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ABSTRACT Cross-sectional studies conducted with obese and control subjects have
suggested associations between gut microbiota alterations and obesity, but the links
with specific disease phenotypes and proofs of causality are still scarce. The present
study aimed to profile the gut microbiota of lean and obese children with and with-
out insulin resistance to characterize associations with specific obesity-related com-
plications and understand the role played in metabolic inflammation. Through mas-
sive sequencing of 16S rRNA gene amplicons and data analysis using a novel
permutation approach, we have detected decreased incidence of Blautia species, es-
pecially Blautia luti and B. wexlerae, in the gut microbiota of obese children, which
was even more pronounced in cases with both obesity and insulin resistance. There
was also a parallel increase in proinflammatory cytokines and chemokines (gamma
interferon [IFN-�], tumor necrosis factor alpha [TNF-�], and monocyte chemoattrac-
tant protein 1 [MCP-1]) in feces of obese children compared to those of lean ones.
B. luti and B. wexlerae were also shown to exert an anti-inflammatory effect in
peripheral blood mononuclear cell cultures in vitro, compared to non-obesity-
associated species. We suggest that the depletion of B. luti and B. wexlerae species
in the gut ecosystem may occur in cases of obesity and contribute to metabolic in-
flammation leading to insulin resistance.

IMPORTANCE Child obesity constitutes a risk factor for developing insulin resistance
which, if sustained, could lead to more severe conditions like type 2 diabetes (T2D)
in adulthood. Our study identified previously unknown species whose depletion
(Blautia luti and Blautia wexlerae) is associated with insulin resistance in obese indi-
viduals. Our results also indicate that these bacterial species might help to reduce
inflammation causally linked to obesity-related complications. Childhood is consid-
ered a window of opportunity to tackle obesity. These new findings provide, there-
fore, valuable information for the future design of microbiota-based strategies for
the early prevention of obesity-related complications.
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Obesity represents a major concern for public health because of its rising prevalence
and associated comorbidity (1–3). Childhood obesity is of special concern, as the

number of overweight children and adolescents has increased 10-fold in the last
40 years (4). Of these individuals, over 60% are expected to remain overweigh in early
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adulthood, increasing the rates of early obesity-associated morbidities and mortality (1,
5–7). Notwithstanding, childhood also represents a window of opportunity to reverse
these trends through more effective interventions that promote healthier lifestyles and,
thus, help prevent excessive weight gain and metabolic inflammation (3, 6).

Classically, obesity in children is the result of an imbalance between energy intake
and expenditure, mainly caused by a poor diet and sedentary lifestyle (8). Nonetheless,
the gut microbiota has been identified as an additional biological determinant of
obesity in recent years, based on findings of comprehensive studies with humans and
animal models (9–12). Although the set of microorganisms involved in weight gain and
adiposity has yet to be identified in detail, studies show that the obese phenotype can
be transmitted to lean individuals by transferring to them the gut microbiota of obese
individuals and, also, that the obesogenic features of the microbiota are modulated by
diet (12).

Obesity is a risk factor for the onset of insulin resistance (IR), a dysfunctional
condition of the glucose metabolism which often leads to pancreatic � cell failure,
finally triggering the onset of type 2 diabetes (T2D) (13). Gut microbiota profiling in
subjects with IR has outlined associations between certain microbial species and this
prediabetic condition (14). Evidence from translational studies also supports a role for
gut microbiota alterations in IR development, consistent with parallel alterations in
plasma metabolites known to be modulated by the gut microbiota (15). However,
conclusions about which specific bacterial species inhabiting the human gut are
responsible for disrupting glucose homeostasis are contradictory across human and
animal studies (14, 16–18). To address these issues, we aimed to acquire a better
understanding of the childhood microbiome and its association with metabolic com-
plications underlying obesity. Consequently, we have analyzed the gut microbiota
structure and the cytokine profile in obese children with and without IR and the
immune regulatory properties of bacterial species linked to metabolically healthy
phenotypes. The results obtained shed light on the role of gut microbes in immune-
mediated mechanisms leading to complications underpinning obesity in childhood.

RESULTS
Stratification of children as obese and with and without insulin resistance. The

anthropometric features and plasma biomarkers of clinical relevance for obesity and
insulin resistance of the subjects included in this study are shown in Table 1. The obese
children showed a higher body mass index (BMI) z-score according to the study group
classification. They also showed increases in fasting insulin levels and homeostasis
model assessment IR (HOMA-IR) indices compared to those of normal-weight children.

