
Kidney Res Clin Pract 32 (2013) 52–61
journal homepage: http://www.krcp-ksn.com

Kidney Research and Clinical Practice
2211-91

license

http://d

n Corre
ter, Re
School
E-mail
Contents lists available at ScienceDirect
Review Article
Immunologic monitoring in kidney transplant recipients
Natavudh Townamchai 1,2, Kassem Safa 2, Anil Chandraker 2,n

1 Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital,
Thai Red Cross Society, Bangkok, Thailand
2 Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
a r t i c l e i n f o

Article history:
Received 3 December 2012
Accepted 10 January 2013
Available online 29 May 2013

Keywords:
Immunology
Kidney transplant
Monitoring
Recipient
32/$ - see front matter & 2013. The Korea

(http://creativecommons.org/licenses/by-n

x.doi.org/10.1016/j.krcp.2013.04.002

sponding author. Schuster Family Trans
nal Division, Brighamand Women's H
, 75 Francis street MRB-4, Boston, MA 0
address: achandraker@rics.bwh.harvard
A b s t r a c t

Transplant biopsy has always been the gold standard for assessing the immune response
to a kidney allograft (Chandraker A: Diagnostic techniques in the work-up of renal
allograft dysfunction—an update. Curr Opin Nephrol Hypertens 8:723–728,1999). A biopsy
is not without risk and is unable to predict rejection and is only diagnostic once rejection
has already occurred. However, in the past two decades, we have seen an expansion in
assays that can potentially put an end to the “drug level” era, which until now has been
one of the few tools available to clinicians for monitoring the immune response. A better
understanding of the mechanisms of rejection and tolerance, and technological advances
has led to the development of new noninvasive methods to monitor the immune
response. In this article, we discuss these new methods and their potential uses in renal
transplant recipients.

& 2013. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Recent advances in post kidney transplantation care,
including development of new immunosuppressive drugs,
have led to a dramatic improvement in short-term outcomes
[1–3]. Yet, recipients and clinicians who have to rely on drugs
that have a limited therapeutic window are caught between
the rock of rejection and the hard place of side effects such as
infection, toxicity, and malignancy. The inconsistent sensitivity
of individuals to immunosuppressive drugs necessitates the
need for assays that can measure the immune response
directly and provide more information about the recipient’s
immunologic status (Fig. 1). For example, in order to achieve
transplantation tolerance, the Holy Grail of transplantation, it
is first necessary to have a reliable and reproducible method
for detecting a biomarker that is able to identify recipients in
n Society of Nephrology. Publi

c-nd/4.0/).

plantation Research Cen-
ospital, Harvard Medical
2115, USA.
.edu (A Chandraker).
whom tolerance is likely to occur. The ideal tool for clinical
monitoring should be noninvasive, inexpensive, reproducible,
and accessible to clinicians and patients. Here, we summarize
recent findings in biomarker identification and noninvasive
immunologic monitoring based on allograft recipients' periph-
eral blood and urine analysis.
Monitoring of immune status

Methods for immunologic monitoring can broadly be
divided into antigen-specific and non-antigen-specific assays.
The advantage of antigen-specific assays is their ability to dis-
criminate a donor-specific immune response from an immune
response to third-party antigens.
Antigen-specific assays

Being antigen-specific, these assays require the knowledge
of and access to donor antigens for analysis.
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Figure 1. Potential benefit and usefulness of post-transplant immunologic monitoring.
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Anti-HLA antibodies

The significant impact of pretransplant donor-specific
crossmatch testing on transplant outcomes is well estab-
lished [4,5]. Recent advances in solid-phase assays and flow
cytometry have improved the sensitivity of the pretransplant
crossmatch as well as the post-transplant monitoring of
anti-HLA antibodies [6,7]. Detection of a circulating anti-
HLA antibody is now a widely used immunologic monitoring
assay in the clinical setting and has been incorporated into
the Banff classification system, where the presence of a
donor-specific anti-HLA antibody (DSA) is considered a
diagnostic criteria for antibody-mediated rejection (AMR)
[8]. Microbeads with attached HLA antigens in combination
with the Luminex platform are the most commonly used
solid-phase assays for HLA antibody and DSA detection [9].
The tests are classified into three categories according to the
variety and type of the beads in each set. The “screening set”
is the simplest set, consisting of a pool of different beads of
mixed HLA antigens of Class I and Class II. This set is good for
general screening of anti-HLA antibody. The “single-antigen
bead set” consists of single-antigen beads in groups (Fig. 2).
Each bead is coated with a single HLA antigen. This is the
most specific set, as it identifies the type of the anti-HLA
antibody. The third category is the “panel-reactive antibody
set,” which falls in between the other two sets in terms of
specificity.

