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Gut-derived lipopolysaccharide (LPS) leaking through the dysfunctional intestinal barrier
contributes to the onset of non-alcoholic steatohepatitis (NASH) by triggering
inflammation in the liver. In the present study, a combination consisting of Atractylodes
macrocephala polysaccharide (A), chlorogenic acid (C), and geniposide (G) (together,
ACG), was shown to ameliorate NASH in mice and reduce hepatic LPS signaling and
endotoxemia without decreasing the abundance of identified Gram-negative bacteria
through restoring the intestinal tight junctions. Our data indicated that inhibition of LPS gut
leakage by the ACG combination contributed to its amelioration of NASH.

Keywords: Atractylodes macrocephala polysaccharide, chlorogenic acid, geniposide, non-alcoholic steatohepatitis,
lipopolysaccharide, intestinal tight junctions
1 INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the subject of increasing concern not only in clinical
practice but also in the basic research field because of its high global prevalence and close association
with metabolic comorbidities including obesity, diabetes mellitus, and cardiovascular disease. In the
wide spectrum of NAFLD histological features, non-alcoholic steatohepatitis (NASH) is an
important pathological stage bridging steatosis to fibrosis (G.B.D. Mortality, 2016). Many drugs
Abbreviations: ACG formula, Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide; ALT, alanine
aminotransferase; cDNA, complementary DNA; ELISA, enzyme-linked immunosorbent assay; GABA, gamma-amino butyric
acid; HFD, high-fat diet; LBP, lipopolysaccharide-binding protein; IL-1b, interleukin-1b; LPS, lipopolysaccharide; MyD88,
myeloid differentiation primary response 88; NaB, sodium butyrate; NAFLD, non-alcoholic fatty liver disease; NASH, non-
alcoholic steatohepatitis; NAS, NAFLD activity score; PCoA, principal coordinates analysis; PCR, polymerase chain reaction;
SCFAs, short-chain fatty acids; TG, triglyceride; TNF-a, tumor necrosis factor–a; UPGMA, unweighted pair group method
with arithmetic mean.

gy | www.frontiersin.org July 2022 | Volume 12 | Article 8275161

https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.827516/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:pengjinghua2004@163.com
mailto:yyhuliver@163.com
https://doi.org/10.3389/fcimb.2022.827516
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.827516
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.827516&domain=pdf&date_stamp=2022-07-05


Leng et al. ACG Inhibits Lipopolysaccharide Gut Leakage
for NASH are undergoing clinical trials, including peroxisome
proliferator-activated receptor agonists, mitochondrial pyruvate
carrier inhibitor, ketohexokinase inhibitor, farnesoid X receptor
agonist, liver X receptor alpha inhibitor, fibroblast growth factor
analogs, glucagon-like peptide and glucose-dependent
insulinotropic peptide receptor analogs or agonists, thyroid
hormone receptor–selective agonist, fatty acid synthesis
enzyme inhibitors, glucocorticoid receptor antagonist, and
growth hormone releasing hormone analog (Negi et al., 2022).
However, so far, only pioglitazone and vitamin E were
recommended to treat biopsy-proven NASH (Chalasani et al.,
2018), due to the undisclosed endpoints of these clinical trials.
Meanwhile, the side effects also limited the use of these drugs.