TABLE 1 Anthropometry and serum biochemistry of children included in this study

Parameter analyzeda Value for child group P value of statistical analysisb

Lean
(n � 16)

Obese
(n � 20)

Obese�IR
(n � 15) Lean vs obese Lean vs obese�IR Obese vs obese�IR

Age (yrs) 10.06 � 0.80 11.30 � 0.63 13.27 � 0.66 0.616 0.010 0.152
Sexc Boys, 12; girls, 4 Boys, 10; girls, 10 Boys, 7; girls, 8 0.236 0.329 1.000
BMI (z-score) 1.68 � 0.08 2.42 � 0.17 2.76 � 0.15 0.001 <0.001 0.140
HOMA-IRd 1.37 � 0.13 2.28 � 0.15 5.18 � 0.55 0.002 <0.001 <0.001
Glucose (mg/dl) 89.67 � 1.63 92.15 � 1.34 87.31 � 3.97 0.245 0.588 0.208
Insulin (mg/dl) 6.06 � 0.54 10.38 � 0.70 25.63 � 2.04 <0.001 <0.001 <0.001
Total cholesterol (mg/dl) 156.70 � 6.79 145.50 � 3.82 160.60 � 6.05 0.139 0.669 0.042
HDL cholesterol (mg/dl) 50.00 � 2.54 32.24 � 2.33 37.36 � 3.36 <0.001 0.005 0.207
LDL cholesterol (mg/dl) 89.83 � 7.69 88.00 � 7.21 64.57 � 11.89 0.865 0.202 0.233
Triglycerides (mg/dl) 57.17 � 9.08 78.33 � 8.39 89.21 � 6.68 0.118 0.014 0.362
aAll measures are expressed as means � SEMs. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
bP values resulting from pairwise comparison between groups using t test. The Kolmogorov-Smirnov test was used to test the normality of distribution. Skewed data
were log transformed for analysis. Statistical difference between pairs of groups was considered when P values were �0.05 (bold and underlined).

cStatistical comparison of boys and girls distribution between groups by chi-squared test with Yates’ continuity correction.
dHOMA-IR, homeostatic model assessment for insulin resistance, calculated as fasting [insulin levels (internatonal units per liter) � fasting glucose (millimoles per
liter)]/22.5.
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The cutoff for defining children as IR was set at a HOMA-IR index of �3.16 (19).
Accordingly, children classified as obese showed a lower HOMA-IR index than those
classified as obese with IR (obese�IR) (P � 0.001). We found no differences in the
concentration of fasting glucose in the whole cohort. Regarding the lipid profile,
high-density lipoprotein (HDL) cholesterol was notably decreased in both subgroups of
obese children, and total cholesterol, as well as triglyceride concentration, was greatly
increased in the obese�IR children.

Inflammatory markers are increased in feces of obese and insulin-resistant
children. The quantification of different proinflammatory cytokines and chemokines in
children’s stools is shown in Table 2. Obese children showed larger concentrations of
gamma interferon (IFN-�) and monocyte chemoattractant protein 1 (MCP-1) in stools,
regardless of IR status (Table 2). Strikingly, higher levels of tumor necrosis factor alpha
(TNF-�) were linked only to the IR condition of obese children (Table 2). No meaningful
changes in interleukin 6 (IL-6) concentrations were observed among the study groups.

Microbiota signatures are specific for obesity and obesity with insulin resis-
tance. The alpha diversity of the fecal microbiota did not reveal notable changes in the
number of species or their abundances, either between normal-weight and obese
children or between obese children with and without IR. The beta diversity analysis
using the Bray-Curtis dissimilarity index indicated that the structure of the fecal
microbiota of normal-weight children differed from that of obese ones (permutational
multivariate analysis of variance [PERMANOVA] � 2.08; P � 0.003) (Fig. 1). No meaning-
ful associations of microbiota profiles with age (PERMANOVA � 1.05; P � 0.361) or sex
(PERMANOVA � 0.82; P � 0.714) of children were intuited. A principal-coordinate anal-
ysis (PCoA) indicated that the multidimensional information compiled in principal
coordinate (PC) 1 seemed to discriminate the gut microbiota of normal-weight children
from that of obese children regardless of their IR status (P � 0.051); however, the
multivariate information compiled in the PC2 enabled us to discriminate the microbiota
of obese�IR children from that of the other two groups (P � 0.001), thus suggesting
the presence of microbial features specifically linked to this condition. To disclose the
distinctive features, we performed a nonparametric permutation-based test in a pair-
wise fashion. We retrieved a total of 7 operational taxonomic units (OTUs) that had a
significantly higher abundance in normal-weight children, whereas only 1 was more
abundant in the obese�IR group (Fig. 2). Most of the OTUs associated with the lean
phenotype in children were bacterial species belonging to the family Lachnospiraceae
of the phylum Firmicutes (6 out of 7). This was also the case for OTU266, but this was
found to be increased in obese�IR children. Five OTUs were identified at the genus
level using SINA aligner and the SILVA 16S reference database, and three of them were
identified as Blautia species (OTU13, OTU299, and OTU662). Further identifications at
the species level for OTUs related to Blautia were retrieved from BLAST-based compar-
isons against the NCBI 16S reference database and DADA2 algorithms using the
RefSeq�RDP database (see Materials and Methods). We determined that Blautia luti
(OTU13) and Blautia wexlerae (OTU299 and OTU662), as well as Eubacterium hallii

TABLE 2 Immune markers in stool samples of the study children

Marker analyzeda

Value for child group P value of statistical analysisb

Lean
(n � 16)

Obese
(n � 20)