In the pretransplant setting, together with the complement-
dependent cytotoxic crossmatch, anti-HLA antibody testing pro-
vides additional information regarding the risk of rejection,
especially in highly sensitized patients [10,11] and in the monitor-
ing of pretransplant desensitization protocols [12,13].

The emergence of post-transplant anti-HLA antibodies,
either DSA or non-donor-specific (non-DSA), is associated
with poorer kidney allograft outcomes [7,14,15]. DSAs have
been shown to have more impact on graft outcomes than
non-DSAs [14]. The presence of a post-transplantation DSA
can potentially guide clinicians in the evaluation of AMR.
Indeed, 40% of recipients with DSA developed AMR compared
to none of the recipients with non-DSA [16]. Furthermore, the
strength and breadth of the detected DSA have been corre-
lated inconsistently with AMR risk; however, the benefit of
preemptive treatment after the detection of DSA has yet to be
proven.
Mixed lymphocyte reaction and cell-mediated lymphotoxicity

In the mixed lymphocyte reaction, inactivated donor cells,
acting as antigen-presenting cells, are mixed with recipient
CD4+ T cells. The degree of T-cell proliferation is measured
using radioactive thymidine or the intracellular fluorescent
label carboxyfluorescein diacetate succinimidyl ester: prolif-
eration reflects alloreactivity mainly through recognition of
Class II HLA. An assay based on a similar concept is the cell-
mediated lymphotoxicity assay, which measures the ability of
cytotoxic T cells (CD8+) to kill donor cells: killing reflects
alloreactivity via binding mainly to Class I HLA (Fig. 3).

These assays have recently been used post-transplantation,
to predict the alloimmune response and guide immunosup-
pressive drug adjustment [17,18]. Because of the variation in
techniques and difficulty in standardizing these assays leading
to discrepant results, the clinical utility of these assays in
kidney transplantation is limited [19].

Enzyme-linked immunosorbent spot

The enzyme-linked immunosorbent spot (ELISPOT) assay
is used to detect cytokine production of alloreactive T cells.
Recipient T cells are incubated with donor cells on a plate
coated with an antibody specific for a certain cytokine. Donor-
reactive T cells, on interaction with donor-specific cells, secrete
cytokine that is captured by the antibody on the plate; once
T cells are washed off the plate, a labeled second cytokine-
specific antibody is added, resulting in a photoreaction where
each spot represents one activated T cell. Interferon gamma
(IFNγ) is the most widely used cytokine for ELISPOT. In this
case, recipient T cells are incubated with donor (to detect a
“direct” alloimmune response) or recipient antigen-presenting
cells (to detect an indirect alloimmune response) on an anti-IFNγ-
coated plate, and IFNγ-producing T cells (spots) are visualized on
an immunospot image analyzer [20,21] (Fig. 4).

Several studies have revealed a correlation between IFNγ-
producing T cells detected prior to and/or after transplantation
and renal transplantation outcomes [20,22–26]. A higher donor-
reactive T-cell response (more spots) was found in recipients who
experienced acute rejection compared to recipients who had
stable allograft function [20]. Bestard et al. [27] studied long-term
surviving living donor kidney transplant recipients and demon-
strated that circulating donor-specific alloreactive T cells are



Figure 2. Single-antigen beads test for anti-HLA antibody.