In China, traditional Chinese medicine is considered as an
important alternative strategy for the treatment of NASH. The
Branch of Gastrointestinal Diseases, China Association of
Chinese Medicine, has published an expert consensus on
traditional Chinese medicine diagnosis and treatment of
NAFLD and recommended traditional Chinese medicinal
herbs and treatment principles for NAFLD ((Branch of
Gastrointestinal Diseases China Association of Chinese
Medicine, 2017). We previously screened many active
components of traditional Chinese herbs on NAFLD in mice
induced by a high-fat diet (HFD) and obtained a combination
consisting of Atractylodes macrocephala polysaccharide (A,
266.67 mg/kg body weight), chlorogenic acid (C, 3.3 mg/kg
body weight), and geniposide (G, 45 mg/kg body weight)
(Meng et al., 2016). Atractylodes macrocephala polysaccharide
is the primary component extracted from Atractylodis
Macrocephalae Rhizoma, which was traditionally used to
improve the function of the digestive system and is recorded in
“Compendium of Materia Medica” (Bencao Gangmu), a
pharmaceutical monograph written in the Qing dynasty of
ancient China. Chlorogenic acid and geniposide are derived
from Yin-Chen-Hao Tang, which was traditionally used to
reduce heat and dampness and has been demonstrated to
protect hepatocytes (Dong et al., 2012). ACG combination was
found to ameliorate hepatic lipid accumulation and
inflammatory infiltration significantly (Meng et al., 2016).

As the role of gut microbiota and intestinal barrier dysfunction
in the onset of NASH are increasingly recognized, the gut-derived
lipopolysaccharide (LPS) has been demonstrated to participate in
the pathogenesis of NASH (Dai and Wang, 2015). In the present
study, the effect of the ACG combination on NASH was evaluated
and its potential acting mechanisms on hepatic inflammation
caused by gut-derived LPS was investigated. Sodium butyrate
(NaB) was used as the positive control drug, since it has been
shown to protect intestinal tight junctions (Wang et al., 2012) and
improve steatohepatitis (Zhou et al., 2017).
2 MATERIALS AND METHODS

2.1 Material
Atractylodes macrocephala polysaccharide, chlorogenic acid
{International Union of Pure and Applied Chemistry (IUPAC)
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name: (1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-
enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid;
purity, >98%}, and geniposide {IUPAC name: methyl
(1S,4aS,7aS)-7-(hydroxymethyl)-1-[(2S,3R,4S,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-
tetrahydrocyclopenta[c]pyran-4-carboxylate; purity, >98%} were
purchased from Shanghai Winherb Medical Technology Co.,
Ltd. (Shanghai, China). The botanical names have been updated
according to The Plant List database (http://www.
theplantlist.org).

2.2 Preliminary Chemical Analysis of
Atractylodes macrocephala
Polysaccharide
As described previously (Saha and Brewer, 1994), Atractylodes
macrocephala polysaccharide was analyzed to contain 73.64%
total carbohydrate (Supplementary Table 1, Supplementary
Figure 1). Gas chromatograph–mass spectrometer (Thermo
Fisher Scientific, Inc., FL, USA) was employed to analyze the
carbohydrate composition of Atractylodes macrocephala
polysaccharide in accordance with the protocol, which showed
5.76% arabinose and 94.24% glucose (Supplementary Figure 2).

2.3 Study Setting
Male C57BL/6 mice (6 weeks old; Shanghai Experimental
Animal Center of Chinese Academy of Sciences, Shanghai,
China) were randomly divided into control (n = 9, control
diet, D12450B, 10% kcal from fat; Research Diets, Inc., NJ,
USA), HFD (n = 9, D12492, 60% kcal from fat; Research Diets,
Inc., NJ, USA), ACG (n = 9, fed with HFD), and NaB (n = 9, fed
with HFD) groups. At the beginning of the 13th week, mice in
ACG and NaB groups were, respectively, administrated with the
ACG combination (Atractylodes macrocephala polysaccharide,
266.67 mg/kg body weight; chlorogenic acid, 3.3 mg/kg body
weight; and geniposide, 45 mg/kg body weight, daily) (Meng
et al., 2016) and NaB (200 mg/kg body weight daily; Sigma-
Aldrich, USA) (Zhou et al., 2017) intragastrically for 4 weeks.
The others were administrated with double distilled water. At the
end of the 16th week, the blood from the caudal vena cava, liver,
and colon tissue and the colonic feces were harvested for assay.
All animals received humane care and the animal study protocols
were approved by the animal studies ethics committee of the
Shanghai University of Traditional Chinese Medicine.