Obese�IR
(n � 15) Lean vs obese Lean vs obese�IR Obese vs obese�IR

IL-6 17.8 (12.4–51.8) 22.2 (4.0–26.1) 26.4 (11.8–37.3) 0.226 0.925 0.149
IFN-� 28.5 (19.8–49.2) 192.5 (91.0–273.4) 103.8 (52.0–168.7) <0.001 0.007 0.055
TNF-� 9.7 (5.7–21.3) 7.8 (7.8–10.5) 33.7 (10.8–70.6) 0.902 0.019 0.004
MCP-1 7.8 (7.8–7.8) 35.9 (12.1–57.9) 21.75 (5.9–49.7) 0.003 0.103 0.427
aValues are expressed in nanograms of cytokine per gram of stool and as the medians of respective distributions accompanied by Q1 and Q3 boundaries within
parentheses.

bP values resulting from pairwise comparison between groups using Wilcoxon rank sum test. Statistical difference between pairs of groups was considered when
P values were �0.05 (bold and underlined). Multiple-testing correction was applied when more than one pairwise comparison was done at once
(Benjamini-Hochberg).
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(OTU680), were the species likely associated with normal-weight children. The perfor-
mance of our novel permutation-based approach was preliminarily evaluated by
comparing the differentially abundant OTUs predicted by LEfSe and DESeq2. We found
consensus signals among the three methods for 4 out of the 7 OTUs detected by our
approach (Table 3). In this way, we confirmed that the Blautia-associated OTUs (OTU13,
OTU299, and OTU662), as well as the Eubacterium hallii-associated OTU (OTU680), likely
constitute microbial species showing a reduced abundance in obese children.

Gut microbiota signatures correlate to inflammatory markers relevant for
obesity and IR. To identify the set of potential intestinal bacteria contributing to
obesity or to obesity with metabolic complications, namely, IR, we established corre-
lations between abundances of selected OTUs and fecal immune markers that discrim-
inate among the study groups, including MCP-1, IFN-�, or TNF-� (Fig. 3A and B). We
found that a total of three OTUs (OTU13, OTU98, and OTU662) exhibited significant
negative correlations with TNF-� values and that of these, OTU13 (B. luti; � � �0.37 and

FIG 1 Beta diversity of the gut microbiota profiles from normal weight and obese children. A principal-
coordinate analysis (PCoA) of dissimilarities among samples is shown, with marginal boxplots disclosing the
distribution of the two most informative principal coordinates (PC) of the multidimensional analysis. Blue
data points correspond to outliers. The color key for the scatter- and boxplots indicate the study groups of
children. PERMANOVA values � 2.08 and 1.68 (P � 0.005) for comparison using two-group (lean versus
obese) and three-group (lean versus obese versus obese�IR) configurations, respectively.
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P � 0.009) and OTU662 (B. wexlerae; � � �0.36 and P � 0.012) showed the strongest
correlations, suggesting that the higher their abundance, the lower the TNF-� levels.
The remaining OTU, OTU299, also identified as B. wexlerae, exhibited a similar trend
(� � �0.26 and P � 0.074). Moreover, we found that five OTUs negatively correlated
with IFN-� values. These were OTU13 (� � �32 and P � 0.023), OTU27 (� � �41 and

FIG 2 OTUs with differential abundances among child groups. A permutation-based test was performed between pairs
of groups to disclose taxonomic features associated with different conditions. Differential abundance was assumed when
corrected P values were �0.1 (FDR test). Respective P values supporting the biomarker discovery approach are shown
accordingly along with a color key for boxplots. Blue data points indicate outliers. Taxonomic identification of OTUs was
based on SINA aligner using default parameters; shown are reliable identifications based on the SILVA database with the
level of sequence identity (within paretheses) against their last common ancestor (lca). If genus was identified, we further
identified the OTU at the species level in a BLAST-based approach (top alignment score and length) against the NCBI 16S
reference database and classifier algorithms implemented in DADA2 with the combined RefSeq�RDP database. The
sequence identity is shown. f, family; g, genus.
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P � 0.004), OTU63 (� � �0.38 and P � 0.008), OTU662 (� � �0.33 and P � 0.022), and
OTU680 (E. hallii; � � �0.43 and P � 0.002). Overall, these findings are in agreement
with associations established between child groups and the gut microbiota signatures
reported previously, except for OTU662. Finally, we detected one negative correlation
between MCP-1 values and OTU63 abundance (� � �0.35 and P � 0.013).