Figure 3. Mixed lymphocyte reaction and cell-mediated lymphocytotoxicity. APC, antigen-presenting cell.
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associated with graft injury and are detectable long after
transplantation. Interestingly, donor-specific alloreactive T cells
that correlated with allograft function and rejection were primed
by the direct pathway, whereas T cells that correlated with
proteinuria were primed by the indirect pathway. Another study
of post-transplant donor-specific ELISPOT found that antithymo-
cyte globulin induction prolonged donor-specific hyporesponsive-
ness markedly compared to IL-2 receptor blocker induction.
However, both induction modalities revealed similar third-party
alloreactivity [28]. Based on ELISPOT, a panel-reactive T-cell assay
can be performed using a panel of allogenic stimulator cells
instead of donor cells. Similar to panel-reactive antibody, pre-
transplant panel-reactive T-cell assay can predict post-transplant
acute renal allograft rejection [29].

Recently, Heidt S, Roelen DL, de Vaal YJ, Kester MG, Eijsink C,
Thomas S, van Besouw NM, Volk HD, Weimar W, Claas FH, and
Mulder A [30] developed an HLA-specific B-cell ELISPOT assay
using recombinant HLA monomers as the target for ELISPOT. This
assay allows quantification of B cells producing specific HLA
antibodies. HLA-immunized healthy individuals and patients
who were on the waiting list for retransplantation revealed higher
numbers of HLA-specific B cells compared to nonimmunized
individuals. A large-scale study of transplant recipients is needed
to validate the benefit of this new tool for monitoring humoral
immunity in transplant recipients.

Post-transplant monitoring of alloreactivity by ELISPOT is
promising and may be able to provide information on risk
stratification, including tailoring of immunosuppressive drugs.
More studies are needed to validate this concept.
Non-antigen-specific assays

Measurement of adenosine triphosphate

The measurement of immunosuppressive drug levels does
not predict directly the reactivity of T cells. Efforts to gauge
T-cell responsiveness have led to the search for assays that
can measure T-cell proliferation to nonspecific stimuli. The
measurement of the nucleotide adenosine triphosphate
(ATP) theoretically allows a direct analysis of T-cell activity
and assessment of the immunosuppressive state. The Immu-
Know assay was approved by the Food and Drug Administration
(FDA) for detecting changes in activity of the immune system.



Figure 4. Enzyme-linked immunosorbent spots.

Townamchai et al / Immunologic monitoring in kidney transplant 55
After incubating a whole blood sample, with the nonspe-
cific mitogen phytohemagglutinin, CD4+ T cells are isolated
magnetically and lysed to release ATP, which can be detected
and quantified by adding a luminescent detecting reagent
(Fig. 5). A higher ATP level implies a higher degree of T-cell
reactivity and, therefore, potential under immunosuppression,
whereas a lower level implies over immunosuppression.

A meta-analysis of 504 solid-organ transplant recipients by
Kowalski et al. [31] showed that low ATP values were asso-
ciated with infections, whereas high ATP values were asso-
ciated with acute rejection. A prospective study of ATP release
in 36 renal transplant recipients by Pérez-Flores et al. [32]
showed the association between ATP values and adverse
events. The recipients with a higher ATP level in the early
post-transplant period were more likely to have acute rejec-
tion. The infection episodes were associated with lower ATP
values. However, Huskey et al. [33] did not find any association
between single time point of ATP values and acute rejection or
opportunistic infections in renal transplantation recipients.
Furthermore, Serban et al. [34] found that in renal transplant
recipients who received thymoglobulin induction therapy,
only low ATP values could predict adverse events. Higher
ATP values did not predict acute rejection. Interestingly, ATP
levels had no correlation with CD4+ T-cell counts but tended to
correlate with total white blood cell and neutrophil counts.
After phytohemagglutinin stimulation and CD4 beads isola-
tion, 22% of cells were contaminated with myeloid cells.

Another concern is the range of ATP level, as a recent meta-
analysis has revealed that within the FDA-approved predictive
range of this assay (225–525 ng/mL), its sensitivity and speci-
ficity are only 0.36 and 0.80 for infection, and 0.24 and 0.73 for
rejection, respectively, in renal transplant recipients [35]. By
contrast, modifying the predictive range to 238–497 ng/mL
was found to improve the diagnostic accuracy in a Chinese
kidney transplant study [36].
Overall, although the ATP release assay is simple to perform, it
is non-antigen specific and unable to diagnose infection or
rejection in renal transplant recipients. Interpretation in par-
allel with clinical findings should be made with caution, and
longitudinal monitoring seems to be more reliable than single
time point measurements estimating the risk for infection or
rejection.

