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Abstract: The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria
involved in their vector competence that may help in developing novel vector control tools. This
study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible
associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing
of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic,
multivariate, and association analyses, were used to investigate the levels and patterns of microbial
diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The
primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abun-
dance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies.
Globally, significant differences were observed in the microbiome diversity and composition among
tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying
mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or
some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be
further investigated for an understanding of their mechanism of action and alternatively, transformed
and used to block trypanosome development in tsetse flies.

Keywords: tsetse flies; trypanosomes; microbiome; vector competence; vector control

1. Introduction

Human African Trypanosomiasis (HAT), or sleeping sickness, and Animal African
Trypanosomiasis (AAT) are caused by protozoan parasites of the genus Trypanosoma, trans-
mitted to vertebrates through the bite of infected tsetse flies (Glossina spp.). About 70 million
people, 55 million cattle, and 70 million small ruminants are at risk of these diseases in
36 countries of sub-Saharan Africa [1,2]. AAT remains one of the major constraints to
agriculture and livestock development. The economic losses resulting from the negative
impact of this disease were estimated to be higher than USD 4.5 billion per year [3], and
less than 1000 HAT cases now reported per year in Africa [4].

So far, there is no vaccine against trypanosomiasis, mainly due to the ability of try-
panosomes to continually alter their surface glycoprotein layer through expressing distinct
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antigenic variants for immune evasion [5]. Currently, control of HAT relies essentially
on the active detection and treatment of cases, which often reaches less than 75% of the
affected population [6]. Moreover, the use of chemotherapy is limited by chemotoxicity
and increasing levels of resistance to the available drugs [7,8]. Nevertheless, some efforts
are being done to overcome this challenge with new therapies like nifurtimox-eflornithine
combination treatment and the recent fexinidazole.

Vector control intervention strategies with aim of reducing the tsetse fly population
density and/or their ability to transmit trypanosomes are better complementary methods
to help curbing the disease transmission. Indeed, to be transmitted, trypanosomes must
first establish themselves in the tsetse fly midgut following a blood meal, and thereafter,
mature in salivary glands or mouth parts, depending on the species [9]. This phenomenon
is influenced by several factors, among which is the microbiome harboured by the tsetse
vector, which are known to play diverse roles in their hosts. Three major symbionts
are described in tsetse flies: the intracellular primary symbiont Wigglesworthia glossinidia,
necessary for the fly’s fertility and immune response [10]; Wolbachia sp., which acts on the
reproductive process of tsetse flies by inducing cytoplasmic incompatibility [11], and the
secondary symbiont Sodalis glossinidius, present in gut and other tissues of the fly [12]. The
latter was found to be involved in trypanosome establishment in the fly midgut through a
complex biochemical mechanism involving the production of N-acetyl glucosamine [13],
resulting from hydrolysis of pupae chitin to produce endochitinases. These molecules are
known to inhibit a tsetse-midgut lectin, lethal to procyclic trypanosomes [14,15]. Beyond
these three major symbionts, Kosakonia cowanii impairs trypanosome establishment in tsetse,
while protecting this vector from the entomopathogenic Serratia marcescens [16].

Recent studies have shown a great diversity in the bacterial flora of Glossina species in
different sleeping sickness foci in Cameroon [17–21] However, in these descriptive studies,
no association was found between the presence of S. glossinidius and trypanosome infection
in flies, suggesting that vector competence might rather be linked to given genotypes or
the abundance of the symbiont [13]. Although previous studies that described the bacterial
communities in tsetse flies have mainly focused on the midgut compartment [17,22,23],
other insect tissues could harbour some bacteria taxa not yet described in the tsetse, or
could be a key localization for other important bacteria detected in the gut. Therefore,
studies are needed to make a complete inventory of the microbial community associated
with tsetse flies in order to characterize and provide a more comprehensive overview of
their composition and association with trypanosome establishment.

In the last decade, many studies on microbiome showed interesting results in devel-
oping alternative methods of fighting vector borne diseases, such as impairing parasite
development in vectors and thus reducing disease transmission. Some microbes were used
to shorten the insect vectors’ lifespan or to decrease their infection rates, either via natural
competition mechanisms or via the production of genetically introduced anti-parasite
molecules [24,25].

In the present study, we update the microbiome composition of Glossina palpalis palpalis,
the main vector of HAT and AAT in the forest area of southern Cameroon, and we provide
some information on the microbiome composition of three additional tsetse fly species
in Cameroon.

