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ABSTRACT Polyploidy is the state of having multiple copies of the genome within
a nucleus or a cell, which has repeatedly evolved across the domains of life.
Whereas most bacteria are monoploid, some bacterial species and endosymbiotic or-
ganelles that are derived from bacteria are stably polyploid. In the present study,
using absolute quantitative PCR, we assessed the ploidy of Candidatus Carsonella
ruddii (Gammaproteobacteria, Oceanospirillales), the obligate symbiont of the hack-
berry petiole gall psyllid, Pachypsylla venusta (Hemiptera, Psylloidea). The genome of
this symbiont is one of the smallest known for cellular organisms, at 160 kb. The
analysis revealed that Carsonella within a single bacteriocyte has ;6 � 104 copies of
the genome, indicating that some Carsonella cells can contain thousands or even
tens of thousands of genomic copies per cell. The basis of polyploidy of Carsonella is
unknown, but it potentially plays a role in the repair of DNA damage through ho-
mologous recombination.

IMPORTANCE Mitochondria and plastids are endosymbiotic organelles in eukaryotic
cells and are derived from free-living bacteria. They have many highly reduced
genomes from which numerous genes have been transferred to the host nucleus.
Similar, but more recently established, symbiotic systems are observed in some
insect lineages. Although the genomic sequence data of such bacterial symbionts
are rapidly accumulating, little is known about their ploidy. The present study
revealed that a bacterium with a drastically reduced genome is an extreme poly-
ploid, which is reminiscent of the case of organelles.
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Polyploidy, the state where organisms have multiple copies of the genome within a
nucleus or a cell, has repeatedly evolved across the domains of life (1). Whereas most

bacteria are monoploid or mero-oligoploid only during fast growth, some species, includ-
ing cyanobacteria and extremophiles, are stably polyploid (1–4). Mitochondria and plas-
tids, endosymbiotic organelles that are derived from free-living bacteria, have highly
reduced genomes and are also polyploid (5, 6). In this context, the ploidy of vertically
transmitted organelle-like symbionts of insects attracts our interest. Various insect line-
ages harbor phylogenetically diversified bacterial symbionts within the specialized cells
called bacteriocytes, which constitute the bacteriome organ (7). The bacteriome-associ-
ated symbionts have drastically reduced genomes like organelles (7), and their polyploidy
has generally been suspected based on the strong signal intensity of fluorescent DNA
staining. However, quantitative analyses of their ploidy have been reported for only two
species thus far (8–10). Dot-blot hybridization, fluorimetry, and quantitative PCR showed
that Buchnera aphidicola (Gammaproteobacteria, Enterobacterales; genome size: 640 kb)
(11) of the pea aphid, Acyrthosiphon pisum (Hemiptera, Aphidoidea), had 10 to 600
genomic copies per cell depending on developmental stages and morphs of the host
insect (8, 9). Digital PCR using four individual cells showed that Candidatus Sulcia muelleri
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(Bacteroidetes; genome size, 240 kb) of the green sharpshooter Draeculacephala minerva
(Hemiptera, Membracoidea) had 200 to 900 genomic copies per cell (10).