Soluble CD30

CD30 is a member of the tumor necrosis factor receptor
superfamily. In T cells, it is associated with T helper 2 (Th2)
cells. CD30 has been described as a marker of memory T cells
and is also found on B cells, CD8+ T cells, and natural killer
(NK) cells [37,38]. After T-cell activation, soluble CD30 (sCD30)
is released into the bloodstream and can easily be detected by
an enzyme-linked immunosorbent assay.

An increased level of serum sCD30 has been found in
Hodgkin’s disease and immune diseases driven by Th2 cells.
Some studies revealed that high pretransplant sCD30 values are
associated with poor post-renal transplant outcomes [39,40].

Prior to transplant, potential kidney recipients have higher
sCD30 values compared to healthy controls [38,41,42]. In the
early post-transplantation period, sCD30 is useful in differen-
tiating recipients who develop acute renal allograft rejection
from those with acute tubular necrosis and without complica-
tions [43]. Post-transplant measurement of sCD30 to predict
late outcomes has also been studied (Table 1): higher sCD30
levels were associated with lower long-term renal allograft
function and survival [40,44–46]. Higher sCD30 levels on Day
5 and Day 7 post-transplantation were associated with later
acute rejection episodes [47–49]. However, this association
was not reported in other studies [50,51].

To apply sCD30 monitoring to clinical practice, it is impor-
tant to remember that sCD30 is a large molecule (120 kDa).



Figure 5. Measurement of the nucleotide ATP. ATP, adenosine triphosphate; PHA, phytohemagglutinin.
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Its values can be affected by renal function and dialysis, as it
has been reported that sCD30 can be more a marker of renal
function than an immunologic biomarker [42,52,53]. In addi-
tion, one study in healthy children showed that sCD30 con-
centration was affected significantly by age [54].

More studies are needed to clarify the reliability of sCD30 in
immunologic monitoring, particularly early after renal trans-
plantation, in patients with fluctuating renal function.

Flow cytometry-based immunologic monitoring

Flow cytometry is used for counting cells and studying the
different light-scattering patterns of single cells when exposed
to a light beam. This technique can widely be exploited when
different cell markers are labeled with fluorescent tags.

Surface antigens, intracellular antigens, cytokines, and phos-
phorylated proteins can be detected using flow cytometry.
Advantages of this assay not only include the small sample
volume required to perform it but also the its ability to
simultaneously phenotype different cell populations [55].
Because different types of lymphocytes express different
markers, flow cytometry can provide information regarding
the immunophenotype of each sample, such as the proportion
of naïve T cells, activated CD4+ T cells, memory T cells,
regulatory T cells, dendritic cells, B cells, and NK lymphocytes.

Monitoring and properly balancing the inflammatory and
regulatory sides of the immune system are important in trans-
plantation. Effector/memory T cells help prevent infection and
cancer, but are associated with acute rejection [56]; they can
be detected and differentiated from naïve T cells by staining for
CD25, CD45RA, CD45RO, and CD62L [57–59]. Regulatory T
cells, which are thought to be crucial for immunoregulation
and transplant tolerance, stain positive for CD4, CD25, and
FoxP3 [59,60]. Detection of FoxP3 requires intracellular stain-
ing, fixation, and permeabilization, which impairs cell viability.
Regulatory T-Cells isolation for further study and treatment
using FoxP3 as a marker thus remains limited in human
studies. Staining of CD127 (IL-7 receptor) provides an alter-
native to intracellular FoxP3 staining. In CD4+CD25+ cells, the
CD127 expression was correlated inversely with FoxP3 expres-
sion, and indeed CD4+CD25+CD127lo cells showed suppressive
activity [43]. Furthermore, an increased number of CD4+

CD25+CD127hi-activated T cells and a decreased number of
FoxP3+ regulatory T cells have been associated with chronic
humoral rejection in renal transplant recipients [61,62],
whereas tolerant recipients have been found to have normal
numbers of regulatory T cells similar to healthy controls.