2. Materials and Methods
2.1. Study Area

Campo (2◦20′ N, 9◦52′ E) is located on the Atlantic coast, at the border with Equatorial
Guinea (Figure 1) and extends along the River Ntem, where several cases of sleeping
sickness are diagnosed every year. The climate is equatorial, with four seasons: the heavy
and light rainy seasons (September to November and March to May, respectively) and the
heavy and light dry seasons (December to February and June to August, respectively). The
hydrographic network is dense and provides suitable areas for the development of tsetse
flies, such as rivers, swampy areas, marshes, and mangrove forests. The Campo inhabitants
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are currently exposed to tsetse fly bites during activities such as fishing, hunting, and
farming. In this region, wild fauna composition is highly diversified [26], and since 1932, it
has been established as a wild fauna reserve. Several tsetse fly species (including Glossina
palpalis palpalis, and to a lesser extent, G. pallicera, G. caliginea, and G. nigrofusca) were found
in this study [27,28]. The study was conducted in almost all the villages in Campo (Afan
Essoke, Akak, Assok, Campo-Beach, Campo-Centre, Essamebenga, Ipono, Etonde, Maan,
Mabiogo, Mintomb, Mvass, Nyamelande, Nko’adjap, Okanbiloun, Tondefon, Etonde Fang,
Scierie, Bibabimvodo) and on the banks of the River Ntem.
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phy Yaoundé Cameroon, 1976 topographic map).

2.2. Tsetse Collection and Preservation

Tsetse flies were caught during the peak dry season, from 21 November to 12 December
2018, using pyramidal traps [29]. Traps were set up in various tsetse fly favourable biotopes
(at water points, on riverbanks, behind dwellings, along the roads, in farmlands, etc.), and
the geographical coordinates of each trap were recorded with a global positioning system.
The flies were collected once a day during three consecutive days between 12 pm and 2 pm.
The species, sex, and teneral status (i.e., if the fly is newly emerged and still unfed) of each
collected tsetse fly were morphologically identified. Tsetse flies were then sterilized twice
with 5% sodium hypochlorite and rinsed twice with distilled water to eliminate potential
contaminants from the environment, as recommended in previous similar studies [17,21].
The head and legs of the flies were then separated from the rest of the bodies and the
different parts conserved separately in well labelled microtubes containing ethanol 95◦, for
the determination of mature trypanosome infections and tsetse genetic population structure
studies, respectively. Once in the laboratory, these samples were stored at −20 ◦C until
DNA extraction.

2.3. DNA Extraction

DNA was extracted from fly heads and the rest of their bodies separately, using
the LIVAK protocol [30]. Briefly, the alcohol used to preserve the head and the rest of
the body of each fly was evaporated by maintaining the microtubes open overnight at
room temperature (25 ◦C). Thereafter, each head and the rest of the body were crushed
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with pestles in 500 µL of LIVAK buffer (LIVAK: 1.6 mL NaCl 5 M; 5.48 g sucrose; 1.57 g
Tris; 10.16 mL EDTA 0.5 M; 2.5 mL 20% SDS; distilled water to 100 mL total volume).
The disrupted tissues were incubated at 65 ◦C for 30 min, and the aqueous upper phase
containing the nucleic acids was obtained by adding 70 µL of potassium acetate, incubating
in ice for 30 min, and centrifuging at 13,500 rpm for 20 min. DNA was precipitated by
the addition of 1 mL of absolute ethanol and a centrifugation at 13,500 rpm for 15 min.
DNA pellets were washed twice with 200 µL of 70% ethanol, centrifuged, and then dried
at room temperature (25 ◦C) for 1 h. DNA pellets were finally re-suspended in 30 µL and
100 µL of sterile water for heads and bodies, respectively, before their storage at −20 ◦C for
subsequent molecular analyses.

2.4. PCR Detection of Trypanosomes

Trypanosomes were detected using PCR-based methods from DNA extracts from tsetse
bodies, and heads in the case that bodies were positive for at least one trypanosome species.

Trypanosomes’ ITS1 DNA was amplified by a nested ITS PCR, as described by
Desquesnes et al. [31]. The primers used were TRYP18.2C (5′-GCAAATTGCCCAATGTCG-
3′) and TRYP4R (5′-GCTGCGTTCTTCAACGAA-3′) for the first ITS-PCR and IRFCC (5′-
CCTGCAGCTGGATCAT-3′) and TRYP5RCG (5′-ATCGCGACACCTTGTG-3′) for the sec-
ond ITS-PCR. The amplification reactions were performed in a total volume of 20 µL
containing 2 µL of TBE buffer 10X (10 mM Tris–HCl; 1.5 mM MgCl2, 50 mM KCl, pH 8.3),
0.56 µL of each primer (10 µM), 0.4 µL of dNTPs (10 mM), 0.2 µL of Taq DNA polymerase
(5 U/µL), 14.28 µL H2O, and 2 µL of DNA extract for the first PCR; 2 µL of 1/10 diluted
products of the first PCR for the second ITS-PCR. For both PCRs, the amplification pro-
grams involved an initial denaturation step at 94 ◦C for 5 min, followed by 30 amplification
cycles. Each of these cycles included a denaturation at 94 ◦C for 30 s, an annealing step at
58 ◦C for 1 min, and extension at 72 ◦C for 1 min. The final extension step was performed
at 72 ◦C for 5 min. The products from the second PCR were resolved on 2% agarose gel
containing Midori green and visualized under UV light.