Blautia spp. linked to normal-weight children show anti-inflammatory proper-
ties. An in vitro experiment was designed to provide further evidence of the role of
Blautia spp., which were abundant in normal-weight children but depleted in obese
children, as possible regulators of obesity-associated inflammation. We used the ratio
of IL-4 to IFN-� or TNF-� as an index of the anti-inflammatory response of peripheral
blood mononuclear cells (PBMCs) when exposed to different Blautia species, such as
Blautia luti DSM 14534 and Blautia wexlerae F15, associated with a healthy metabolic
phenotype in our observational study in children. The effects were compared to those
of a strain of the species Bacteroides vulgatus (see Materials and Methods), correspond-
ing to the identity of the OTU1 (SINA � Bacteroides 100%; BLAST � Bacteroides vulgatus
100%). This OTU was the most abundant in the children studied and show no differ-
ences among groups (P � 0.191 and false-discovery rate [FDR] � 1.0) and no correla-
tions with MCP-1, IFN-�, and TNF-� concentrations (� � 0.12 and P � 0.419, � � 0.24
and P � 0.086, and � � 0.14 and P � 0.342, respectively). Blautia species increased the
anti-inflammatory cytokine ratio compared to B. vulgatus BAC-CCC-2 (Fig. 3C). More-
over, most of differences established among groups were strongly influenced by
IL-4/IFN-� ratio (Fig. 3C).

DISCUSSION

This study has identified gut microbiota signatures underlying obesity and insulin
resistance, a critical metabolic dysfunction often present in obese children which also
represents a risk for the development of T2D in adulthood. Our study has also
established new functional links between the microbiota species depleted in obese
children and the increased intestinal inflammatory markers that could partly account
for insulin resistance.

Low-grade chronic inflammation is associated with obesity and causally linked to
the development of IR in these subjects, which may subsequently progress to chronic
metabolic disease, like T2D (20). Although adipose tissue is recognized as a major
contributor to inflammation and metabolic dysfunction during obesity, we now know
that this process affects different organs, including the muscle, liver, brain, and gut (21).
The intestinal microbes adapted to unhealthy diets are viewed as an additional source
of inflammatory signals that contribute to metabolic inflammation in obesity (22). Our
findings indicated that obese children, with or without IR, exhibited an elevated
intestinal inflammatory tone, supported by the accumulation of proinflammatory me-
diators in the intestine, such as the cytokines IFN-� and TNF-� and the chemokine
MCP-1. This is consistent with previous findings obtained in animal models of obesity
(21). Accordingly, when microbiota exposed to either high saturated fat or fish oil are
transferred to new recipients, it is found that the interactions between the unhealthy
diet and the gut microbiota exacerbate metabolic inflammation. Also, studies show that

TABLE 3 Permubiome performance against common microbiome biomarker discovery toolsa

Reference algorithm (no. of discriminated OTUs)

Permubiome OTUs (n � 8)

Detectedb Not detectedc P valued

LEfSe (25) 6 [5 � 1] (LDA � 3.38 � 0.38) 19 (LDA � 3.09 � 0.43) 0.147
DESeq2 (38) 4 [4 � 0] (log2 FC � 1.45 � 0.32) 34 (log2 FC � 1.62 � 1.71) 0.627
aConsensus OTUs detected were OTU13, OTU299, OTU662, and OTU680. LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; FC, fold
change.

bNumber of OTUs equally detected to be associated with lean and obese phenotypes by permubiome and the reference algorithms. Square brackets indicate those
associated with lean and obese conditions.

cNumber of OTUs detected to be associated with lean and obese phenotypes by reference algorithms but not by permubiome.
dP values resulting from pairwise comparison between scores of OTUs detected and not detected by permubiome using Student t test (normally distributed data). The
criterion used for selecting OTUs (P � 0.05) in LEfSe analysis was an LDA of �2, whereas absolute log2 FC was the criterion used in DESeq2.
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specifically microbially induced MCP-1 enhances macrophage accumulation in white
adipose tissue (WAT), promoting inflammation and insulin resistance, regardless of
obesity (23). This and previous studies also suggest that the inflammatory process,
resulting from the synergic role between a high-fat diet and diet-induced dysbiosis,
disrupts gut barrier integrity, facilitating the translocation of inflammatory bacterial
products (e.g., lipopolysaccharide [LPS]) to the systemic circulation and, for example,
boosting the serum’s ability to activate innate immunity receptors, like Toll-like recep-
tor 4 (TLR4) and cytokine gene expression, like Tnfa, in both adipocytes and macro-
phages (20, 23). It is well known that the cytokine TNF-� is directly involved in IR via the
impairment of insulin-mediated cell signaling in metabolic organs, such as adipose
tissue (24).

Furthermore, the inflammatory milieu of the obese intestine may also reflect im-
balances in immune cell populations with a proinflammatory profile, as shown in
animal studies (25), which participate in the immune cell traffic from the gut to other
lymphoid organs such as the white adipose tissue, triggering inflammation (21).

Despite manifold attempts made to identify the gut microbiota signatures predic-

FIG 3 Links between gut microbiota and inflammatory markers. (A) Spearman correlations between the OTUs selected and the proinflammatory markers
analyzed. The strongest correlations supported by larger � values are highlighted accordingly (positive are shaded blue and negative are shaded red). Asterisks
indicate correlation with corrected P values of �0.05. (B) Scatterplots of selected correlations between fecal cytokines and OTUs exhibiting top � values. The
axes were plotted as log-transformed data, and linear correlations (slope as red line) as well as confidence intervals (gray shadow) are drawn in all cases. (C)
Anti-inflammatory to proinflammatory cytokine ratios (IL-4/IFN-� and IL-4/TNF-� individually represented) detected upon exposure of PBMC cultures to different
bacterial stimuli in vitro. The botton barplot represent the sum of both cytokine ratios. Differences between the effects of different bacterial stimuli established
by one-way ANOVA with Bonferroni correction for multiple testing at a P value of �0.05 are shown in bar graphs.