2.4 Histopathology Examination
The histological changes were illustrated via hematoxylin and
eosin staining (Nanjing Jiancheng Institute of Bio Engineering,
Inc., Nanjing, China). The NAFLD activity score (NAS) system
was employed to evaluate hepatic histology, and NAS of > 5 is
diagnosed as NASH (Supplementary Table 2) (Kleiner et al.,
2005). The colonic histological injury was evaluated by the
parameters including epithelial cell injury/loss, mucin (goblet
cell) loss, mucosal edema, and the degree of inflammatory cells
within the lamina propria and in the epithelial layer
(intraepithelial lymphocytes) (Keshavarzian et al., 2001). The
hepatic collagen was visualized by Sirius Red staining. The lipid
July 2022 | Volume 12 | Article 827516
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droplets in hepatocyte were visualized via Oil Red staining
(Sigma, MO, USA) on frozen tissue.

2.5 Alanine Aminotransferase and
Triglyceride Assays
The assay kits of alanine aminotransferase (ALT) (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) and
triglyceride (TG) (Dongou Diagnostic Products Co., Ltd.,
Zhejiang, China) were used to determine ALT activity in the
plasma and hepatic TG content according to the instructions.

2.6 Real-Time Polymerase Chain Reaction
Total RNA was extracted from the liver tissue (Total RNA
Extractor, Sangon Biotech, Inc., Shanghai, China) and then
reversely transcribed into complementary DNA (cDNA)
(iScript™ cDNA Synthesis Kits, Bio-Rad, CA, USA). With the
special primers (Supplementary Table 3) and commercial kit
(TB Green™ Premix Ex Taq™, TaKaRa Bio, Inc., Japan), real-
time polymerase chain reaction (PCR) was conducted to detect
mRNA expression of hepatic collagen I, IV, CD14, and myeloid
differentiation primary response 88 (MyD88) (Applied
Biosystems ViiA7) (Thermo Fisher Scientific, CA, USA). The
expression of target gene was calculated by the delta-delta Ct
method and presented as the fold changes relative to control.

2.7 Assay for LPS and D-Lactic Acid
Content
The blood samples collected from the caudal vena cava in
pyrogen-free and heparin-pretreated tubes were centrifuged
(500g, 15 min, 4°C) to obtain plasma. LPS content was
measured by a Pyrochrome Limulus Amebocyte Lysate kit
(Associates of Cape Cod, East Falmouth, MA). The PicoProbe
D-Lactate Assay Kit (Fluorometric) (ab174096, Abcam, MA,
USA) was employed to measure D-lactic acid in the plasma.

2.8 Immunofluorescence Staining
The immunofluorescence staining of hepatic F4/80, colonic ZO-
1, and Occludin was conducted as described previously (Peng
et al., 2018). The primary and secondary antibodies were listed in
Supplementary Table 4. The fluorescence signal of target
protein was visualized and observed under laser scanning
confoca l microscope (OLYMPUS-FV10i , Olympus
Corporation, Tokyo, Japan).

2.9 Enzyme-Linked Immunosorbent Assay
Commercial enzyme-linked immunosorbent assay (ELISA) kits
were used for assay of LPS-binding protein (LBP) (CKM043, Cell
Sciences, Inc., MA, USA), tumor necrosis factor (TNF)–a
(MBS49535, MyBioSource, Inc., CA, USA), and interleukin
(IL)–1b (MBS036031, MyBioSource, Inc., CA, USA) as
described previously (Peng et al., 2018).

2.10 Gut Microbiota Analysis
The composition of gut microbiota was analyzed by sequencing of
bacterial 16S rRNA (V3–V4 region) in colonic feces, which was a
contract service offered by Shanghai OE Biotech. Co., Ltd.
(Shanghai, China). The total genomic DNA of gut microbiota was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
extracted and purified according to the previous protocol (Leng
et al., 2020). The PCR amplification of V3–V4 variable regions of
16S rRNA genes was conducted with universal primers (343F: 5′-
TACGGRAGGCAGCAG-3′; 798R: 5′-AGGGTATCTAATCCT-
3′). Please find the dataset at https://data.mendeley.com/datasets/
fzfnyxn5rm/1. As described previously (Leng et al., 2020), the same
operational taxonomic units (OTUs) were consisted of valid tags
with 97% similarity via Vsearch software (Edgar et al., 2011). OTU
was annotated and blasted against Silva database version 123 (Quast
et al., 2013) by using Ribosomal Database Project (RDP) classifier
(confidence threshold was 70%).