2.5. Determination of Flies’ Microbiome Composition
2.5.1. Library Preparation and Sequencing

Sequencing was performed with DNA extracted from 192 individual flies, using the Il-
lumina MiSeq system (Polo d’ Innovazione di Genomica Genetica e Biologia, Siena, Italy). In
this protocol, two specific primers targeting the V3-V4 region of the bacteria 16S rRNA gene,
and flanked with the Illumina overhang adapters were used for the sequencing; namely,
V3F: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
3′ and V4R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGT
ATCTAATCC-3′ [32].

Amplicons were generated using a 2X KAPA HiFi HotStart Ready mix (KAPA Biosys-
tems), through PCR reactions performed in a total volume of 25 µL, containing 2.5 µL DNA
(5 ng/µL), 5 µL of each primer (1 µM), and 12.5 µL 2X KAPA HiFi HotStart Ready mix.
The amplification program consisted of an initial denaturation step at 94 ◦C for 3 min,
followed by 25 amplification cycles, each consisting of denaturation at 94 ◦C for 30 s, primer
hybridization at 55 ◦C for 30 s, elongation at 72 ◦C for 30 s and final elongation at 72 ◦C
for 5 min. The expected sizes of the PCR products were verified by running 1 µL of the
PCR product on a bioanalyzer (expected size ~550 bp). PCR products were then cleaned up
using AMPure XP beads (Beckman Coulter Genomics) to remove free primers and primer
dimers. Then, 5 µL of purified products were used in the second PCR round to attach dual
multiplexing indices (i5 and i7) and Illumina sequencing adapters using the Nextera XT
Index Kit (Illumina catalogue), as recommended by the manufacturer. After this step, a
second clean-up was performed using AMPure XP beads, and 1 µL of a 1:50 dilution of
each sample was analysed on a bioanalyzer to verify the final size (~630 bp). Libraries were
then normalized, and 5 µL of each were pooled. Finally, pooled libraries were denatured
with NaOH diluted with hybridization buffer, heat-denatured, and loaded on the Illumina
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MiSeq flow-cell. Each run included 5% PhiX solution (Illumina catalogue) to serve as an
internal control [33].

2.5.2. Sequence Data Processing

Illumina MiSeq reads were analysed using Mothur v.1.44.3 [34], following a modified
pipeline previously described for the same kind of analyses [35]. Briefly, forward and
reverse demultiplexed paired-end reads were merged to contiguous sequences for each
individual fly, and primers were trimmed, followed by quality filtering that removed all
merged reads containing ambiguous bases. The dataset was reduced to unique sequences
and a count-file summarizing the number of sequences of each type for all the flies. The
unique sequences were then aligned to the V3-V4 region of the 16S rRNA gene sequences
from the SILVA v.123 reference database and filtered to remove the overhangs at both ends.
Then, the dataset was filtered to eliminate unique sequences with an abundance lower
than 0.01%, probably issued from sequencing errors, and for the remaining sequences,
highly similar samples (up to 1 difference each 100 base pairs) were pre-clustered for
further denoising of the data. Another filtering step was performed to remove chimeric
sequences, as well as those classified as eukaryote or mitochondria (probably from fly
DNA), chloroplast, or unknown after alignment in the SILVA database. A distance matrix
was generated between remaining clean sequences, and these were later clustered and
classified into operational taxonomic units (OTUs). Finally, using the count-file, an OUT
table was generated containing each individual fly, with all the OTUs it harbours, as well
as their abundances.

2.5.3. Statistical Analyses

Statistical analyses and plots were performed in the R environment [36]. Several
packages were used for the different types or analyses performed: phyloseq [37] and
microbiome [38] for the exploration and analysis of 16s microbiome data, taxonomic profil-
ing, and association tests; ggplot2 [39] and ggpubr [40] for graphical plots visualization;
vegan [41] for communities ecology (diversity analysis, community ordination, and dis-
similarity analysis); DESeq2 [42] for differential OTU abundance testing between groups;
ape [43] and dendextend [44] for the analyses of phylogenetic trees and hierarchical cluster-
ing; knitr [45] for dynamic reports generation. Rarefaction curves were performed prior to
comparative analyses to ensure the sequencing depth was sufficient to describe all present
taxa in all individual flies. Alpha diversity metrics were estimated using the Shannon
diversity index (H) and compared between groups (fly species, trypanosome infected or not,
teneral or not) using the Wilcoxon signed rank test. Principal components analysis (PCoA),
using the Bray–Curtis dissimilarity index and ordination plots, was performed to determine
differences in bacterial communities across samples of different groups, and the differences
were quantified using permutational multivariate analysis of variance (PERMANOVA).
Finally, differential abundance testing was performed to search potential taxonomic groups
that can serve as biomarkers associated with a specific condition, mainly fly infectivity with
trypanosomes, or ability to carry mature trypanosome infections in mouthparts. All tests
considered statistical significance threshold of 0.05.

