyses were done to quantify the p-value from the fold-changes, as

described [104]. Average 1.3-fold and 1.5-fold dysregulation with p-value <0.05 were exam-

ined and cutoff of 1.3-fold was set for further analyses (S1 Table) by Ingenuity Pathway Analy-

sis (IPA) and PANTHER. Any protein with a fold-change value beyond the 1.3-fold cutoff, but

considered non-significant by T-test, was re-examined by Z-score analysis. The Z-scores from
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each replicate were determined, and cutoffs of� 1.96σ or� -1.96σ were considered signifi-

cant. At least two of the replicates had to have significant Z-score values of the same trend (e.g.

if up-regulated, two or more values must be>1.96σ, the 3rd replicate must have a Z-

score > 0.98σ, and the overall average must be� 1.96σ). P-values for these were calculated

from the average of the three Z-scores.

Supporting information

S1 Fig. Heat map of differentially expressed (fold change > 1.33 or < -1.33) proteins at 1, 3

and 5 days post ZIKV infection. Up- and down-regulated proteins are highlighted in red and

blue, respectively.

(PDF)

S2 Fig. Expression of significantly dysregulated proteins in molecular pathways at 1, 3 and

5 dpi. The datasets containing protein IDs, fold changes, and P-values were imported into

IPA, and interacting pathways assembled for differentially expressed proteins. Up- and down-

regulated proteins are indicated in red and green, respectively; gray were identified in this

study but not affected; colorless proteins interact with various proteins in the pathway but are

not recognized by the SOMA panel.

(PDF)

S3 Fig. IPA-generated molecular networks of dysregulated proteins at 3 and 5 dpi. The

datasets containing protein IDs, fold changes, and P-values were imported into the IPA soft-

ware, and interacting networks were assembled for differentially expressed proteins at 3 and 5

dpi. Up- and down-regulated proteins are indicated in red and green, respectively; gray pro-

teins denote those that were identified in this study but not dysregulated; colorless proteins

interact with various proteins in the pathway but were not recognized in our screening.

(PDF)

S4 Fig. Gene ontology (GO) analysis of up- and down-regulated proteins. Up- and down-

regulated proteins were analysed by PANTHER and GOTERM database separately, and their

associations to biological processes, molecular functions, and cellular components determined.

Up-regulated and down-regulated protein functions at 3 and 5 dpi are listed in a, b, c, and d

respectively.

(PDF)

S5 Fig. Cellular impact of the most highly dysregulated proteins (± Fold change > 5.0,

p� 0.05) in ZIKV-infected HSerC. The most affected cellular network predicted by IPA at 3

dpi, shown at (A) 3 dpi and at (B) 5 dpi. (C) Disease and functions predicted significantly dys-

regulated at 5 dpi by most dysregulated proteins. (D) List of most dysregulated proteins at 3

and 5 dpi.

(PDF)

S1 Table. List of proteins dysregulated at least 1.3-fold and significant by T-Test (p-

value < 0.05) or Z-score (� 1.96σ or� -1.96σ). dpi = days post infection, red = significantly

up-regulated; green = significantly down-regulated; purple = p value < 0.05. Table sorted first

by significantly up-regulated proteins at day 1 post-infection, then by those significantly

down-regulated at 1dpi; then by significantly up- and down-regulated at 3dpi; then by signifi-

cantly up- and down-regulated at 5dpi.

(XLSX)
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S2 Table. List of the most highly dysregulated IPA-determined "Diseases & Functions" at

3dpi and at 5dpi, with individual proteins assigned to each function depicted in red if sig-

nificantly up-regulated, or in green if significantly down-regulated. Table sorted by each

day, then according to default IPA score setting.

(XLSX)

S3 Table. List of IPA-predicted significantly activated or inhibited Sertoli cell "Diseases

and Functions" affected by ZIKV infection. Only those with predicted significantly affected

activation or inhibition are indicated, in red or green, respectively. Table sorted first by

whether Disease or Function activation state is decreased (in green) or increased (in red), then

by p-value.

(XLSX)

S4 Table. List of IPA-determined "Disease or Cellular Functions" significantly dysregu-

lated by ZIKV infection at 5 dpi. Only those with predicted significantly affected activation

or inhibition are indicated, in red or green, respectively. Table sorted first by Category name,

then by p-value, then by whether Disease or Function activation state is increased (in red) or

decreased (in green).

(XLSX)
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