Quantitative Insights Into Microbial Ecology (QIIME)
software package was employed to analyze alpha diversity
including Chao, Shannon–Wiener, Simpson, and Good’s
coverage index. Beta-diversity was measured via Bray–Curtis
distance matrix and then build principal coordinates analysis
(PCoA) plots with QIIME (1.8.0). The distance among the
samples was calculated with the unweighted pair group
method with arithmetic mean (UPGMA) clustering method.
Analysis of similarities (ANOSIM) was performed to identify
the difference of microbiota composition among the groups.

2.11 Western Blot Analysis
The protein expression of tight junctions including ZO-1,
Occludin, and Claudin-1 in the colon tissue was detected via
Western blot analysis as described previously (Peng et al., 2009).
The primary and fluorescence-tagged secondary antibodies were
summarized in Supplementary Table 4. The fluorescent signal
of target protein was obtained via scanning the membranes by
Odyssey quantitative Western blot near-infrared system (LI-
COR Biosciences, NE, USA), and the intensity of target band
was calculated by using Odyssey application software version 3.0
(LI-COR Biosciences, NE, USA) and corrected with the intensity
of b-actin. Data were represented as the fold changes relative
to control.

2.12 Statistical Analysis
After analysis of variance test, the Student’s t-test was employed
to analyze the statistical significance between two groups. Data
were expressed as mean ± standard deviation. The Kruskal–
Wallis H-test was employed to analyze the statistic difference
among more than two groups for the non-parametric data.
Significance was accepted at the level of P < 0.05. The data of
16S sequencing were analyzed by bioinformatics methods
mentioned in Section 2.10.
3 RESULTS

3.1 ACG Combination Alleviated NASH
Induced by HFD
Obvious steatosis, ballooning, and inflammation were observed in
mice in the HFD group (Figures 1A, B). The median of NAS
increased up to 7 in the HFD group (p < 0.01, vs. control),
which indicated NASH had been established (Figure 1E).
Consistently, body weight, serum ALT, and hepatic TG all
July 2022 | Volume 12 | Article 827516
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increased (p < 0.01, vs. control) in the HFD group (Figures 1D, E).
With treatment with ACG or NaB, the pathological changes in the
liver including steatosis, ballooning, and inflammation were
ameliorated (Figures 1A, B). The median of NAS in the ACG and
NaB group decreased to 1, which indicated that NASH induced by
HFD was alleviated by ACG or NaB treatment (p < 0.01, vs. HFD)
(Figure 1E). Simultaneously, bodyweight (p < 0.05, vs. HFD), serum
ALT (p < 0.05, vs. HFD), and hepatic TG (p < 0.01, vs. HFD) all
decreased with the administration of ACG or NaB compared with
those in the HFD group (Figures 1D, E).

With HFD feeding for 16 weeks, mild fibrosis was observed in
the perisinus area (Figure 1C), which was consistent with the
increased mRNA expression of collagen I and IV (p < 0.01, vs.
control) in the HFD group (Figure 1F). In Sirius Red–stained
sections, the difference of fibrosis was not obvious between the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
ACG- or NaB-treated group and the HFD group (Figure 1C), but
the mRNA expression of collagen I and IV both decreased (p < 0.01,
vs. HFD) with ACG or NaB administration (Figure 1F).