Recently, the latency-associated peptide (LAP), the amino-
terminal domain of TGF-β precursor peptide, has been identi-
fied as a novel surface marker specific for regulatory T cells
[63,64]. CD4+CD25+LAP+ T cells expressed higher levels of
regulatory T-cell-associated molecules (FoxP3, glucocorticoid-
induced TNFR-related gene, and CTLA-4) than CD4+CD25+LAP–

cells. These CD4+CD25+LAP+ T cells also revealed suppressive
function both in vitro and in vivo [64]. This novel surface
marker may possibly serve as an alternative flow cytometry
detection target to intracellular FoxP3 in human studies and
for potential therapeutic purposes.

Immunosuppressive drugs may have different effects on
T-cell subsets. Flow cytometry can be useful in detecting such
differences. Many studies have shown that calcineurin inhibi-
tors (CNIs), but not the mammalian target of rapamycin (mTor)
inhibitors, are associated with lower ratios of regulatory T cells
[65–68]. Recently, a modified form of CTLA4-Ig, belatacept,
which blocks B7 signaling, was introduced into clinical trans-
plantation with promising results [69]. In mice models, B7



Table 1. Studies of sCD30 in peripheral blood of post renal transplant recipients

References Outcome measured Results

Weimer et al. [44] Allograft function Higher sCD30 level at 1 y associated with lower allograft function at 2 y
CMV disease associated with transient elevation of sCD30 level

Langan et al. [46] Allograft survival Higher sCD30 level in 1 y associated with poorer 6-y allograft survival
Wang et al. [49] Acute rejection Higher sCD30 level at Day 5 associated with acute rejection
Slavcev et al. [50] Acute humoral rejection sCD30 level not associated with acute humoral rejection
Yang et al. [47] Acute rejection Higher sCD30 level at Day 7 associated with acute rejection
Lopez-Hoyos et al. [52] Allograft function Significant correlation between sCD30 and serum creatinine at all

times of the study
Hamer et al. [45] Acute rejection Higher sCD30 level at 4–6 wks not associated with acute rejection, but

associated with poorer allograft function at 1 y
Allograft function

Domingues et al. [48] Acute rejection Higher sCD30 level at Day 7 associated with acute rejection
Süsal et al. [40] Allograft survival Higher sCD30 level at Day 30 associated with poorer 3-y allograft survival

CMV, cytomegalovirus; sCD30, soluble CD30.
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signaling has been shown to be essential in homeostasis of
regulatory T cells [70]. CTLA4-Ig treatment of human renal
transplant recipients has shown similar effects on CD4+CD25+

CD127lo regulatory T cells to those of CNIs [71], and their levels
were comparable in pre- and post-transplant.

B cells have been recognized to play an increasingly important
role in immune regulation. Depletion or deficiency of B cells has
been shown, in multiple mouse models, to deteriorate immuno-
logically mediated diseases [72]. Increased numbers of total B
cells, including activated B cells, memory B cells, and early
memory B cells, have been found in the peripheral blood of
tolerant recipients [73]. Moreover, B cells of these recipients also
expressed high levels of CD1d+ and CD5+, which are considered
to be regulatory phenotypes. These findings have been confirmed
by larger studies conducted by Reprogramming the Immune
System for Establishment of Tolerance (RISET) and Immune
Tolerance Network (ITN) [74,75]. In addition, these studies found
that tolerant recipients had increased levels of naïve
(CD19+CD27-IgM+IgD+) and transitional B-cell subsets (CD19+

CD24+CD38+IgD+), which also possessed immunoregulatory
function. Analysis of B-cell subsets showed transitional B cells to
be the most predictive population for transplant tolerance, with a
sensitivity of 83% and specificity of 75% [75].

Gene expression monitoring

The rationale for gene expression monitoring is based on the
idea that gene disruption may precede clinical or histological
rejection [76]. Gene expression studies provide not only diagnostic
but also predictive values [76–78]. Peripheral blood is an easy
source for DNA isolation. Gene expression studies can be divided
into a classic single-gene study and high-throughput microarrays,
enabling the study of complete gene expression. Gene expression
profiling with microarrays is increasingly used by transplant
researchers for many purposes, including searching for gene
profile patterns for specific conditions, identifying biomarkers
for immunologic monitoring, and studying the mechanisms of
rejection and tolerance [79]. However, single-gene-based testing
has higher sensitivity and specificity than microarrays. A candi-
date gene detected by a microarray should be validated further
by single-gene-based tests. Another concern in gene expression
study is the transcription of gene to protein. Not all expressed
genes will be transcribed to proteins. This finding may lead to
discrepancies between gene profiles and clinical outcomes.