3. Results
3.1. Tsetse Fly Collection and Trypanosome-Infection Status

A total of 1915 tsetse flies were caught in Campo, among which 1789 (93.3%) were
Glossina palpalis palpalis, 73 (3.8%) G. pallicera pallicera, 47 (2.5%) G. caliginea, 5 (0.3%) G.
nigrofusca, and one fly could not be identified morphologically. The teneral flies accounted
for 5.1%. Among 1054 G. palpalis palpalis, 177 (16.79%) had their midguts infected by at
least one trypanosome species, as revealed by PCR. The most frequent infection found was
Trypanosoma congolense (15.37%), followed by T. brucei s. l. (1.52%), T. vivax (0.47%), and
T. simiea (0.47%). Eleven flies (5.85%) were carrying a mixed infection, and of the 16 flies
infected with T. brucei s. l., one was identified as T. brucei gambiense. Among the infected
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flies, 40 (21.27%) showed the presence of T. congolense DNA in the mouthparts, and these
flies were considered as carrying a mature infection.

3.2. Bacterial 16S rRNA Sequencing Quality and Rarefaction

The V3-V4 hyper-variable region of the bacterial 16S rRNA gene was analysed in
192 individual field-collected tsetse flies, including 132 Glossina palpalis palpalis (72 were
harbouring trypanosome infections in their midguts, of which 32 were carrying a mature
infection), 40 were uninfected G. palpalis palpalis and 20 were teneral, 20 were G. caliginea,
and 20 were G. pallicera (also captured in Campo), and 20 were G. tachinoides (from the
Dodeo animal trypanosome focus in the Adamaoua Region, Cameroon).

A total of 96 million raw reads were obtained from the sequencing company, and
after quality control and filtering, 24 million clean reads remained for subsequent analyses.
Rarefaction curves reached a plateau at around 6000 reads, while the sample with the
smallest number of reads had 40,000 reads, showing that the sequencing effort was sufficient
to characterize most or all the taxa present.

3.3. General Characterization of Bacterial Phyla and Abundances in Tsetse

A total of 85 bacterial OTUs were detected in the 4 tsetse species examined. These
bacterial OTUs belonged to 4 phyla and 31 genera (Supplementary Table S1). Most of the
sequences were identified as belonging to the phylum Proteobacteria (95.04%) and were
present in all the 192 samples. The relative abundance of other bacteria phyla described was
4.45% for Firmicutes, 0.30% for Chlamydiae, 0.08% for Acidobacteria, and 0.13% of sequences
could not be classified in a particular phylum.

The overall bacterial phyla identified were unevenly distributed in the different fly
species, i.e., Proteobacteria represented 99.219% in G. pallicera pallicera, 96.531% in Glossina
caliginea, 94.656% in G. tachinoides, and 94.240% in G. palpalis palpalis (Figure 2).

1 
 

 

 
  

Figure 2. Relative abundance of bacterial phyla in tsetse flies.

3.4. Tsetse Microbiome Composition at Genus Level

The most abundant bacteria genus was Wigglesworthia, the primary symbiont of tsetse
flies with a relative abundance of 47.29%. The other abundant genera found were Serratia
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(16.58%), Pantoae_Klebsiella_Enterobacter_Kluyvera (16.30%), which were highly similar in
their V3-V4 sequences and could not be distinguished, Pseudomonas (6.16%), Staphylococcus
(3.39%), Acinetobacter (2.77%), Stenotrophomonas (2.03%), and Burkholderia (1.38%). The
4.1% remaining were shared by other less-represented genera (Table 1), including 0.93%
being unclassified.

Table 1. Summary of bacterial genera abundance according to the flies’ species.

Genus G. cal.
%

G. pal.
%

G. p. p.
%

G. tach
%

Total
Abundance (%)

Wigglesworthia 47.61 65.64 42.13 62.61 47.29
Serratia 21.70 8.95 18.82 4.33 16.58

Pantoae_Klebsiella_
Enterobac-

ter_Kluyvera
8.10 14.81 19.45 5.18 16.30

Pseudomonas 11.95 4.80 6.16 1.69 6.16
Staphylococcus 2.96 0.69 3.96 2.43 3.36
Acinetobacter 1.78 2.35 2.85 3.62 2.77

Stenotrophomonas 3.97 1.58 2.06 0.39 2.03
Burkholderia 0.01 0 0.03 13.02 1.38

Others 1.87 1.14 4.49 6.69 4.10

Notes: G. cal.: Glossina caliginea; G. pal.: G. pallicera pallicera; G. p. p.: G. palpalis palpalis; G. tach: G. tachinoides.

