
ARTICLE

Evolutionary action of mutations reveals
antimicrobial resistance genes in Escherichia coli
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Since antibiotic development lags, we search for potential drug targets through directed

evolution experiments. A challenge is that many resistance genes hide in a noisy mutational

background as mutator clones emerge in the adaptive population. Here, to overcome this

noise, we quantify the impact of mutations through evolutionary action (EA). After

sequencing ciprofloxacin or colistin resistance strains grown under different mutational

regimes, we find that an elevated sum of the evolutionary action of mutations in a gene

identifies known resistance drivers. This EA integration approach also suggests new antibiotic

resistance genes which are then shown to provide a fitness advantage in competition

experiments. Moreover, EA integration analysis of clinical and environmental isolates of

antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach

fails. Together these results inform the genetic basis of de novo colistin resistance and

support the robust discovery of phenotype-driving genes via the evolutionary action of

genetic perturbations in fitness landscapes.
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The emergence of de novo antibiotic resistance is part of a
slowly unfolding healthcare crisis wherein common
infections, minor injuries and simple medical procedures

could be deadly due to the infection of antibiotic-resistant strains.
It is therefore important to find the basis of de novo antibiotic
resistance to guide better treatment, to extend the life of current
drugs, and to create drugs against new targets. For instance,
although colistin is the drug of last resort against multi-drug
resistant gram-negative bacterial infections1, the emergence of a
mobile colistin resistance gene (mcr) threatens its use2. Interest-
ingly, despite the global spread of mcr genes, the mcr−1 gene
made up only 4.6% of Parisian sequenced isolates that were
resistant, suggesting other resistance mechanisms are present3.
Hampering clinical sequencing from finding which mutations
drive clinical outcomes are a combination of sequencing artifacts,
poor coverage, imprecise reference genome and noisy mutational
background4,5. The genetic basis of antibiotic resistance remains
incomplete and slows progress towards better patient outcomes
and new therapeutics for resistant bacteria6.

In contrast to the uncontrolled variables inherent to natural
populations, adaptive laboratory evolution (ALE) experiments
provide precise control over the system (selection conditions,
population size, genetics of the founding population) and the
ability to store clones in stasis for later study. When coupled with
the ability to sequence and edit DNA, ALE speeds the rigorous
testing of specific mutations for their role in fitness7–9. Here, we
develop a new method, called evolutionary action (EA) integra-
tion, to analyze the adaptive laboratory evolution of antibiotic-
resistant E. coli in order to identify new genes contributing to
colistin resistance.

Normally, when E. coli grows in an environment to which it is
well-adapted, mutations are rare (a rate of ~10−3/genome/
generation)10 and adaptive mutations are easily identified from
parallel experiments since, in a large population, the probability
of a same gene mutating in independent cultures is also small11.
However, mutation rates are not actually uniform across the
population and mutator clones that are DNA replication fidelity
deficient often arise to greatly increase the number of mutations
observed during an adaptation experiment12–14. This phenomenon
is not idiosyncratic to laboratory selection as these mutators are
also observed in clinical isolates and cancer cell populations
undergoing natural selection15,16. In these highly mutagenic cir-
cumstances, fitness-improving mutations can become obscured by
the large bulk of passenger mutations12 which become genetically
linked to beneficial mutations17. The inability to uncouple driver
mutations from the background is in part due to the assumption
that all mutations, prior to selection, have an equal probability of
contributing to some phenotype. It is under these highly mutagenic
situations that we apply our approach that differentially scores the
mutational impact of mutations observed in a gene and determines
the probability of seeing those mutations against a background of
random mutations.

In order to differentially score nonsynonymous mutations we
quantify the functional impact of coding mutations with evolu-
tionary action (EA)18. The EA score of a mutation is a product of
two terms. The first term accounts for the magnitude of an amino
acid substitution at the position of interest. This is the step-size of
the mutation in the fitness landscape, and it is approximated from
substitution matrices (e.g. a serine to threonine substitution is
more frequent and thus a smaller step in sequence space than
a serine to tryptophan substitution). The second term is the
functional sensitivity of a sequence position to amino acid sub-
stitutions. This sensitivity is the slope of the fitness landscape at
that position, and it is approximated by Evolutionary Trace
analysis, which ranks the positions of a protein sequence by the
extent to which their variation correlate with large or with small

divergences in the phylogenetic tree of that protein family19 (e.g.
a position that varies only between distant evolutionary clades
will have a large slope, and one that varies among evolutionary
tree neighbor species will have a small slope). The product of
magnitude times sensitivity, or step-size times slope, is the fitness
effect of a mutation, which we call the evolutionary action (EA).
Thus, EA interprets the functional impact of a coding variant in
light of all past homolog variations and divergences tallied in
sequence databases. Our hypothesis is that adaptive gene muta-
tions necessarily impact function and thus will be biased to larger
EA scores than random mutations.

In this work, we utilize the power of E. coli genetics to test this
causal relationship between genes under selection pressure and
elevated EA scores and to validate several new mediators of colistin
resistance. These results lend support to the use of EA to unravel
the genotype-phenotype relationship in fitness landscapes20–22.