Candidatus Carsonella ruddii (Gammaproteobacteria, Oceanospirillales) (Fig. 1A), the
obligate symbiont of the hackberry petiole gall psyllid, Pachypsylla venusta (Hemiptera,
Psylloidea), has a genome of 160 kb, one of the smallest genomes known for cellular
organisms (12). To measure the ploidy of bacteriome-associated symbionts, we per-
formed absolute quantitative real-time PCR to estimate the ploidy of Carsonella harbored
in uninucleate bacteriocytes (13–15). Whereas most psyllid species have another
(secondary) bacterial symbiont in a syncytial region within the bacteriome (13, 16–18),
P. venusta lacks secondary symbionts and the syncytium is rudimentary (12, 15, 19).
Thus, we extracted DNA from the whole bacteriome isolated from male and female
nymphs of P. venusta for use as templates in quantitative PCR. To assess copy numbers
of the Carsonella genome, the 16S rRNA gene, a single-copy gene encoded in the
Carsonella genome (12), was amplified with specific primers (Table 1). For calibration, the
genes encoding ribosomal protein (Rp)L18 and RpL32, which are single-copy genes in
the P. venusta genome (20), were also quantified. The results showed that the copy num-
ber of the 16S rRNA gene per copy of the RpL18 gene was 3690 6 460 (mean 6 stand-
ard deviation, n = 6) for females and 3571 6 575 (n = 6) for male insects. When cali-
brated with the RpL32 gene, the values were 3942 6 518 (n = 6) for females and
4040 6 769 (n = 6) for male specimens (Fig. 1B). Because the bacteriocytes of P. venusta
are 16-ploid (15), these data indicate that Carsonella within a single bacteriocyte has
;6 � 104 copies (16 � ca. 4 � 103 copies) of the genome, assuming that all bacterio-
cytes are uninucleate. Because Carsonella is pleomorphic and usually tubular, the cell
number within a single bacteriocyte varies (12, 14, 18). In some cases, Carsonella can be

FIG 1 (A) Bacteriocytes stained with DAPI. Tubular Carsonella cells were squeezed out by applying
gentle pressure on a coverslip. Extremely long Carsonella cells surrounding host nuclei show strong
DAPI signals. Within Carsonella cells, numerous spots with higher signal intensities are observed. Bar,
10 mm. (B) Quantitative PCR analysis of Carsonella genomic copy number in the bacteriome of
Pachypsylla venusta. Abundance values of the Carsonella 16S rRNA gene were normalized to the
psyllid nuclear genes for RpL18 (left) and RpL32 (right). All data points (female, magenta; male, cyan)
of six biological replicates of each sex are presented. Black dots and black bars represent means and
standard deviations, respectively.

TABLE 1 Gene-specific primers used in this study

Target gene Primer Sequence Product size
Carsonella 16S rRNA CRPV_16S_10F CATAGCTCAGATTGAACGCTGGTA 89

CRPV_16S_98R CTCACCCGTTCGCTGCTAATAC
P. venusta RpL18 PV_rpL18_420F AGAACTGGACGAGAAGCCAACA 81

PV_rpL18_500R TGATCTGACGTGTGCTTTTGTATG
P. venusta RpL32 PV_rpL32_359F GGTCACGCTGTGTCTTCAAA 85

PV_rpL32_443R GGGCATGTCCATTGGTAAGT
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extremely long (greater than hundreds of micrometers), and only a few Carsonella cells
are observed within a single bacteriocyte (Fig. 1A). Thus, a Carsonella cell can contain
thousands or even tens of thousands of genomic copies. This is much more than
observed in Buchnera or Sulcia (8–10) and analogous to the case of Epulopiscium sp.
(Firmicutes), a giant bacterium observed in the fish gut, which contains tens of thou-
sands of genomic copies per cell (21). There appears to be a tendency that bacteria with
large cell sizes to be highly polyploid, as evidenced by a recent report that Candidatus
Thiomargarita magnifica, a centimeter-long bacterium, has half a million copies of the
genome (22).

A potential cause of the polyploidy of Carsonella is mutational degradation of an-
cestral genes linking chromosome replication to cell division, resulting in extremely
large cell sizes and polyploidy. However, a presumed benefit of polyploidy is to facili-
tate the mutualistic role of synthesizing essential amino acids that are required by the
host psyllid (12) because polyploidy is assumed to increase metabolic output, diminish-
ing the need to allocate resources and energy to cell division (1, 23). Additionally, the
ploidy of Carsonella may have an evolutionary impact. Like other bacteriome-associ-
ated obligate symbionts of insects, Carsonella is confined in the bacteriocyte, and only
a small part of the maternal population is transovarially transmitted to the next genera-
tion (18). This type of small, bottlenecked, and asexual population suffers from the
accumulation of mildly deleterious mutations through the process known as Muller’s
ratchet (24). Polyploidy could mask fresh mutations, and facilitate conventional repair
processes within cells, such as the repair of double-strand breaks. However, for poly-
ploidy to slow Muller’s ratchet, nonmutant sequences must be disproportionately
favored as repair templates. A role of polyploidy in facilitating within-cell DNA repair is
consistent with the conservation of recA, encoding the central repair enzyme, in
sequenced Carsonella genomes (12, 16, 17, 25), though this role may not extend to all
bacteriome-associated symbionts, many of which lack recA (7). Thus, further studies are
required to assess ploidy and its evolutionary role in these symbionts.