Perforin and granzyme B are secreted by CD8+ T cells and NK
cells to destroy target cells, including those of the allograft,
during rejection. An increased expression of perforin or
granzyme B is associated with both acute cellular rejection
and AMR [77,78,80]. Simon T, Opelz G, Wiesel M, Ott RC, and
Süsal C [77] serially studied perforin and granzyme B expression
from renal transplant recipients. Acute rejection could be pre-
dicted 2–30 days (median 11 days) prior to making the diagnosis
of acute rejection. The expression of perforin and granzyme B
mRNA in the urine of renal transplant recipients was studied by
Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur
D, Mouradian J, Schwartz JE, and Suthanthiran M [81]. Expres-
sion of urinary perforin and granzyme B was higher in
recipients having biopsy-proven acute rejection than in those
without acute rejection. Moreover, perforin exhibited a sensi-
tivity of 83% and specificity of 83% in the prediction of acute
rejection, and granzyme B showed a sensitivity and specificity
of 79% and 77%, respectively. Interestingly, an increased
expression of perforin and granzyme B was also found in
recipients with BK virus or cytomegalovirus infection [58].

The Fas ligand is expressed by CD8+ T cells. It can induce
apoptosis by binding to Fas ligands on other cells. Fas ligand
mRNA expression has been also shown to be associated with
acute rejection [78,82]. However, this association has not been
confirmed in all studies [83,84].

FoxP3, the regulatory T-cell-related gene, has been also
studied in the peripheral blood from renal transplant recipi-
ents. In long-termmonitoring, FoxP3 mRNA levels were shown
to be lower in recipients with chronic rejection than in those
with stable graft function [85,86]. Not surprisingly, high FoxP3
levels were also detected in tolerant renal transplant recipients
[87]. In addition, several studies showed that FoxP3 levels
increased as a protective response in acute rejection episodes;
this can be applied as a diagnostic tool during acute allograft
function deterioration [88,89]. Furthermore, in a study of
recipients having delayed graft function by Aquino-Dias EC,
Joelsons G, da Silva DM, Berdichevski RH, Ribeiro AR, Veronese
FJ, Goncalves LF, and Manfro RC [88], higher levels of FoxP3
mRNA were found in the peripheral blood of recipients with a
diagnosis of acute rejection than in those with acute tubular
necrosis. Another study by Muthukumar et al. [89] showed
that urinary FoxP3 level was higher in recipients with acute
rejection than in those with chronic allograft nephropathy and
those with normal biopsy. Among recipients who experienced
acute rejection, FoxP3 level was higher in those who had
reversed rejection after treatment than in those who did not.

Studies have also identified biomarkers for tolerance: Toag-1
and the ratio of FoxP3 to α-1,2-mannosidase can potentially
identify the tolerant recipients [90,91]. These findings have
been confirmed in a larger-scale human study [74]. Tolerant
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renal transplant recipients had a higher ratio of FoxP3 to α-1,
2-mannosidase than those with steroid monotherapy, stan-
dard CNI treatment, and chronic allograft nephropathy.

A great advantage of this high-throughput method was
recently showed in two large studies of tolerant kidney
transplant recipients conducted by ITN and RISET. Many genes
were found to be more expressed in tolerant recipients and,
interestingly, most of them were B-cell-specific genes. Three
B-cell genes, IGKV4-1, IGLL1, and IGKV1D-13, were identified by
multiplex real-time polymerase chain reaction as predictors of
tolerance [74,75]. Tolerant recipients could be separated from
those requiring immunosuppressive drugs and healthy con-
trols by the expression of these B-cell-specific genes. T cells
have long been recognized as an important key of allograft
rejection and tolerance. Findings from these studies indicate
that B cells play a role in transplantation tolerance.