3.2 ACG Combination Ameliorated LPS
Signaling in the Liver and Endotoxemia
Induced by HFD
In theHFDgroup, theLPS level in theplasma increased(p<0.01, vs.
control) accompanied with more Kupffer cells infiltration in the
liver tissue visualized by the stronger positive- staining of F4/80
(Figures 2A, B). As expected, the hepatic LBP content (p < 0.01, vs.
control), the mRNA expression of CD14 and MyD88 (p < 0.05, vs.
control), as well as the hepatic IL-1b and TNF-a content (p < 0.01,
vs. control) (Figure2C) increased in theHFDgroupcomparedwith
that in the control.
A

B

D

E F

C

FIGURE 1 | Effects of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination on non-alcoholic steatohepatitis induced by high-fat
diet. (A) Hematoxylin and eosin staining of liver tissue (×200 magnification). (B) Oil Red staining of liver tissue (for visualization of lipid droplets, ×200 magnification). (C)
Sirius Red staining of liver tissue (for visualization of collagen, ×100 magnification). (D) Body weight, ALT activity in the plasma, and hepatic TG content. (E) NAFLD activity
score. Data represented the median of groups and individual NAS of samples. (F) Hepatic mRNA expression of collagen I and collagen IV. CTR, control, HFD, high-fat
diet; ACG, combination consisting of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide; NaB, sodium butyrate; NAFLD, non-alcoholic fatty
liver disease. *p < 0.05 and **p < 0.01.
July 2022 | Volume 12 | Article 827516
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With the treatmentwithACGorNaB, endotoxemiaameliorated
(p < 0.05, ACG vs. HFD, p < 0.01, NaB vs. HFD), and rarer positive
stainingofF4/80was observed in the liver.At the same time,hepatic
LBP (p < 0.01, vs.HFD),mRNAexpression ofCD14 andMyD88 (p
< 0.05, vs. HFD), and hepatic TNF-a (p < 0.01, vs. HFD) and IL-1b
(p < 0.01, ACGvs. HFD, p < 0.05, NaB vs. HFD)were all lower than
in the HFD group. (Figures 2B, C).

3.3 ACG Combination Changed the
Community Structure of Gut Microbiota
Without Decreasing Relative Abundance of
Gram-Negative Bacteria in NASH
To determine whether ACG treatment reduced the abundance of
Gram-negative bacteria, the source of LPS, in the intestine, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
community structure of gut microbiota was assayed. The alpha
diversity of gut microbiota illustrated by Chao 1, observed
species, Simpson, and Shannon index indicated less species
diversity in samples of the ACG group than in the HFD and
control groups (Supplementary Table 5). The sequencing depth
covered rare new phylotypes and most of the diversity, which
was supported by Good’s coverage estimator and Specaccum
species accumulation curve (Supplementary Figure 3).

With Bray–Curtis–based PCoA, three distinct clusters of
microbiota composition were observed (Figure 3A). It was
intuitively visualized by the UPGMA clustering analysis that most
samplesof theHFDandNaBgroupswere clustered together and far
from that of the control and ACG group (Figure 3B). Although
ACG samples were clustered with one HFD sample, a significant
A

B

C

FIGURE 2 | Effects of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination on lipopolysaccharide signaling and endotoxemia in
non-alcoholic steatohepatitis induced by high-fat diet. (A) Immunofluorescence staining for F4/80 in the liver tissue (×600 magnification). (B) The LPS level in the plasma,
the hepatic LBP content, and the mRNA expression of CD14 and MyD88 in the liver tissue. (C) The hepatic content of IL-1b and TNF-a. CTR, control; HFD, high-fat diet;
ACG, combination consisting of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide; NaB, sodium butyrate; LPS, lipopolysaccharide; LBP,
lipopolysaccharide-binding protein; IL-1b, interleukin-1b; TNF-a, tumor necrosis factor–a. *p < 0.05 and **p < 0.01.
July 2022 | Volume 12 | Article 827516
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difference between the HFD and ACG groups was detected (R
statistic = 0.75; ANOSIM, 999 permutations; P = 0.001).