The bacteria genera described were also unevenly distributed among different tsetse
species and individual tsetse flies. Wigglesworthia displayed an overall abundance of 65.64%
in G. pallicera pallicera, 62.61% in G. tachinoides, 47.61% in G. caliginea, and 42.13% in G. p.
palpalis (Figure 3, Supplementary Table S1). However, this bacterium seems to be replaced
as the predominant symbiont by Pantoae_Klebsiella_Enterobacter_Kluyvera in some G. palpalis
palpalis samples, as T19n12 (96.08%), T19n16 (95.61%), T18n2 (94.95%), and T11n5 (84.3%),
or by Burkholderia in some G. tachinoides samples, including M17 (91.9%), M14 (69.9%), and
M4 (47.18%), or by Serratia in G. palpalis palpalis in samples T40n2 (54.2%), T19n38 (42.21%),
and T31n1 (40.3%) (Supplementary Table S2).
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Globally, concerning the distribution of other abundant bacteria in tsetse fly species,
Serratia was the second most abundant bacterium in G. caliginea (21.7%) followed by
Pseudomonas (11.95%), Pantoae_Klebsiella_Enterobacter_Kluyvera (8.10%), and Staphylococcus
(2.96%). However, in G. pallicera pallicera, Pantoae_Klebsiella_Enterobacter_Kluyvera (14.81%)
was the second most abundant bacterium, followed by Serratia (8.95%), Pseudomonas
(4.80%), and Acinetobacter (2.35%). In G. palpalis palpalis, the trend was similar to G. pallicera
pallicera, with Pantoae_Klebsiella_Enterobacter_Kluyvera (19.45%) in second, followed by
Serratia (18.82%) and Pseudomonas (6.16%); However, here, Acinetobacter was replaced by
Staphyloccocus (3.96%). Finally, in G. tachinoides, Burkholdderia, while completely absent in G.
pallicera and very less represented in G. palpalis palpalis and G. tachioides, was the second
most abundant bacteria (13.02%) followed by Pantoae_ Klebsiella_ Enterobacter_ Kluyvera
(5.18%), Serratia (4.3%), and Acinetobacter (3.62%). Some bacteria, such as Cupriavidus, were
only present in G. palpalis palpalis, while Orbus, Vagococcus, and Dechloromonas were only
present in G. palpalis palpalis and G. pallicera pallicera.

3.5. Bacterial Genera Diversity in Tsetse Flies (Alpha-Diversity)
3.5.1. Diversity in Tsetse Species

Bacterial genera richness and evenness were significantly different between tsetse
species (Figure 4; p-value = 0.0062). Briefly, the gut microbiota of G. p. palpalis was
significantly richer in genera compared to that of G. pallicera (p-value = 0.0072). However,
no significant difference was observed when comparing G. palpalis palpalis and G. caliginea
(p-value = 0.9554), G. tachinoides and G. caliginea (p-value = 0.9554), G. tachinoides and G.
pallicera (p-value = 0.4960), and G. tachinoides and G. palpalis palpalis (p-value = 0.3792).
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palpalis; Gcal: G. caliginea; Gpal: G. pallicera pallicera).

3.5.2. Diversity in Non-Teneral and Teneral Glossina palpalis palpalis

In non-teneral tsetse flies of the species G. palpalis palpalis, the top represented bacteria
were Wigglesworthia (37.10%), Serratia (20.97%), Pantoae_Klebsiella_ Enterobacter_Kluyvera
(20.51%), Pseudomonas (6.99%), and Staphyloccocus (4.44%), while teneral flies were domi-
nated by Wigglesworthia (70.30%), Pantoae_Klebsiella_Enterobacter_Kluyvera (13.52%), Serratia
(6.79%), Acinetobacter (3.21%), and Pseudomonas (1.52%). Orbus and Burkholderia were found
only in non-teneral flies (Supplementary Table S3). In summary, the abundance of Wig-
glesworthia in flies decreased, whereas the abundance of most of other bacteria genera
increased through the process of blood feeding, and the whole microbiome diversity of
teneral flies was lower than that of non-teneral flies (p-value < 10−4) (Figure 5).
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3.6. Multivariate Analysis (Beta Diversity)

No clear separation or clustering of flies’ microbiome composition was observed
according to their species, as shown by the principal coordinate analysis (PCoA) performed
using the Bray–Curtis dissimilarity index (Figure 6). Nevertheless, the level of dissimilarity
was significant after the permutational analysis of variance (PERMANOVA), showing a
difference in the composition of the fly microbiota in different tsetse species (p-value = 0.01).
The community structure and composition of the microbiota of Glossina palpalis palpalis was
substantially different from that of G. caliginea (p-value = 0.048) and G. pallicera pallicera
(p-value = 0.012). However, G. caliginea, G. pallicera pallicera, and G. tachinoides had a similar
pattern in their microbiota when compared to each other (p-value values of 0.64; 0.94 and
0.70, respectively).
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Figure 6. Distribution of the tsetse flies according to their microbiome composition, based on principal
coordinates analysis using Bray–Curtis index (Gcal: G. caliginea; Gpal: G. pallicera pallicera; Gpp: G.
palpalis palpalis; Gtach: G. tachinoides).

In Glossina palpalis palpalis, although a great diversity was observed in the microbiome
composition of non-teneral flies, most of the teneral ones clustered together on the PCoA
plot, showing that they have a similar composition in the bacterial genera present, as well
as their abundances (Figure 7). Moreover, a significant difference in beta diversity was
observed between non-teneral and teneral tsetse flies (p-value = 0.01).
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Figure 7. Distribution of tsetse fly samples according to their microbiota composition, based on
principal coordinates analysis using the Bray–Curtis index, in non-teneral and teneral flies (NT:
non-teneral; T: teneral).