Results
ALE of ciprofloxacin and colistin resistant E. coli. To thor-
oughly probe the fitness landscape, we passaged E. coli in the
presence of either ciprofloxacin or colistin at three different
mutation rates and sequenced the surviving populations (Fig. 1a).
The base mutation rate of wild type E. coli MG1655 (WT) was
elevated by either nucleotide analogs, 2-aminopurine and zebu-
larine, (WT+mutagen)23 or, genetically, through disabling
mismatch repair (ΔmutL::zeoR) and mismatch proofreading from
DNA polymerase III (mutD5; mutator)24,25. Within 18 days,
most cultures displayed antibiotic resistance above the epide-
miological cut-off of either ciprofloxacin (0.5 μg/mL) or colistin
(2 μg/mL) (EUCAST) with some surviving at concentrations
1000-fold higher than initial inhibitory levels (Fig. 1b–g). DNA
was extracted and sequenced from the evolved cultures and the
nonsynonymous and nonsense mutations used in our analysis
were determined (Supplementary Data 1, raw sequencing data
available at SRA PRJNA543834).

We first estimated the coding region mutational rate to assess
the mutational load of each condition. Note that we sequenced
the evolved cultures, so more mutations are expected relative to
sequencing individual clones from the cultures. The WT cultures
average 0.2 coding region mutations per round of selection.
Exposure to the mutagens raised the rate sevenfold to 1.4
mutations per round. In the mutator strains, the rate of mutation
accumulation was extremely high with an average of 30.6
mutations per round for ciprofloxacin and 17.7 for colistin
(Fig. 1h). The WT+mutagen and mutator regimes increased the
mutational frequencies over wild type by approximately one and
two orders of magnitude, respectively. At these higher rates, we
anticipated most mutations would be hitch-hikers with minimal
impact on fitness and thereby are expected to have low EA scores.

We next computed the evolutionary action (EA) scores
corresponding to amino acid substitutions in E. coli K12
MG1655 protein-coding genes. For the sensitivity term of the
EA, Evolutionary Trace (ET) scores of amino acid position
importance were generated for 4169 of the 4374 proteins in E. coli
MG1655 genome. Thereby, approximately 95% of genes have
sequenced homologs available to yield ET scores. For the
mutational magnitude term, the log-odds ratio of amino acid
replacement was previously determined using 67,000 multiple
sequence alignments and corresponding ET scores for proteins
deposited in the Protein Data Bank18.

Using the E. coli MG1655 EA scores, we established a random
background distribution for mutations that have not undergone
a selective pressure for enhanced fitness. We avoid direct
selection pressure by collecting non-synonymous mutations from
in-silico simulated random mutations. The EA distribution of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30889-1

2 NATURE COMMUNICATIONS |         (2022) 13:3189 | https://doi.org/10.1038/s41467-022-30889-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


these non-synonymous mutations decays exponentially and is
biased toward low impact EA scores (Supplementary Fig. 1a). This
enrichment of low impact mutations is consistent with the inherent
robustness in the genetic codon code, whereby biochemically
similar amino acids are encoded by similar codons26. Comparing
this background EA distribution to WT ALE samples under either
ciprofloxacin or colistin selection shows an enrichment for high EA
scores (Fig. 1i, l). Because these samples have few mutations, those
which arise are expected to be impactful and play a role in
adaptation to the antibiotic. In the WT+mutagen regime, the
evolutionary action distributions shift towards lower EA scores
which is consistent with an increase in random mutations (Fig. 1j,
m). In the mutator strain samples, the distribution reverts to an

exponential decay pattern similar to the random background
(Fig. 1k, n) suggesting that most of the observed mutations
are hitchhikers and do not contribute to antibiotic resistance.
The exponential decay pattern observed in the in silico and in the
mutator strain is, as we discuss later, consistent with prior models
of mutational displacements in the fitness landscape27.

EA integration predicts known antibiotic resistance genes. The
observation that randomly simulated nonsynonymous mutations
trend towards low EA values while mutations observed in the
ALE of MG1655(WT) tend to have high EA values supports our
hypothesis that individual genes which contribute to antibiotic