Gut Microbiota in Childhood Obesity

March/April 2020 Volume 5 Issue 2 e00857-19 msystems.asm.org 7

https://msystems.asm.org


tive of obesity and T2D, the precise set of microorganisms contributing to or triggering
such conditions has not been identified as yet. It is also likely that there is not just one
single microbiota pattern linked to such complex conditions, and thus, we should
classify subjects according to more precise features of their metabolic phenotype. With
this purpose, we have used massive sequencing of V4-V5 amplicons of the bacterial 16S
rRNA gene to analyze the intestinal microbiota of lean and obese children with and
without IR. Overall, we found differences in gut microbial composition between lean
and obese children by using beta diversity metrics. Using a novel permutation-based
approach for microbiome biomarker discovery, we found differential abundances in
several OTUs associated predominantly with the metabolically healthy phenotype,
whereas only one OTU, lacking definite taxonomic identification, was associated with
the obese�IR phenotype. A common signature of the lean-child phenotype is that
most of the associated OTUs (6 out of the 7 OTUs) were classified as members of the
Lachnospiraceae family of Firmicutes. Moreover, three of them were taxonomically
identified as members of the genus Blautia and the species B. luti (OTU13) and B.
wexlerae (OTU299 and OTU662), which showed the strongest associations. It is note-
worthy that the difference in the reduced abundance of these OTUs increased from
lean to obese subjects and to obese�IR subjects, suggesting an association between
their depletion and metabolic phenotype deterioration. Indeed, B. wexlerae has previ-
ously been associated with a nonobese phenotype in adults (26), and a Japanese
population-level gut microbiota assessment negatively correlated Blautia genus abun-
dance with the visceral fat area, an adiposity biomarker for risk of cardiovascular and
metabolic disease (27). Remarkably, a clinical trial with T2D patients revealed that
combined treatment with metformin and a Chinese herbal formula improved the
glucose and lipid profile in T2D subjects concomitantly with an increase in Blautia
species (28). These results further support our predictions and provide evidence for the
potential role of Blautia species in the maintenance of a metabolically healthy pheno-
type and the management of obesity, IR, and T2D. To advance in our understanding of
the role these bacterial species play in obesity and IR, we characterized the potential
anti-inflammatory effects of two strains of B. luti and B. wexlerae. We observed that B.
wexlerae F15 reduced the ratio of IFN-� to IL-4 to a larger extent, while B. luti DSM
14534 seemed to reduce the ratio of TNF-� to IL-4 upon exposure to PBMCs instead,
compared to the effects of B. vulgatus BAC-CCC-2, another commensal species equally
present in all child groups. These findings suggest a mechanism whereby Blautia
species could contribute to maintaining glucose homeostasis (28). This could be
mediated by their ability to balance the proinflammatory and anti-inflammatory me-
diators of the immune response, whose dysregulation is well known to impair the
insulin signaling inside the cells (13, 24).

Blautia species (Clostridium cluster XIVa) are also well recognized as part of the
butyrate-producing bacteria of the intestinal microbiota. This is a bacterial metabolite
that could account for the beneficial roles of these bacteria in glucose metabolism and
obesity-associated inflammation (29, 30). Intriguingly, a recent report from the integra-
tive Human Microbiome Project Consortium (iHMP), which followed prediabetic indi-
viduals for 4 years, indicated that an abundance of Blautia genus negatively correlated
with hippuric acid levels and positively correlated with plasma glucose concentration
measured by insulin suppression test to determine IR (31). Similarly, Egshatyan and
coworkers also reported a correlation of Blautia genus abundance with altered glucose
tolerance (32). Although our results contradict those previously published, the former
studies only reported associations between Blautia species and glucose metabolic
dysfunction and did not support causation. Furthermore, differences depending on the
specific Blautia species involved could not be disregarded. For example, a proinflam-
matory response was attributed to other Blautia species, such as Blautia coccoides,
based on the secretion of TNF-� and IL-10 by PBMCs in vitro (33). In contrast, we
demonstrated that B. luti and B. wexlerae exerted anti-inflammatory effects on PBMCs.
These findings suggest that differences at the species level could lead to different
associations with healthy or impaired glucose metabolism in humans. Further studies
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are, therefore, warranted to investigate this hypothesis in depth using in vivo study
models in order to draw definitive conclusions about the potential and differential role
of Blautia species in the management of obesity and its metabolic complications. For
example, one of our previous intervention trials in overweight subjects indicates that
intake of a wheat bran extract enriched in arabinoxylans boosts the proportion of
Blautia species (34, 35), suggesting that it is possible to design diet-based interventions
to enrich the gut ecosystem with these bacterial species depleted in obese children. In
spite of this, preclinical and clinical intervention trials with B. luti and B. wexlerae strains
would be needed to definitively demonstrate their potential protective effect against
obesity and prediabetic states.