Compared with the control group, the relative abundance of
19 identified genera was statistically changed by HFD feeding (p
< 0.05), including one genus in phylum of Actinobacteria, two in
Bacteroidetes and Proteobacteria, respectively, and 14 genera in
Firmicutes (Figure 3C). With the treatment with the ACG
combination, the relative abundance of the seven identified
genera changed compared with that of the HFD group (p <
0.05), in which the decreased relative abundance of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Erysipelatoclostridium and Jeotgalicoccus in the HFD group was
restored in the ACG group (Figure 3C). However, with the NaB
treatment, no obvious difference in the relative abundance of
genera was observed compared with that of the HFD group (p >
0.05) (Figure 3C).

To investigate whether regulation of the composition of gut
microbiota by the ACG combination contributed to its inhibition
of gut leakage of LPS, the relative abundance of the Gram-
negative bacteria was analyzed. In the HFD group, the relative
abundance of identified Gram-negative genera was increased but
A B

D

E

C

FIGURE 3 | Effects of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination on the community construction of gut microbiota in
non-alcoholic steatohepatitis induced by high-fat diet. The diversity of gut microbiota was analyzed by sequencing of bacterial 16S rRNA (V3–V4 region). (A) Bray–Curtis–
based principal coordinates analysis (PCoA) analysis of the gut microbiota composition. (B) The unweighted pair group method with arithmetic mean (UPGMA) clustering
of the gut microbiota. (C) The relative abundance of genus in the gut microbiota. •, more abundant; ○, less abundant. (D) The average phylum distribution of the gut
microbiota. The information of Gram staining of bacteria was identified on the NIBC database of taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy/). (E) Relative
abundance of Gram-negative bacteria in gut microbiota. CTR, control; HFD, high-fat diet; ACG, combination consisting of Atractylodes macrocephala polysaccharide,
chlorogenic acid, and geniposide; NaB, sodium butyrate.
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not statistically significant compared with that in the control
group. However, in the ACG group, the relative abundance of
identified Gram-negative genera did not decrease significantly
compared with that in the HFD group, which indicated that
other mechanisms participated in the amelioration of
endotoxemia. (Figures 3D, E; Supplementary Table 6).
3.4 ACG Combination Restored the Protein
Expression of Intestinal Tight Junction
in NASH
With HFD feeding, few pathological changes were found in the
colon under the light microscope, but the protein expression of
tight junctions including ZO-1 and Occludin was obviously
downregulated (p < 0.05) (Figures 4A, C). The protein
expression of Claudin-1 in the colon tissue was not different
among groups (Figures 4A, C). With the treatment of the ACG
combination (p < 0.01, vs. HFD) or NaB (p < 0.05, vs. HFD), ZO-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
1 and Occludin protein in the colon tissue was restored, which
indicated that the inhibition on LPS gut leakage by the ACG
combination or NaB was probably associated with the protection
on the intestinal barrier function (Figures 4A, C). Consistently,
the marker of gut leakage, D-lactic acid in the plasma increased
in the HFD group and was inhibited by the ACG or NaB
treatment (Figure 4B).
4 DISCUSSION

The causal role of intestinal microbiota in NAFLD has been
demonstrated. Transplantation of the gut microbiota of NAFLD
mice to the germ-free mice caused steatosis in the liver tissue (Le
Roy et al., 2013). A mixture of Streptococcus thermophilus and
several species of Lactobacillus and Bifidobacterium improved
the liver histology and serum ALT and reduce the hepatic
content of fatty acid in ob/ob mice (Li et al., 2003).
A

B

C

FIGURE 4 | Effects of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination on tight junction protein expression in the colon
tissue and D-lactic acid in the plasma in non-alcoholic steatohepatitis induced by high-fat diet. (A) Protein expression of ZO-1, Occludin, and Claudin-1 in the colon
tissue detected by Western blot and the intensity analysis of target band. The expression of target proteins were corrected by b-actin and represented as the fold
changes relative to control. (B) Immunofluorescence staining of ZO-1 and Occludin in the colon (×600 magnification). White arrow points out the tight junction
disruption. (C) D-lactic acid content in the plasma. CTR, control; HFD, high-fat diet; ACG, combination consisting of Atractylodes macrocephala polysaccharide,
chlorogenic acid, and geniposide; NaB, sodium butyrate. *p < 0.05 and **p < 0.01.
July 2022 | Volume 12 | Article 827516