3.7. Bacterial Communities in Glossina palpalis palpalis Infected and Non-Infected Flies

Globally, no statistically significant difference was observed when comparing bacteria
richness and evenness between G. palpalis palpalis flies harbouring trypanosomes in their
midgut and non-infected flies (Shannon index, p-value = 0.8), as shown in the Figure 8.
However, within the infected tsetse flies, a significant difference was observed between
samples harbouring a mature trypanosome infection and without infections in the mouth-
parts (Shannon index, p-value = 0.031). This result suggested a similar diversity for midgut
infected and non-infected flies, that seemed to change when the infection become mature.
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Figure 8. Tsetse microbiome alpha diversity regarding trypanosome infection status (MGInf: midgut
infected; MGNInf: midgut non-infected; HNinf: head non-infected; Hinf: Head infected).

Regarding the beta diversity, the tsetse flies studied had similar microbiome composi-
tion (taxa richness and abundance) regardless of if they harboured trypanosome infections
in their midguts or not, confirmed by the PERMANOVA test (p-value = 0.84). However,
comparing the microbiome composition of the flies harbouring a mature trypanosome
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infection and those only infected in the midgut, a significant difference was observed
(Figure 9, PERMANOVA p-value = 0.02). 

3 

 

Figure 9. Distribution of tsetse fly samples according to their microbiome composition, based on
principal coordinates analysis using the Bray–Curtis index, within trypanosome infection status:
(A) midgut infection, (B) mature infection (MGInf: midgut infected; MGNInf: midgut non-infected;
Hinf: head infected or mature infection; HNinf: head non-infected).

Furthermore, the hierarchical clustering using the Bray–Curtis dissimilarity index
clearly showed a similarity in microbial communities of flies according to infection sta-
tus (midgut infection and mature infection), despite the high variability observed in the
different groups and no clear “higher-level” clustering of infected flies on one hand, and
uninfected ones on the other hand (Figure 10).
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Looking deeply at the difference in the diversity of the tsetse flies harbouring try-
panosome infections in their midguts or mature and non-mature infections, differential
abundance testing showed many OTUs presenting significantly different abundances, as
summarized in the Tables 2 and 3. Indeed, numerous genera and OTUs contributed to
differences between samples with high fold change, the most important being Dechloromonas,
Ralstonia, Listeria, Kinneretia_Roseateles_Pelomonas_Mitsuaria, Enhydrobacter, and Staphylococcus.

Table 2. Operational Taxonomic Units displaying a significant difference in abundance between
tsetse flies with midguts non-infected vs. infected with trypanosomes.

OTUs Genus (Percentage/Num OTUs
in the Genus) * Base Mean log2 Fold

Change lfcSE Statistic p-Value

OTU37 Dechloromonas (100/1) 21.44 −25.44 2.3 −11.06 0.0000
OTU49 Ralstonia (100/1) 19.88 −10.58 1.67 −6.33 0.0000
OTU14 Listeria (100/1) 283.11 −5.41 1.08 −5.01 0.0000
OTU28 Aquabacterium (79.12/2) 46.11 −7.76 1.99 −3.9 0.0001
OTU25 Bacillus (53.62/3) 38 −2.98 0.9 −3.31 0.0009
OTU24 Methylophilus (24.65/2) 11.6 −6.3 2.25 −2.8 0.0051

OTU70 Kinneretia_ Roseateles_
Pelomonas_Mitsuaria (100/1) 11.36 −4.37 1.59 −2.74 0.0061

OTU33 Pseudomonas_ Escherichia (100/1) 9.31 −2.98 1.19 −2.51 0.0120
OTU45 Pseudomonas (0.36/3) 4.66 −5 2.11 −2.37 0.0179
OTU63 Cupriavidus (40.19/2) 3.25 −4.82 2.18 −2.21 0.0273
OTU27 Enterococcus (70.41/3) 5.99 −5.36 2.52 −2.13 0.0334
OTU18 Wigglesworthia (0.25/2) 15.97 4.57 0.84 5.43 0.0000
OTU55 Serratia (0.14/2) 10.16 3.39 0.96 3.51 0.0004
OTU40 Staphylococcus (1.85/7) 44.63 5.48 1.89 2.9 0.0037

* Percentage of the OTU/number of OTUs for the genus concerned; lfcSE: log2 fold change standard error.

Table 3. Operational Taxonomic Units displaying a significant difference in abundance between
tsetse flies with non-mature vs. mature infection with trypanosomes.

OTUs Genus (Percentage/Num OTUs
in the Genus) * Base Mean log2 Fold

Change lfcSE Statistic p-Value

OTU29 Staphylococcus (6.19/7) 7.85 −24.84 2.92 -8.51 0.0000
OTU55 Serratia (0.14/2) 1.59 −3.02 1.32 -2.28 0.0224
OTU49 Ralstonia (100/1) 21.57 −3.88 1.77 -2.19 0.0286
OTU16 Enhydrobacter (100/1) 238.65 2.66 0.84 3.15 0.0016
OTU25 Bacillus (53.62/3) 37.31 2.35 1.07 2.19 0.0287

* Percentage of the OTU/number of OTUs for the genus concerned; lfcSE: log2 fold change standard error.