Fig. 1 Experimental evolution. a Flow chart showing how cultures are challenged to grow in minimum inhibitory concentrations (MIC) of an antibiotic
(Abx) as determined by a culture optical density at 600 nm (OD600) of greater than 0.4. b–g The change of ciprofloxacin dosage levels or colistin dosage
for the adapting populations over time during the evolution experiment. The populations included (b) E. coli MG1655 (WT, black lines) grown in the
presence of ciprofloxacin (n= 14), (c) E. coli MG1655 grown in the presence of nucleotide analogs (WT+mutagen, blue lines) and ciprofloxacin (n= 15),
(d) a highly mutagenic E. coli mutD5 ΔmutL::zeoR (mutator, red lines) grown in the presence of ciprofloxacin (n= 29), e E. coli MG1655 grown in the
presence of colistin (n= 17), (f) in the presence of nucleotide analogs and colistin (n= 20) and (g) E. coli mutD5 ΔmutL::zeoR grown in the presence of
colistin (n= 31). Each culture’s data set was iteratively offset 1% to help visualization of overlapping lines. h Each data point represents the number of
nonsynonymous + nonsense mutations observed in whole-genome sequencing that has allele frequency above 0.1 in a sample divided by the day of
collection (typically day 14). Statistical significance determined by two-tailed t-test with Bonferroni adjustment. Sample sizes and color scheme are the
same as in panels b–g. i–n Distribution of EA scores observed across the populations sequenced in panels b–g. Bar colors correspond to panels b–g with the
exception of nonsense mutations which are shown as stacked gray bars. The dashed curves represent the expected exponential decay curve generated
from in silico random mutations (Supplementary Fig. 1a). Source data are provided as a Source Data file.
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resistance will likewise be enriched for functionally impactful
mutations and therefore be characterized by elevated EA. Indeed,
positive control genes well-known for ciprofloxacin resistance,
such as gyrA, and parE, or colistin resistance, such as basS and
basR, are statistically enriched (Kolmogorov–Smirnov (KS) test)
for substitutions with greater EA values than the simulated ran-
dom mutation background (Fig. 2a–d). The differences between
mutational EA profiles of individual genes and the simulated
background can be measured by the EA scores integrated over the
ensemble of mutations and, in practice, can be quantified by
the nonparametric KS test (EA-KS) or the sum of EA scores
(EA-sum). For each antibiotic selection and mutational load, the
EA-KS and EA-sum integration procedures rank every gene by
the overall deviation from random of their mutations (Supple-
mentary Data 2). For the ALE of MG1655(WT), only 24 genes
have nonsynonymous mutations across the 14 replicates and 3 of

5 mutated ciprofloxacin resistance drivers are the top three genes
ranked by EA-sum. For the ALE of WT+mutagen, 285 genes
across 15 replicates have nonsynonymous mutations and 6 of 7
mutated ciprofloxacin drivers are in the top 30 ranked genes. For
the mutator strain, 3440 genes (~80% of protein-coding genes)
have at least one nonsynonymous mutation across 29 replicates
and yet 7 of 8 known drivers are in the top 2% of ranked genes
(Supplementary Fig. 2). Finally, to generate high-confidence testable
predictions for each antibiotic selection, we utilized an aggregation-
ranking method based on order statistics28(Supplementary Data 2)
that combines rankings across the three mutational regimes. This
yielded the overall EA-KS and EA-sum rankings of mutated genes
shown in Fig. 2e–h for each antibiotic selection condition.

In order to assess these gene rankings, we asked if they
recovered the known gene drivers for ciprofloxacin and colistin
resistance. Specifically, genes known to mediate chromosomally-

Fig. 2 Known drivers of resistance have non-random EA integrals and are frequently mutated across cultures. a–d The EA distributions of known drivers
parC, gyrA, basS or basR mutations compared to randomly simulated mutations (gray bars, 63,507 randomly simulated coding mutations) with results of
one-sided Kolmogorov-Smirnov (KS) test shown. The number of mutations observed in each gene and mutational conditions are label in the figure. For
visual comparison, the simulated mutations bars were scaled to the mutation count observed for each gene in each mutation load. The parC and gyrA
profiles are from the ciprofloxacin dataset while basS and basR are from the colistin dataset. Black, MG1655; Blue, MG1655+ nucleotide analogs; Red,
mutator strain. e–h The combined rankings are plotted for ciprofloxacin or colistin datasets using either a KS test (EA-KS) or the mutation rate adjusted
summation of EA scores (EA-sum). Genes previously shown to contribute towards either ciprofloxacin resistance (e, f) or colistin resistance (g, h) are
shown in orange and labeled with rank. Source data are provided as a Source Data file.
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encoded ciprofloxacin resistance include: the antibiotic’s targets
(gyrA, gyrB, parC and parE), regulators of drug efflux (acrR, marR
and soxR) and altered porin function (ompF)29. Strikingly, apart
from gyrB and marR, all six remaining gene drivers are the top six
ranked by EA-KS (Fig. 2e). EA-sum performed slightly better by
recovering gyrB in the top 10 ranked genes (Fig. 2f). Less is
known about the drivers of colistin resistance, but two drivers of
colistin resistance in E. coli encode the BasR/BasS two-component
system (also known as PmrA/PmrB)1. These genes were ranked at
the top two positions by both EA methods (Fig. 2g, h). These data
show EA integration can recover known antibiotic resistance
genes from genome sequencing despite a noisy background
dominated by hitch-hiker mutations.

EA integration and frequency-based methods agree on top-
ranked genes. We further compared EA integration to a con-
ventional approach that ranks genes based on the probability that
their observed mutational frequency deviates from average. Genes
mutated during several parallel experiments are more likely to be
driving the phenotype under selection. However, longer genes
have a higher chance of mutating and ignoring gene length can
cause longer genes to emerge as false positives, as seen in early
attempts to identify drivers from cancer exomes30. Thus, our
frequency-based method is normalized to gene length. As with
the EA ranks, the frequency-based rankings were aggregated to
generate an overall rank for either the ciprofloxacin or the colistin
selection experiments. The orthogonal EA integration and
frequency-based method agree well (Fig. 3, Supplementary Fig. 3,
Supplementary Fig. 4 and Supplementary Data 2) and correctly
place most known drivers of resistance at the top of their
respective gene list.