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Leng et al. ACG Inhibits Lipopolysaccharide Gut Leakage
In our study, with HFD feeding, the community structure of
intestinal microbiota was obviously changed and accompanied by
NASH. Compared with the control group, the relative abundance of
generaBacteroides, Peptococcus, Intestinibacter, andRomboutsia and
members of family Lachnospiraceae (Lachnospiraceae_UCG_006,
Lachnospiraceae_UCG_008, and Roseburia) and Ruminococcaceae
(Ruminococcaceae_UCG_010) were upregulated with HFD feeding.
The functions of these bacteria have been reported previously except
genera Intestinibacter. Genus Bacteroides, Gram-negative, produces
branched-chain amino acid (Canfora et al., 2019), which is correlated
toobesity and insulin resistance in animal andhumanmodels (Lynch
and Adams, 2014; Moran-Ramos et al., 2017). Bacteroides express
gadB/gadCgene codingGamma-aminobutyric acid (GABA) (Yunes
et al., 2016),whichwas reported tobehigher in thebrainofpatients of
type 2diabetes (Farzi et al., 2019).GenusPeptococcus ferments amino
acids to produce polyamines (Canfora et al., 2019), which improve
glucose homeostasis and insulin sensitivity and ameliorate obesity in
mouse models (Ramos-Molina et al., 2019). However, mice in the
HFD group were still insulin-resistant (Supplementary Figure 4A)
with much higher fasting glucose and insulin levels compared with
those in the control group, which indicated that this relatively
abundant genus Peptococcus (the relative abundance was around
0.5%) in the HFD group was not sufficient to defend against the
phenotype induced by HFD. Genus Romboutsia is beneficial and
contains fermentative bacteria (Hasan et al., 2018). The
Lachnospiraceae and Ruminococcaceae family contains protective
gut commensal strains (Sanders et al., 2019), producing short-chain
fatty acids (SCFAs) (Canfora et al., 2019) to provide energy for
enterocytes locally and maintain theintegrity of the intestinal
epithelial barrier (Kaiko et al., 2016), whereas the Lachnospiraceae
family also contains a strain that significantly increases fasting blood
glucose in colonized germ-free ob/ob mice (Kameyama and
Itoh, 2014).

On the other hand, compared with the control group, the relative
abundance of genera Allobaculum, Turicibacter, Parasutterella,
Enterobacter , Sporosarcina , Bacillus , Parabacteroides ,
Bifidobacterium, Erysipelatoclostridium, and Jeotgalicoccus and
members of the Lachnospiraceae family (Lachnospiraceae_
NK4A136_group) were downregulated by HFD feeding. Genus
Allobaculum (Zhang et al., 2015) and Turicibacter (Bosshard et al.,
2002) and members of the Lachnospiraceae family (Bajaj, 2019)
produce SCFAs (Bosshard et al., 2002; Teixeira et al., 2018). Genera
Sporosarcina (PriyodipandBalaji, 2019)andBacillus (Bajaj, 2019) are
potential probiotics. Bifidobacterium is probiotics (Stadlbauer et al.,
2008),which isassociatedwithameliorationofNASH(Malaguarnera
et al., 2012).Parabacteroides (Yunes et al., 2016) andBifidobacterium
(Yunes et al., 2016) express GABA. Consistently, Parasutterella
decreased with HFD feeding (Kreutzer et al., 2017) and increased
with sugar (Noble et al., 2017) andalcohol consumption (Zhanget al.,
2017). Enterobacter is Gram-negative and contains endotoxin (Bajaj,
2019). Genus Erysipelatoclostridium contains opportunistic strains
(Shao et al., 2017).