4. Discussion

The description of microbiota harboured by arthropod vectors presents increasing
interest, owing to their role in modulating vector fitness or competence and their potential
use in vector control. Although most studies on the tsetse fly vector of human and animal
trypanosomiases have mainly described the microbial diversity in tsetse fly guts, few have
either looked at the microbiome in the whole fly or have established strong associations
between the microbiome composition and the maturation of trypanosomes in the flies.
In the present study, we conducted a high throughput sequencing of the V3–V4 region
of the bacterial 16S rRNA gene in the tsetse fly Glossina palpalis palpalis, the main vector
of human sleeping sickness in the forest area of Cameroon. We included a few samples
of three additional tsetse species in order to make a complete inventory of the microbial
communities they harbour. Bacterial taxa associated with the infection of tsetse with
trypanosomes, or the maturation of these later, were also investigated.
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4.1. Abundances of Bacterial Taxa in Whole Tsetse Fly Bodies

Using whole tsetse fly bodies, a total of 85 OTUs, belonging to 32 bacterial genera, were
identified in 4 phyla. They were largely dominated by the phylum Proteobacteria, with a
mean relative abundance of 95.04%. This observation is consistent with other earlier studies
showing the predominance of this phylum (~90%) in the guts of tsetse flies [17,21,46]. Such
predominance is due to the high relative abundance of the primary symbiont Wigglesworthia
that represented 47.29% of the total microbiome and other taxa like Serratia (16.58%),
Pantoae_Klebsiella_Enterobacter_Kluyvera (16.30%), and Pseudomonas (6.16%). This result
is not surprising, since Proteobacteria species are known to easily adapt and develop in
different biotopes. The high abundance of the primary mutualist symbiont of tsetse flies,
Wigglesworthia, corroborates the result reported in previous studies [47]. However, the
relatively lower abundance of Wigglesworthia found in the present study (47% of the tsetse
gut bacteriome) compared to previous studies (90–99%) is probably due to the fact that
whole fly bodies were investigated here, rather than the midgut only. Wigglesworthia may be
predominant in the midgut, whereas the other taxa may be more abundant in other tissues;
this result suggest that the abundances of other bacteria taxa were largely underestimated
in the previous studies, where midguts only were used for the analysis. Despite that
Wigglesworthia was the predominant bacteria in most of the flies, some Glossina palpalis
palpalis individuals were dominated by Pantoae_Klebsiella_Enterobacter_Kluyvera or Serratia,
and some G. tachinoides were dominated by Burkholderia. Members of the genus Burkholderia
are widespread in soil rhizospheres and plant surfaces, and some species are known to be
associated with insects feeding on plants [48–50]. A previous study reported that tsetse flies
may ingest bacteria present on the epidermis of a variety of vertebrates [27] or in plants’
nectar when they feed [51,52]. Although infection by Burkholderia is non-essential for growth
and reproduction of the mosquito [53], for example, association studies revealed mutualistic
relationships with insect, where the symbiont presence increases the insect fitness or
protects the insect from entomopathogenic fungi [50,54]. On the other hand, Pantoea has
been shown to cross-colonise several mosquito species and is readily transformed and
cultured, and therefore, has been proposed for paratransgenic applications [55]. Further
investigations on these predominant bacteria dynamics throughout the tsetse fly life cycle
are required to better define the nature of the microbe–fly association. Serratia was detected
in more than 90% of the flies in our study, with an overall abundance of 16.58%; this was
not expected, since this bacterium has been previously reported in only around 50% of flies
by Jacob et al. [17] and with only 0.0012% abundance by Tsagmo-Ngoune et al. [20]. This
observation strengthens the hypothesis that fly tissues other than those in the midgut are
key localizations for bacteria development, and the potential importance of this bacteria
deserves to be further investigated.

4.2. General Microbiome Diversity in Tsetse Flies

Bacterial taxa richness and evenness were different between tsetse fly species. The
microbiota composition of G. palpalis palpalis and G. caliginea were significantly more
diverse and evenly distributed compared to that of G. pallicera and G. tachinoides. This
result may be due to the differences in the environmental conditions of these different tsetse
species and in the food supply from which some of these microbes originate, as suggested
previously [23,56]. Moreover, differences in the gut physiological conditions and/or the
fly’s innate immune system may impair the proliferation of some bacterial taxa in different
fly species, modulating the composition of microbial communities, as suggested in studies
on mosquitoes [57]. This observation concurs with the significant difference detected in
the alpha and beta diversities when comparing non-teneral and teneral G. palpalis palpalis,
indicating that blood meals have a significant impact on the tsetse microbiome. Indeed,
an increase in the relative abundance of Pantoae_Klebsiella_Enterobacter_Kluyvera, Serratia,
Pseudomonas, Staphyloccocus, Methylophilus, and other bacteria from teneral to non-teneral
flies was concomitant with a decrease in Wigglesworthia from 70% in teneral flies, to 37%
in non-teneral flies. A similar result was observed in blood-fed ticks compared to unfed



Microorganisms 2022, 10, 1141 14 of 18

ticks [58]. However, more work is needed to obtain a complete and accurate picture of the
bacteria associated with blood meals of the tsetse fly and to understand how and why these
bacteria establish in their hosts.