Conclusions. This study indicated that B. luti and B. wexlerae species could contrib-
ute to the maintenance of intestinal immune homeostasis in metabolically healthy
subjects and that their depletion is associated not only with obesity but also with
metabolic complications such as insulin resistance and related inflammatory markers.
This could help to inform future gut microbiota-based interventions applicable to
childhood, taking advantage of this window of opportunity for metabolic disease
prevention.

MATERIALS AND METHODS
Study subjects, sampling, and clinical assessments. Children were recruited between 2013 and

2014 at the outpatient clinic of the Dr. Peset University Hospital (Valencia, Spain). The study included 51
children (26 boys and 25 girls) between the ages of 5 and 17 years and of Caucasian race. Anthropometry
measurements (weight and height) were obtained using standardized clinical protocols. Thirty-five
subjects were obese, with a body mass index z-score of �2, and were attending the outpatient clinic of
the pediatrics service, while 16 were children with normal nutritional status from the local population
who were visiting primary care pediatricians for routine health check-ups and were unrelated to the
patients. Exclusion criteria included any known genetic disorder, syndrome, or disease that could
influence dietary intake, body composition and fat distribution, endocrine disorders, medication use, or
unusual dietary habits (e.g., vegetarianism). None of the children had chronic diseases or suffered from
inflammatory conditions, and they had not previously participated in a structured exercise or weight loss
program. The children were clinically evaluated to detect any acute disease or infectious illness. Written
informed consent was obtained from all parents, and verbal agreement witnessed and formally recorded
was obtained from all children. The study was approved by the Ethical Committee of the Dr. Peset
University Hospital.

Biochemical parameter assessment in blood from children. Blood samples were collected after
12-h fasting. Biochemical characterization tests using automated direct methods (Architect C16000;
Abbott Clinical Chemistry, Wiesbaden, Germany) were used to analyze serum glucose, insulin, total
cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides in
the central laboratory of the Dr. Peset University Hospital. The homeostasis model assessment index
(HOMA) was used as surrogate marker to determine IR by employing the following formula: fasting
insulin levels (international units per liter) � fasting glucose (millimoles/liter)/22.5. We defined insulin
resistance as an HOMA-IR index of �3.16 (19). According to this value, 16 obese children were considered
to have IR. A fecal sample was obtained the same day as analytical procedures for intestinal microbiota
assessment. Respective aliquots for fecal cytokine and gut microbiota assessments were immediately
prepared before freezing at – 80°C.

Inflammatory marker quantification in stools of children. The concentrations of soluble proin-
flammatory markers (the cytokines interleukin 6 [IL-6], gamma interferon [IFN-�], and tumor necrosis
factor alpha [TNF-�] and monocyte chemoattractant protein 1 [MCP-1]) on stool supernatants were
measured by enzyme-linked immunosorbent assay (ELISA) following the manufacturer’s instructions
(BioLegend, San Diego, CA). Briefly, 1 g of stool was diluted 1:10 (wt/vol) in sterile 1� phosphate-buffered
saline (PBS; pH 7.4) and homogenized by gentle vortexing, and supernatants were collected by
centrifugation at 4°C and 16,000 � g for 10 min. Stool supernatants were diluted 1:10 in 1� assay diluent
(BioLegend, San Diego, CA) and used for ELISAs (stool final dilution, 1:100 [wt/vol]). Data are expressed
in nanograms of cytokine per gram of stool. Values below the limit of detection for each ELISA were
adjusted to that limit.

Microbiota analysis. Approximately 150-mg stool aliquots were processed for DNA isolation using
the QIAamp DNA stool minikit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. A
diluted aliquot of the fecal DNA was prepared at 20 ng/�l in sterile and nuclease-free water for PCRs.
Approximately 20 ng of DNA (1 �l of diluted DNA) was used to amplify the V4-V5 hypervariable regions
from the bacterial 16S rRNA gene by a 25-cycle PCR program consisting of the following steps: 95°C for
15 s, 40°C for 30 s, and 72°C for 20 s. The PCR was performed using Phusion high-fidelity Taq polymerase
enzyme (Thermo Scientific) and 6-mer barcoded primers, which target a wide range of bacterial 16S rRNA
genes: S-d-Bact-0563-a-S-15 (AYTGGGYDTAAAGNG) and S-d-Bact-0907-a-A-20 (CCGTCAATTYMTTTRAG
TTT) (36). Dual-barcoded amplicons consisted of approximately 400-bp fragments purified from triplicate
reactions per sample using the Illustra GFX PCR DNA and gel band purification kit (GE Healthcare, Little
Chalfont, UK). Amplicon DNA was quantified using the Quant-iT PicoGreen double-stranded DNA
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(dsDNA) assay kit (Thermo Fisher Scientific, Waltham, MA). All samples were multiplexed by combining
equimolar quantities of amplicon DNA (150 ng per sample) and sequenced in an Illumina MiSeq platform
with 2 � 300 PE configuration (Eurofins Genomics, Ebersberg, Germany).