Contribution of specific mutations to ciprofloxacin resistance.
In addition to recovering the well-known driver genes, it is pos-
sible that additional top-ranked genes contribute to antibiotic
resistance. Therefore, we sought to experimentally test genes
ranked highly by EA integration (here EA-KS), ranked highly by
frequency statistics, or ranked highly by both methods (Fig. 3a, b).
In general, the specific mutations we tested experimentally have
midrange (30–70) to high (70–100) EA scores which are predicted
to impact protein function (Supplementary Table 1) and are found
in evolutionary important sites, as characterized by Evolutionary
Trace19 (Supplementary Fig. 5). We used P1 transduction to revert
putatively adaptive mutations in the gene of interest in the evolved
strains in order to test that specific variant’s contribution to fitness
in the genetic context in which it was found. We then conducted
competition experiments between the evolved clone and it’s
revertant in the presence of the antibiotic that it was adapted.

As positive controls, all the tested mutations in highly-ranked
known ciprofloxacin resistance driver genes, gyrA, ompF, parE, and
parC31, had a significant effect on fitness (Fig. 3c). As a negative
control, a gene ranked low by all methods, hemX, had no detectable
influence on fitness in the presence of ciprofloxacin. Competition
in the presence of ciprofloxacin indicates the rob A70V mutation
has a strong influence on fitness (Fig. 3c). This result corroborates
previously observed correlations between rob mutations and
ciprofloxacin resistance32,33. Closer examination of ET ranks
mapped on the rob structure shows that, while position 70 is not
predicted to be evolutionarily important, it lies directly adjacent to
an evolutionarily important site (Supplementary Fig. 5d). Account-
ing for structural context has been shown to improve ET scores and
may be able to improve future calculations of EA scores as well34.
One other high-ranked gene, udk, has not been previously
associated with ciprofloxacin resistance but here shows a small
but statistically significant contribution towards fitness in the

evolved clone (Fig. 3c). The udk gene is involved in nucleotide
metabolism and 29 of 30 mutations in udk were observed in
samples with WT+mutagen condition (this includes both
ciprofloxacin and colistin ALE samples). This observation suggests
a role in adapting to the presence of the mutagens rather than to
either ciprofloxacin or colistin. We also found that the udk
mutation imparts a similar fitness effect when competing in rich
media alone, further indicating its fitness effect acts independently
of ciprofloxacin (Supplementary Fig. 6). For the ciprofloxacin-
resistant cultures, none of the other tested mutations in rstB, yrbG,
sbcC, mutL or pdxY had a measurable impact on fitness using our
competition assay. It should be noted that the evolved clones with a
mutL A271V mutation likely have an elevated mutation rate as
several new mutations appeared that were unique to individual
transductants (Supplementary Data 3). Although the mutL
mutation did not show a direct contribution to fitness in the
presence of ciprofloxacin, an elevated mutation rate has previously
been shown to potentiate adaptation17,35–39 and may have been
helpful in adapting to the daily increase in ciprofloxacin
concentrations during our selection experiment.

We also examined the minimum inhibitory concentration
(MIC) of ciprofloxacin for each of the revertants. Only gyrA
S83L and parC A30V revertants reduced MIC levels greater
than 2-fold (Supplementary Table 2). This is likely due to the
lower sensitivity of the MIC assay relative to the competition
experiments. We also transferred several of the tested mutations
into the wild type MG1655 background to determine if any are
sufficient, on their own, to confer ciprofloxacin resistance. Only
the gyrA S83L mutation is sufficient to confer resistance up to
0.512–1.024 µg/ml. Also, although reversion of parC A30V in
the evolved DCM292 strain reduces resistance levels fourfold to
1.024 µg/ml, parC A30V in the MG1655 background does
not confer any detectable resistance in our MIC assay. This
agrees with previous results showing parC mutations only
increases fluoroquinolone resistance in the presence of a gyrA
mutation40. Overall, the competition assay results show that we
can distinguish between mutations that specifically contribute
to ciprofloxacin resistance from those that have no direct fitness
effects or influence fitness independently from the presence of
ciprofloxacin.

Identification of several new driver genes for colistin resis-
tance. Mutations in the basS/basR two-component system are the
most common cause of de novo colistin resistance in E. coli, were
mutated at least once in each of the ALE samples, and are top
ranked by both EA-KS and frequency (Fig. 3b). Competition
experiments between the evolved strains and basS or basR wild
type revertants confirmed these two genes contributed to colistin
resistance in our ALE samples (Fig. 3d). In addition, in several
evolved clones isolated from independent ALE cultures, reverting
just the basR or basS gene to wild type was sufficient to return the
evolved strain’s colistin MIC similar to E. coli MG1655 levels
(Supplementary Table 3). This indicates that basR and basS
mutations are necessary for colistin resistance in the evolved
clones. In addition, basS/basR mutations from the evolved strains
were sufficient to increase the MIC of MG1655 from 0.125 to 16
μg/mL. Although the BasR/BasS 2-component system is critical to
de novo colistin resistance, additional mutations in other genes
may also be contributing.