Proteomic study of biomarkers

Proteomics is a highly effective tool in the hunt for biomarkers.
This new technique provides a high-throughput approach for
studying complete sets of peptides/proteins expressed in diseases,
including transplant immunology-related conditions such
as acute or chronic rejection, and infection. The global
study by “omics” should be followed by the classic single-
molecule studies to delve into candidate peptides/proteins.
Mass spectrometry is the most widely used proteomics
platform.

Most of the injuries within the kidney allograft take place in
the tubulointerstitium where urine formation takes place, and
the paucity of background proteins in the urine, unlike serum,
makes it a preferred source of sample for proteomic studies.

Acute rejection is a multistep process that starts from
immune activation, includes inflammation and tubulointerstitial
injury, and ends up with damage or recovery. Many proteins and
peptides are expressed during this process, and can be detected
by proteomic study. The candidate proteins or peptides for the
ideal biomarker should be detected early in the allograft rejec-
tion process, and be able to differentiate rejection from other
causes of allograft dysfunction such as tubular injury or other
nonspecific causes of irreversible damage.

Schaub et al. [92] and Schaub et al. [93] reported an increase
in the amount of cleaved urinary β2-microglobulin in renal
allograft recipients with rejection. However, the validation study
found that cleaved β2-microglobulin was unable to differentiate
recipients with subclinical tubulointerstitial rejection from those
with normal tubular histology [94]. Levels of β2-microglobulin
were similar to those of other tubular injury markers such as
neutrophil gelatinase-associated lipocalin and retinol-binding
protein, in terms of tubular injury detection but not inflamma-
tion or rejection [95]. In a separate study, Schaub et al. [96] also
reported that the urinary concentrations of CXCL10 and CXCL9,
the CXC-receptor 3 (CXCR3) proinflammatory chemokines, were
significantly higher in subclinical tubulitis than in subclinical
borderline tubulitis and normal histology.

O’Riordan et al. [97] and O’Riordan et al. [98] have identified β-
defensin-1 (a 4.7 kDa peptide) and α-1-antichymotrypsin (a
4.4 kDa peptide) as useful markers in diagnosing acute renal
allograft rejection, as both are involved in the inflammatory
process. Sigdel et al. [99] found that urine of recipients with
allograft rejection have lower levels of Tamm–Horsfall protein
(uromodulin) and CD44, and higher levels of pigment
epithelium-derived factor compared to that of stable allograft
function recipients and healthy controls. Because this study did
not enroll recipients with other causes of renal allograft dysfunc-
tion, we are unable to conclude that the alteration of these
proteins was solely caused by the rejection process. In some
studies, other distinct peptides have also been identified in the
urine of renal allograft rejection recipients [100–102]. However, a
definite protein or biomarker has yet to be identified.

Analysis of T-cell receptor repertoire

Addition and deletion of nucleotides during the generation
of a T-cell receptor (TCR) by rearrangement occur in a random
manner. The complementary-determining region 3 (CDR3)
of Vβ gene of the TCR is also created randomly and leads to
diversity in the length of the CDR3. This random rearrange-
ment process leads to a Gaussian distribution of CDR3 length.
In transplant recipients, a deviation from the Gaussian dis-
tribution of CDR3 length indicates clonal expansion of T-cell
population, which reflects T-cell activation or rejection [103].

Miqueu et al. [104] reported a large, multicenter, case-
controlled study of TCR repertoire by polymerase chain reac-
tion in peripheral blood of renal transplant recipients using “Tc
Landscape,” a statistical method developed for analyzing the
TCR repertoire distribution. Of the tolerant recipients, 92.8%
were found to have a normal distribution pattern or mild
kurtosis pattern compared to 42.8% of recipients with biopsy-
proven chronic humoral rejection. This demonstrates the
association between TCR repertoire and allogenic immunity.
Conclusion

In conclusion, because manipulation of the immune system
is key to transplantation, monitoring of the immunological
response is crucial in understanding the environment in which
the allograft functions in any given individual. Currently, there
is no best immunological monitoring method, but promising
advancements have been achieved over the past few years.
With the development of these technologies, understanding the
strengths and weaknesses of each test will allow clinicians to
integrate these monitoring methods with clinical assessment to
achieve the best long-term outcomes in transplant recipients.
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