The raw amplicon DNA sequencing data were delivered in FASTQ files, and pair ends with quality
filtering were assembled using Flash software (37). Sample demultiplexing was carried out using the
sequence information from respective DNA barcodes and the Mothur v1.32.1 suite of analysis (38). After
barcode/primer removal, the sequences were processed for chimera detection using the Uchime
algorithm (39) and the reference set of 16S sequences from the SILVA database (40) (release 110)
implemented in the respective version of the Mothur package used. The taxonomy composition analysis
was assessed at the operational taxonomic unit (OTU) level with a rarefied subset of 12,000 sequences
per sample, set as the minimum coverage obtained, and randomly selected after multiple shuffling
(10,000�). The clustering of sequences was at 97% sequence identity using the uclust algorithm
implemented in USEARCH v8.0.1623 (41). Different alpha diversity descriptors such as Chao’s richness,
Simpson’s evenness, Simpson’s reciprocal index, and observed richness were evaluated on the OTU
abundance data using qiime v1.9.1 (42). Statistical appraisal of the above-mentioned parameters
between groups was estimated with Wilcoxon rank sum test in R v3.5. The microbial community structure and
changes between groups, regardless of phylogenetic relationships among OTUs, were evaluated through
beta diversity approaches using Bray-Curtis dissimilarity index followed by permutation-based statistical
assessment with PERMANOVA, all implemented in qiime v1.9.1. Lean/obese phenotype, age, and sex were
assessed as variables explaining microbial community structure. Graphical exploration of similarities between
groups was performed through the principal-coordinate analysis (PCoA) multidimensional scaling approach
also implemented in qiime v1.9.1.

Data analysis of 16S sequences for microbiota-based biomarker discovery. The differential
abundance of OTUs between pairs of groups was determined as the difference of the normalized DNA
read count medians observed between them, here referred to as Δij. Briefly, the significance of Δij for each
OTU feature was then evaluated using a permutation-based test (1,000�), thus allocating randomly all
observations per OTU into groups, and then the Δij was recalculated after every iteration. The distribution
of Δij across all permutations was observed to follow a normal distribution, and then z-scores were
calculated for the observed Δij and for those resulting from multiple permutations independently for
every OTU category. The cumulative probability for the observed Δij was then calculated taking into
account both sides of the distribution to distinguish over- and underrepresented OTUs in the case group
(lean). Finally, multiple-testing correction of the resulting P values was done using the Benjamini-
Hochberg method (or false-discovery rate [FDR]) over the hundreds of comparisons performed at once
for OTU categories selected to be more abundant (n � 320). The OTUs were considered to have
differential abundance between groups when corrected P values were �0.1. The above-described
algorithms and accompanying functions were built in R v3.6 and compiled in an R package called
permubiome (see “Availability of data and material” below). The SINA aligner (43) and BLAST-based
searching (top scoring) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using, respectively, the SILVA and NCBI
16S reference databases were used to assign the most probable taxonomy identity of the selected OTU
sequences. Briefly, the OTUs that could be identified by SINA aligner at the genus level were further
identified at the species level with the BLAST-based approach. Top hit selection was based on the
taxonomy score (TS): TS � log10(alignment score � sequence identity � alignment length). Additionally,
we used the classifier algorithm implemented in DADA2 v3.10 (44) with the combined RefSeq�RDP
reference database to further assess the OTU identities. A preliminary analysis was also carried out to
compare the performance of permubiome with those of two other conventional methods used for
biomarker discovery, LEfSe (45) and DESeq2 (46), to validate our methodology.

Immunomodulatory effects of bacterial isolates in vitro. The type strain Blautia luti DSM 14534
was obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
(https://www.dsmz.de). The other two bacterial strains (Blautia wexlerae F15 and Bacteroides vulgatus
BAC-CCC-2) were isolated from feces of the study donors. Briefly, fresh stool samples were collected, kept
under anaerobic conditions (AnaeroGen; Oxoid), and stored at 4°C until processing (up to a maximum of
12 h after collection). Feces were diluted 1:10 (wt/vol) in oxygen-depleted (reduced) 1� PBS containing
0.05% L-cysteine (rPBS), homogenized and serially diluted in rPBS, and plated in Gifu anaerobic agar
(GAM broth; Himedia) and in Schaedler agar (Scharlau, Spain). After 72 h of incubation at 37°C in an
anaerobic chamber (Bactron-300; Shel-lab), single colonies were isolated and identified by PCR using the
universal primers 27F (5=-AGA GTT TGA TCC TGG CTC AG-3=) and 1401-R (5=-CGG TGT GTA CAA GAC
CC-3=), which amplify the nearly full 16S rRNA gene. PCR products were cleaned with Illustra GFX PCR
DNA and gel band purification kit (GE Healthcare, Chicago, IL) and sequenced by Sanger technology in
an ABI 3730XL sequencer (STAB-VIDA, Caparica, Portugal). The taxonomy identity was established by
BLASTn comparisons (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against the nonredundant 16S NCBI data-
base. For immunological assays, the bacterial strains were growth in the most appropriate medium (GAM
broth for Blautia spp. and Shaedler broth for B. vulgatus) as described above. Afterwards, bacterial cells
were collected by centrifugation and washed with sterile rPBS buffer and aliquots containing 20%
glycerol were immediately frozen in liquid nitrogen until used.