Several highly ranked genes in the colistin resistance dataset have
no previous association with antibiotic resistance (Fig. 3b). This
could be due to a poorer understanding of how colistin resistance
arises de novo. The genes lpxD, asmA, lapB, ispB, waaQ and ybjX
appeared within the top 10 ranked genes of both the EA-KS
and frequency-based analysis lists, suggesting potential roles as
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mediators of colistin resistance. Although, reversion of putatively
adaptive mutations to wild type in lpxD, asmA, lapB, ispB or waaQ,
did not alter the MIC levels of the evolved clones, reverting ybjX
resulted in a 4-fold drop of MIC from 64 to 16 μg/mL, indicating a
significant impact of this mutation towards colistin resistance in the
evolved strain background (Supplementary Table 3). However, ybjX
mutation did not increase the MIC, when introduced to MG1655
background. In the competition experiment, we detected a
statistically significant change in fitness for the asmA, lapB, ispB,
waaQ and ybjX revertants (Fig. 3d). These results indicate the
evolved clones benefit from these mutations, in the presence of
colistin. The only gene that did not have a confirmed effect on
fitness was lpxD. This was surprising as this gene participates in
lipid A biosynthesis41 which is the component of LPS that
becomes modified to impart colistin resistance. Also, lpxD
mutations were also previously shown to contribute to colistin
resistance in Acinetobacter baumannii42. The lack of a
significant effect of two tested lpxD mutations upon fitness in
the presence of colistin may indicate a limitation in the

sensitivity of our competition assay especially when a stronger
effect mutation in a driver gene (basS/basR) is present. Overall,
these data show that mediators of colistin resistance can be
identified by focusing on genes that are highly ranked by both
EA integration and frequency-based methods.

For the colistin resistant cultures, ddlB, ynjC and yddW are
specifically picked out by EA-KS but are not highly ranked by the
frequency-based method. Although the ddlB and yddW muta-
tions do not affect the fitness of the evolved strains in the
presence of colistin, reversion of ynjC P213S to wild type causes a
striking decrease in fitness (Fig. 3d). After 24 h of competition,
the evolved strain completely swept the cultures, suggesting ynjC
P213S mutation confers a strong fitness advantage for E. coli
under colistin treatment. However, little is known about ynjC
other than it is predicted to be a subunit of an inner membrane
transport complex43.

The genes mntP, srlA and osmE were specifically identified by
frequency-based analysis but not EA integration (Fig. 3b). The
osmE and srlA genes have statistically significant contributions
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Fig. 3 Mutations in genes highly ranked by both EA integration (EA-KS approach) and frequency analysis contribute to fitness. a, b The combined
rankings for ciprofloxacin and colistin datasets using both EA integration (EA-KS) and frequency-based analysis. Genes that were chosen for subsequent
experiments are labeled with their names and colored yellow if ranked highly by both EA integrals and frequency analysis, green if EA specific, and magenta
if frequency specific. The evolved strains and isogenic revertants of indicated mutations were competed in the presence of (c) ciprofloxacin or (d) colistin.
In the competition assays (c, d), n= 4 independent biological samples for hemX. N= 5 independent biological samples for udk, rstB, and ispB. N= 8
independent biological samples for rob and mutL. All other genes were repeated with n= 6 independent biological samples. Relative allele frequency
change after the competition of the evolved allele and the wild type allele are plotted. EA scores (0-100, wherein 100 is highest predicted impact) for each
tested mutation are indicated along with the overall rank of each gene based on either EA-KS aggregate ranks or frequency-based aggregate ranks. One
sample two-tailed t-test (µ0 = 0) with Bonferroni correction was performed for each competition assay (p values <0.05 reported above each dataset).
Source data are provided as a Source Data file.
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towards fitness (Fig. 3d), although the contribution from srlA is
minimal. For osmE and srlA, the protein family alignments had
poor sequence diversity making EA predictions less reliable.
Increased availability of sequence homologs as more sequences
become available should help improve EA predictions made on
these genes.

Overall, these results suggest that genes that are ranked highly
by both EA-KS and frequency-based method are more likely to
contribute to fitness. In addition, some genes with fitness-
enhancing mutations can be specifically predicted by EA but not
frequency-based analysis (e.g. ynjC P213S) or vice versa (e.g. rob
A70V and osmE S44N). Also, a caveat with any of the mutations
that show no fitness effects is that they may have an indirect role
on resistance by increasing adaptability, which may require serial
passaging over multiple days in order to be detected by the
competition assay.