After treatment with the ACG combination, the composition
of gut microbiota was significantly different from the HFD
group, whereas NaB had no obvious effects on the composition
of gut microbiota. NaB was reported to regulate gut microbiota
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
in NAFLD and inflammatory bowel disease, but it was
administrated with 200–300 mg/kg/day for 8–12 weeks in
those experiments (Zhou et al., 2017; Fang et al., 2019; Yu
et al., 2019; Facchin et al., 2020) In the ACG-treated group, the
relative abundance of the genus Bacteroides and members of the
Lachnospiraceae family (Lachnospiraceae_UCG_006) increased,
whereas genera Bifidobacterium, Parabacteroides, and Bacillus
decreased compared with the HFD group. The decreased
abundance of genera Erysipelatoclostridium and Jeotgalicoccus
by HFD feeding was restored by the ACG treatment. Meanwhile,
the ACG treatment appeared to reduce the alpha diversity of
intestinal microbiome, which is usually recognized as a negative
index of intestinal health. However, in actual fact, the alpha
diversity of intestinal microbiomes in NAFLD was reported
ambiguously. Lower alpha diversity was observed in the gut
microbiome of patients with NAFLD (Schwimmer et al., 2019;
Pan et al., 2021). However, it was also reported that there was no
significant difference in alpha diversity in the gut microbiotomes
of patients with NAFLD and healthy controls (Zhao et al., 2019;
Iwaki et al., 2021). In addition, in female patients with NAFLD,
even higher microbial alpha diversity was observed (Shi
et al., 2021).

It appears hard to explain the increased gut leakage of LPS by
HFD feeding and the decreased gut leakage of LPS by the ACG
treatment only based on the identified functions of the
differential bacteria. Hence, we looked closely into the relative
abundance of identified Gram-negative bacteria, the source of
LPS. The abundance of Gram-negative bacteria in the HFD
group increased with no statistical significance compared with
that of the control group. However, as unexpected, the relative
abundance of identified Gram-negative bacteria in the ACG
combination group was not decreased compared to that in the
HFD group, which cannot explain the endotoxemia caused by
HFD feeding and the amelioration of endotoxemia by the ACG
combination in NASH.

It has been demonstrated that compared with the healthy
subjects, significantly increased intestinal permeability was
observed in patients or experimental animals with NASH (Dai
andWang, 2015), which appears to be caused by the disruption of
intercellular tight junctions in the intestine, the key factor of gut
mucosa barrier function (Miele et al., 2009). In NASH, the
disruption of tight junction allows bacteria and toxic molecules,
such as LPS, to translocate from the intestine to the portal vein and
eventually to the liver. Increased LPS entering the liver recruits and
activates Kupffer cells to produce proinflammatory cytokines. As
shown in the present study, the increased F4/80 positive area, the
mRNA expression of CD14 andMyD88, and the levels of LBP, IL-
1b, and TNF-a in the liver were accompanied with an increased
LPS level in the plasma with HFD feeding, which indicated
activation of Kupffer cells in the liver tissue in NASH.

In the present study, the disruption of tight junction in the colon
was detected in the HFD-fed mice accompanied with increased
NASH. The ACG combination restored the protein expression of
tight junction in parallel with the inhibitory effect on LPS gut
leakage, which indicated that the amelioration of endotoxemia by
the ACG combination was associated with its protection on
July 2022 | Volume 12 | Article 827516
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intestinal tight junction in NASH. NaB also restored the protein
expression of intestinal tight junctions and ameliorated endotoxin
signaling including downregulation on hepatic LBP, CD14, IL-1b,
and TNF-a, although it had no effect on hepatic MyD88.

Consistently, an inhibitor of intestinal permeability was
demonstrated to have a positive effect on patients with NAFLD
in a recently finished phase II clinic trial (Kessoku et al., 2020).
On the other hand, NaB protected the intestinal mucosal barrier
in NASH but had no regulatory effect on the community
structure of gut microbiota.
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