PMBCs were isolated from whole blood of three healthy donors by density gradient centrifugation
using Ficoll (Ficoll Paque-Plus; Bioscience) according to the manufacturer’s instructions. PBMCs were then
washed in lysis buffer for red blood cells (Miltenyi Biotec, Bergisch Gladbach, Germany) and diluted in
Gibco RPMI 1640 (Thermo Fisher Scientific, Waltham, MA) containing 10% fetal calf serum, 100 �g/ml of
streptomycin (Sigma), 100 U/ml of penicillin (Sigma), and 4.5 g/liter of L-glutamine (Sigma). Cells were
maintained in a humidified atmosphere at 37°C with 5% CO2 at 105/ml in 24-well polystyrene plates
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(Corning, Edison, NY). Isolated PBMCs were stimulated with live bacterial suspensions at a final concen-
tration of 106 CFU/ml. Treatments with 1 �g/ml of bacterial LPS (Sigma) and sterile 1� PBS were used
as positive and negative controls, respectively, for production of proinflammatory cytokines. After 24 h
of stimulation, cells were collected and centrifuged for 5 min at 500 � g and 4°C and diluted at 106

cells/ml in fluorescence-activated cell sorting (FACS) buffer (sterile 1� PBS with 0.2% [wt/vol] bovine
serum albumin [BSA]) to characterize the immunomodulatory properties of the bacteria through flow
cytometry. Classic monocyte levels (CD14� and CD16�) were determined by staining cellular surface
markers with fluorescent dye-labeled mouse monoclonal antibodies: phycoerythrin (PE)-conjugated
anti-CD14 (130-110-577; Miltenyi Biotec, Bergisch Gladbach, Germany) and fluorescein isothiocyanate
(FITC)-conjugated anti-CD16 (130-106-761; Miltenyi Biotec). Additionally, intracellular cytokines were
stained in permeabilized and fixed cells (fixation/permeabilization solution kit; BD Bioscience) with
fluorescent dye-labeled mouse monoclonal antibodies: allophycocyanin (APC)-conjugated anti-IFN-�
(catalog no. 130-109-312; Miltenyi Biotec), PE-Vio615-conjugated anti-IL-4 (catalog no. 130-107-199;
Miltenyi Biotec), and PE-Vio770-conjugated anti-TNF-� (catalog no. 130-098-891; Miltenyi Biotec). Cells
were analyzed with BD LSR Fortessa (Becton, Dickinson Biosciences, Franklin Lakes, NJ). The data were
analyzed using BD FACS DIVA software v7.0 (Becton, Dickinson Biosciences). The response of PBMCs
under different bacterial stimuli was considered anti-inflammatory according to the ratio of cells
positively labeled with the key cytokines. These were IL-4/IFN-� (indicator of Th2/Th1 balance) and
IL-4/TNF-� (indicator of Th2 response/proinflammatory innate immune response). This approach has
been extensively used in previous studies to determine the balance between anti-inflammatory and
proinflammatory responses triggered by different stimuli (47–49). IL-4 was primarily considered as
anti-inflammatory cytokine instead of IL-10 since IL-10 production is under the control of IL-4 (50–52).

Statistical analyses. For blood biochemical assays, the P values resulting from pairwise comparison
between groups were obtained by using t test and Welch’s correction with prior evaluation of data with the
Kolmogorov-Smirnov test to test the normality of distributions. Fecal cytokine assessment was also subjected
to normality testing on respective cytokine data prior to comparisons. Consequently, Wilcoxon rank sum
(unpaired) test was used to evaluate differences between groups, with Benjamini-Hochberg correction when
multiple comparisons were made. Correlations among normalized DNA read counts of differentially abundant
OTUs and cytokine concentrations in all samples analyzed were performed by estimating the Spearman’s rho
(�) parameter. Differences in the cytokine responses of PBMCs obtained from the three different donors
against the bacterial strains were estimated by one-way ANOVA with Bonferroni correction.

Availability of data and material. The raw data set of demultiplexed fastq sequences was
submitted to the European Nucleotide Archive (ENA), and they can be freely accessed under project
number PRJEB37005. The functions for the biomarker discovery approach were compiled with R v3.6 into
the package called permubiome, which is distributed under the GPL-3 license and freely downloaded
from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/ or from https://github
.com/alfbenpa/permubiome. Partial 16S rRNA sequences obtained and assembled from B. vulgatus
BAC-CCC-2 and B. wexlerae F15 isolates are publicly available at the ENA (Bioproject PRJEB32485) under
accession numbers LR590078 and LR590079, respectively.
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