EA integration applied to environmental and clinical datasets.
We next applied EA integration to publicly available E. coli
whole-genome sequencing datasets of clinical and environmental
isolates that are either ciprofloxacin or colistin resistant3,44. In
contrast to an experimental evolution design, such clinical and
environmental isolates rarely have matched samples prior to
antibiotic treatment and have several additional complex vari-
ables including patient or environmental or strain heterogeneity,
potential exposure to multiple antibiotics, selection for com-
mensalism, competition within unique microbiomes, differing
isolation and sequencing methods, and, especially, the potential
for horizontal gene transfer. Existing methods to track anti-
microbial resistance typically depend upon established anti-
microbial resistance genes and associated genetic elements but do
not address the emergence of de novo resistance from heretofore
uncharacterized mechanisms45. With this challenge in mind, we
applied both EA integration approaches to 62 ciprofloxacin-
resistant E. coli isolates obtained from multiple environments and
146 colistin-resistant genomes from clinical isolates lacking the
plasmid-borne mcr colistin resistance genes. Because clinical and
environmental strains have undergone negative selections during
their evolutionary history, the mutation background should
deviate from randomly simulated mutations and needs to be
reestablished. In order to address this, we generated background
distributions using unique nonsynonymous mutations from
ciprofloxacin and colistin sensitive environmental/clinical strains.
Their EA distributions are independent but nearly identical
(Supplementary Fig. 1b, c) and fit decaying exponentials well,
with Pearson R2 of 0.98. Although environmental/clinical strains
have abundant mutations, they are strongly biased to low EA
scores (average ~21) when compared to randomly simulated
nonsynonymous mutations (average ~42). This strong bias is
consistent with negative selection leading to most of the observed
mutations being nearly neutral with only a small fraction con-
tributing to functional differences. Compared to the frequency-
based approach, both EA-KS and EA-sum are better at separating
several known drivers of de novo resistance from a large back-
ground of variation in the other genes (Fig. 4, Supplementary
Data 4). Specifically, EA-KS and EA-sum place the ciprofloxacin
drivers in the top 1% and the colistin drivers in the top 0.1% of
genes mutated in the resistant isolates. In contrast, the frequency-
based approach places the four main drivers of ciprofloxacin
resistance in the top 10% alongside ~280 other genes. Likewise,
with colistin resistance, basS and basR were in the top 6%
alongside ~230 other genes. In contrast to the well-controlled
experimental evolution dataset, in which EA integration and
frequency-based analysis largely reinforce each other, EA inte-
gration is superior at separating known drivers from a large

background of strain-to-strain variation. The newly identified
ciprofloxacin and colistin resistance drivers in the ALE datasets
were not recovered in the clinical and environmental dataset. But,
the top-ranked genes by EA integral cluster significantly in
Stringdb (Supplementary Table 4)46, indicating the protein pro-
ducts of the highly ranked genes associate with each other phy-
sically or are functionally related. For instance, mukB was ranked
7th by EA-KS in the ciprofloxacin environmental dataset. It was
reported that mukB interacts with parC, a known ciprofloxacin
resistance driver, and stimulates the superhelical DNA relaxation
activity of wild-type Topo IV47. Another top-ranked gene, arnT
(ranked 23rd by EA-sum), in the colistin clinical dataset was
reported to be activated in polymyxin/colistin-resistant E.
coli48,49.

Evaluation of method robustness. Our results showed that the
predictions of phenotype driver genes were improved over the
frequency-based method, especially in the clinical/environmental
datasets, when we weight the mutational impact of each amino
acid substitution with its EA scores. We further examined if EA
can be substituted with SIFT scores, which is commonly used to
predict the impact of amino acid substitutions on protein
function50–52. The EA scores computed for E. coli K12
MG1655 show a good correlation with SIFT scores (Supple-
mentary Fig. 7), with median gene-level Pearson and Spearman
correlations of −0.54 and −0.73, respectively. When SIFT scores
are substituted for EA scores in the integration (KS test and EA-
sum), the experimentally validated genes ranked similarly with
the exception of ynjC which was not recovered in colistin ALE
datasets (Supplementary Fig. 8). These findings suggest that the
integration of mutational impact scores is a robust approach to
predicting phenotype driver genes, as EA scores can be sub-
stituted by other prediction methods although this entails a slight
loss of sensitivity (ynjC).

The experimental evolution experiments were conducted on a
large number of replicates (from 14 to 31 depending on the
conditions) in 3 different mutational loads per antibiotic tested.
However, this large number of replicates may not be necessary to
detect genes under selection. In order to address this, down-
sampling analyses were performed to ascertain if similar results
can be achieved with fewer samples. We first examined the
number of antibiotic-resistant drivers (known and newly
identified) that were mutated in the subsamples (Supplementary
Fig. 9). As expected, more drivers were mutated in the
WT+mutagen and mutator conditions (8–9 for each antibiotic)
compared to WT (5-6). Approximately 10-12 samples are
required in order to observe at least one mutation in each
phenotypic driver. We further performed EA and frequency
analyses on the subsamples and evaluated how the antibiotic
resistance drivers were ranked using different sample sizes. Our
methods were able to recover most drivers in the ALE datasets
with fewer than 10 samples (Supplementary Figs. 10–12). In the
more complicated clinical/environmental datasets, EA integral
was able to reproduce similar results as the full dataset with
around 40 strains but still performed well with just 10 samples
(Fig. 4e, f). These findings further suggested our approach is
generally robust.

Discussion
The coupling between genotype and phenotype determines major
aspects of biology but remains cryptic. A global approach describes
it through fitness landscapes, which may be mapped experimentally
by deep mutational scans coupled to assays53–57. Such scans,
however, require exhaustive mutagenesis and a complete battery of
relevant biological assays, which are impractical for more than a