MATERIALS ANDMETHODS
Absolute quantitative real-time PCR. Absolute quantification was performed by real-time quantita-

tive PCR targeting the Carsonella 16S rRNA gene and the P. venusta genes for RpL18 and RpL32. Galls
containing 5th instar nymphs of the hackberry petiole gall psyllid, Pachypsylla venusta, were collected
from hackberry trees, Celtis reticulata, in Tucson, AZ. Insects were removed from galls and dissected
under a stereomicroscope. Individuals were sexed based on gonads therein, and bacteriomes were iso-
lated and pooled from 3 to 5 individuals of either sex. DNA was extracted from the pooled bacteriomes
using DNeasy blood and tissue kit (Qiagen). The quality of extracted DNA was assessed using a
NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific) and the quantity was assessed using a
Qubit 2.0 Fluorometer with a Qubit dsDNA HS assay kit (Thermo Fisher Scientific). Reference standards
for quantification were constructed by PCR followed by TA-cloning as described previously (26). Briefly,
PCR was performed using genomic DNA extracted from P. venusta and gene-specific primers (Table 1).
The PCR products were cloned into the pGEM-T Easy vector (Promega) and amplified in Escherichia coli
JM109. Inserts were sequenced following colony PCR using M13-F (59-GTAAAACGACGGCCAG-39) and
M13-R (59-CAGGAAACAGCTATGAC-39) primers annealing to the vector. Plasmids with appropriate inserts
were amplified in E. coli and purified using a Fast Plasmid Minikit (Eppendorf). PCRs were performed again
using purified plasmids and M13-F and M13-R primers. Subsequently, PCR products were purified with a
QIAquick PCR purification kit (Qiagen) and quantified with a Qubit 2.0 Fluorometer and Qubit dsDNA BR
assay kit (Thermo Fisher Scientific). Copy numbers of the PCR products were calculated based on their con-
centration and molecular weights. For each target gene, 108, 107, 106, 105, 104, and 103 copies/mL of PCR
product solutions were freshly prepared in LoBind tubes (Eppendorf) for use as reference standards. Real-
time quantitative PCR was performed using the LightCycler instrument and FastStart DNA Master SYBR
green I kit (Roche). Running parameters were 95°C for 10 min, followed by 40 cycles of 95°C for 10 s, 58°C
for 3 s, and 72°C for 6 s. Signal intensity was measured at the end of each elongation phase. The absence
of nonspecific products was confirmed by melting curve and electrophoretic analyses. Copy numbers of
target genes in specimens were calculated based on standard curves generated with reference standards
using the LightCycler software (ver. 3.0, Roche). The copy number of the Carsonella 16S rRNA gene was
normalized to the copy numbers of the P. venusta genes for RpL18 and RpL32. Analyses were performed
with six biological replicates for each sex and three technical replicates.

Microscopy. Bacteriomes were dissected from 5th instar nymphs, fixed with fixation buffer (1% glu-
taraldehyde, 20 mM Tris-HCl [pH 7.65], 2.5 mM EDTA, 3.2 mM spermidine, 7 mM 2-mercaptoethanol,
0.4 mM phenylmethyl-sulfonyl fluoride), and stained with 49,6-diamidino-2-phenylindole (DAPI). After
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repetitive pipetting, specimens were put on a glass slide and covered with a coverslip. The slides were
examined by fluorescence microscopy (BX-53; Olympus).
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