4.3. Microbiome of Trypanosome Infected and Non-Infected Glossina Palpalis Palpalis

Although no significant difference was observed when comparing bacteria richness
and evenness between flies harbouring trypanosomes in their midguts and non-infected
flies, the abundances of some bacteria taxa were nevertheless different in the two groups.
This result is consistent with previous results obtained by Jacob et al. [17] and Tsagmo-
ngoune et al. [20] on the same tsetse species in Cameroon. However, alpha and beta
diversities of the tsetse microbiome were significantly different between flies harbouring
mature trypanosome infections and those with only non-mature infection in the midgut.
Indeed, a significant drop was observed in the alpha diversity of flies with mature try-
panosome infection, and this observation was strengthened by hierarchical clustering of
these flies, at least at low levels, distinguishing them from those with non-mature try-
panosome infections. Differential abundance testing showed some bacteria phylotypes
from the genera Dechloromonas, Ralstonia, Serratia, Pseudomonas, Enteroccocus, Wigglesworthia,
Methylophilus, Escherichia, Enhydrobacter, and Staphyloccocus associated with the infection
status of flies. The roles of these bacteria genera in tsetse fly biology remain unknown and
poorly documented in other insects. Enterobacter, Escherichia coli, Serratia marcescens, and
Enterococcus spp. are able to produce toxic molecules with potential antiparasitic activity
(such as prodigiosin [59]) that were shown to be toxic to Plasmodium falciparum [60] and
to Trypanosoma cruzi [61]. However, Serratia odorifera was shown to enhance the suscep-
tibility of Aedes aegypti to the chikungunya virus [62], as well as its susceptibility to the
dengue-2 virus [63]. In addition, the genus Bacillus is thought to be essential for Culex
pipiens reproduction [64], and some species were shown to play a role in the digestion of
polysaccharides and aromatic compounds such as chitin and lignocellulose in termites [65].
Pseudomonas aeruginosa are known to play an important role in mosquito Culex quinque-
fasciatus and Culex tarsalis adaptation to hypereutrophic aquatic habitats [66]. Therefore,
based on the importance of different bacteria taxa in other insects, further investigations
into their potential roles in tsetse fly biology, or their interaction with the trypanosomes
that these flies transmit, are required. Moreover, the identification of Wigglesworthia OTU
18 and Serratia OTU 55 associated with the tsetse fly infection, rather than the predominant
OTUs (OTU 01 and OTU 03, respectively, for the two genera), further justifies the fact that
vector competence might be linked to given bacterial genotypes or their abundance, as
previously suggested by Geiger et al. [13], rather than simply the presence/absence of the
bacteria taxa.

The endosymbionts Sodalis glossinidius and Wolbachia, commonly reported in tsetse
flies [17,56,67], could not be described in this study, since they were eliminated by the abun-
dance threshold of 0.01% set for the analyses. These symbionts are known to be involved
in modulating the ability of the tsetse fly to acquire trypanosomes [68,69] and to induce a
variety of reproductive phenotypes, such as cytoplasmic incompatibility, parthenogenesis,
and feminization, into the host population, respectively [70,71]. As these symbionts exhibit
a wide tissue tropism and can be found intra or extra-cellularly in various tissues, including
the midgut, fat body, milk gland, salivary glands and hemocoel [12,72], it is probable that
they have a generally low relative abundance, which is a constraint to their identification
and thus, a limitation to the NGS method used.

5. Conclusions

The present study provides some updates on the composition and diversity of the
tsetse fly microbiota in Cameroon. Of the 192 individual tsetse flies, the metagenomic anal-
ysis performed resulted in the detection of 85 OTUs belonging to 31 bacterial genera and
4 phyla. The current study, using the whole fly body, revealed a higher bacterial diversity
than previously observed in the midgut only, which indicates that various localizations
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other than the midguts should be considered in further investigations of the tsetse fly
microbiome. Moreover, the significant difference in microbiome diversity between flies
harbouring mature and non-mature trypanosome infections suggests either a change in
microbiome diversity and composition for infection maturation, or that trypanosome matu-
ration is possible only with the particular abundances of some microbial taxa. Therefore,
the strong association between some identified bacteria genera and trypanosome infection
status deserves additional investigations for the development of novel tools to control
disease transmission by blocking the trypanosome development in tsetse flies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10061141/s1, Table S1: Summary of bacterial
abundances in different individual tsetse samples; Table S2: Bacterial genera abundance according to
the flies’ species; Table S3: Summary of bacterial genera abundance in different groups of tsetse flies.
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