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30889-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3189 | https://doi.org/10.1038/s41467-022-30889-1 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


few genes. As a result, experimental descriptions of fitness land-
scapes are incomplete and beyond reach. The evolutionary action
addresses these limitations by substituting the evolutionary history
of all genes accessible from sequence databases instead of the
required laboratory experiments. Specifically, EA theory develops a
calculus approach that uses these evolutionary histories to
exhaustively measure mutational displacements in a fitness land-
scape in response to selection pressures. This calculus is based on
four hypotheses. First, that comparing sequence homologs across a
protein family to tally coding variations at every sequence position
is similar to carrying mutations in a laboratory. Second, that cou-
pling these mutations to the depth of associated evolutionary
divergence between homologs will estimate the likelihood of
acquiring distinctive functions upon mutation, and is similar to a
battery of functional and relevant assays. Third, that multiplying
the size of a mutation at a position by the functional sensitivity of
that position, as in Eq. (2) in Methods, follows a fundamental
concept of calculus to quantify the impact of a perturbation, which
here is the fitness effect of a mutation. Fourth, that summing the
fitness effects of all mutations over a population to compare and
contrast, for each gene, deviations from random, is an integration
of Eq. (2) that will recover outlier genes traveling nonrandomly in
the fitness landscape, and thus identify genes that drive adaptation
to a selection condition in ALE. Propositions one, two and three
have already been extensively tested and validated. For example, EA
scores correlate with mutational scanning experimental data18 and
predict the harmful effect of mutations in diverse tests (CAGI) and

applications20,58–61, reflecting its embodiment of a large amount of
evolutionary mutational scanning data. Proposition four, however,
has not been tested directly, although prior analysis of EA differ-
ences over the entire population of patients have been linked to
genes driving human phenotypes, such as, parathyroid cancer58,
modification of APOE2/3-based Alzheimer’s disease risk21, and the
depth of autism22. These studies, however, do not directly test
proposition four since they do not explicitly carry out integration
by summing the EA scores. Moreover, they focus on complex
human diseases with environmental and social confounding etio-
logic factors that cannot be controlled for fully. Finally, computa-
tional association of specific genes to complex human disease are
useful but difficult to validate with certainty. For these reasons, this
study focuses on the validation of proposition four by testing the
direct causal link between antibiotic resistance phenotypes and
genes biased for mutations with elevated EA scores, in a simple,
well-controlled and easily testable evolutionary selection system.
The results establish new genes for colistin resistance that are not
previously associated with an antibiotic phenotype (Fig. 5). Since
colistin is a last resort antibiotic, a better understanding of the
mechanism of this resistance is significant medically. This appli-
cation also strengthens the calculus of fitness landscapes embodied
in the EA theory.

Although the cationic region of colistin is known to interact
with the anionic lipid A subunit of lipopolysaccharide (LPS) at
the bacterial outer membrane62, the details of the downstream
killing mechanism of colistin are still unknown1. The current

Fig. 4 Comparisons of EA integration with frequency-based analysis in clinical/environmental datasets. Frequency analysis and EA integration ranks
(EA-KS and EA-sum) of the mutated genes in ciprofloxacin resistant (a, b) and colistin resistant (c, d) clinical/environmental strains. Known drivers
(orange) and genes with mutations that contribute to fitness in the presence of antibiotic (cyan) are highlighted. Median rank of ciprofloxacin resistance
driver gene ranks (e) and colistin resistance driver gene ranks (f) in down-sampling analysis wherein random subsets of the samples were chosen for
analysis by EA-KS (red/circles), EA-sum (green/triangles) or frequency (blue/squares). Interquartile range is displayed as error bars from 10 independent
random draws at the indicated sample size. Source data are provided as a Source Data file.
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model is that colistin and related polymyxins first disrupt the
outer membrane by binding lipid A to displace Mg2+ and Ca2+

and then, cross the permeabilized outer membrane to bind and
disrupt the phospholipid inner membrane63. Recently it has been
shown that active LPS synthesis is required for effective colistin-
mediated killing of Pseudomonas aeruginosa suggesting that
alterations in LPS synthesis inhibit the antibiotic’s activity64.
Several of the genes that were newly identified here are related to
LPS and may be altering the structure of this colistin target
directly or modifying the LPS synthesis pathway. The lapB and
waaQ gene products are involved in LPS synthesis65–67, while
asmA null mutants were previously shown to lower the LPS levels
in the outer membrane68. Detailed studies of lapB found it to be
essential for growth in normal laboratory conditions (37°, rich
media) and suppressors of this essentiality include mutants of
waaQ and lpxD66,67. In Salmonella enterica serovar Typhimur-
ium, the ybjX homolog has been shown to partially revert a
growth defect that was caused by a mutation in the biosynthesis
of an LPS precursor, lipid A69. In addition, ybjX was shown to be
involved in the development of resistance in Salmonella enterica
serovar Enteritidis to polymyxin B, an antibiotic structurally and
functionally related to colistin70.

Mutations in the ispB and ynjC genes contribute to fitness in the
presence of colistin but these genes have no previous association
with LPS synthesis or modification. The ynjC gene would not have
been linked to colistin resistance using a standard frequency-based
approach due to the low mutation count (1 in WT+mutagen and
6 in mutator) (Supplementary Fig. 4 and 13). However, those
mutations were predicted to be impactful by EA. Although the
mechanism by which ispB and ynjC are linked to colistin resistance
is unknown, each of these genes is predicted to encode a
membrane-bound protein and may affect function of the inner
membrane, the outer membrane or LPS itself. IspB synthesizes
octaprenyl diphosphate, a precursor of membrane-associated ubi-
quinone-8 which has been shown to be a membrane-stabilizing
osmoprotectant71,72. YnjC is a predicted inner membrane subunit
of a putative ATP-dependent transporter complex43 but how this
protein confers colistin resistance is unknown. Although there are
no direct studies regarding the substrate of ynjC, this gene is
annotated as encoding a membrane component of a thiamine

ABC transporter complex that transports sulfate, thiosulfate or
thiamine43. However, deletion of ynjC reduced intake of one of the
two tested cationic dyes in a screening assay73 and thereby ynjC
mutations may influence uptake of colistin as it is also a cationic
compound. The unexpected contribution of these genes towards
colistin resistance warrants further investigation and may provide a
better understanding of the relationship between LPS assembly, the
osmotic stress response and colistin resistance.

In the context of ciprofloxacin resistance, which is much better
studied, EA integration and frequency-based methods reinforce
each other to arrive at high-confidence identification of the
known drivers in the ALE experiments. However, this is in
contrast to EA’s performance on the clinical and environmental
isolates, in which EA performs substantially better than the
typical frequency-based approaches in discriminating known
drivers from a large background of variation. This difference may
be related to the clinical and environmental samples lacking
matched references before antibiotic treatment. Without ideal
reference sequences, any preexisting founder mutations are
indistinguishable from newly acquired resistance mutations and
are given the same statistical weight by frequency-based analysis.
EA scores can mitigate this effect by predicting the phenotypic
impact of a mutation and thereby place emphasis on mutations
that are more likely to change protein function.

The genes identified in this study stand out from the background
by having mutations with a larger than expected tally of EA scores.
Mathematically, this difference from background is a definite
integral, which sums the EA scores observed and subtracts EA
scores of the expected background, to find genes for which this
difference is significant. Another interesting observation is the
exponential form of the background distribution of EA scores,
which reflects that, under a steady state, mutations are biased to
lower fitness effect. This is consistent with evolutionary models of
the fitness effect distribution as well as with physical models of the
fitness landscape. The fitness landscape is an energy potential and
the distribution of mutations falls off as an exponential Boltzmann
function of their energy27. We can reconcile this physical view of
fitness landscape with EA by describing explicitly the genotype to
phenotype function as an evolutionary potential function. The
slope of the landscape, or gradient, is then a force. The product that
defines EA is then a force times a displacement in genotype, which
is the fitness energy cost of the mutation as it moves a genome in
the fitness landscape. In this view, when a population is maladapted
to a new environment, such as exposure to antibiotics, it needs to
modify its genome to reach a different fitness location. Low impact,
low energy mutations are not sufficient to reach a higher location of
the landscape. Organisms with specific high impact/high energy
mutations in genes functionally related to the new environment are
selected because these mutations have sufficient energy to allow the
organism to take larger steps as it climbs the new fitness peak.
These few high-energy mutational steps in genes relevant to the
new phenotype are in contrast to the many smaller mutational
steps that occur in the genes unrelated to the selected phenotype.
EA theory approximates these energies and their distribution in
light of the rich record of evolutionary history. As shown here for
ciprofloxacin and colistin resistance, upon integration, gene out-
liers should be closely related with the selection pressures or phe-
notypes specific to the population under study.

Methods
The evolutionary action theory and extension to identify driver genes. The
evolutionary action models the genotype-phenotype relationship formally as:

f ðγÞ ¼ φ ð1Þ
Here f is the evolutionary potential. It maps any genotype γ to its complete set of
biological capabilities φ. Thus, given a specific environment, φ embodies the overall
fitness of an organism with genotype γ, and f described the fitness landscape in that

Fig. 5 Overview of genes under selection in the cultures experimentally
evolved to be colistin resistant. Genes highly ranked by both EA Integral
and frequency-based analysis are colored yellow; EA-specific genes, green;
frequency-specific genes, magenta.
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environment. Assuming differentiability, a mutation is a small change in the
genotype 4γ, which calculus suggests should trigger a fitness response 4φ in
proportion to the magnitude of 4γ and to the gradient of the potential ∇f , so that
we expect:

4φ ¼ ∇f � 4γ ð2Þ
By analogy to physical phenomena, the gradient of the potential f is an Evolu-
tionary Force that describes the local slope of the fitness landscape. Its product with
4γ is 4φ, which we call the evolutionary action (EA) of the mutation on fitness18,
and, being a force (∇f ) times a displacement (4γ), it represents the work done by
the mutation as it moves the genome in the fitness landscape. In practice, both of
these terms in the right-hand side of Eq. (2) can be approximated from sequence
data for coding variants. For a single point coding mutation from amino acid X to
Y at a sequence position i, ∇f is approximated by the evolutionary sensitivity of
position i, given by the Evolutionary Trace (ET) algorithm19. And the magnitude of
the substitution 4γ is approximated by amino acids substitutions log odds tables.
This means that Eq. (2) is computable for coding mutations, even if f itself in Eq.
(1) remains unknown.

To recover the genotype-phenotype relationship of Eq. (1), the fundamental
theorem of calculus states that integrating Eq. (2) should suffice, since it is the anti-
derivative operation. Therefore, we wish to compute:

Z
Cj

f 0ðγÞdγ ¼ φ Cj

� �
ð3Þ

where the integral is over all mutations in all genes from the sequenced population
of E. coli Cj with the antibiotic resistance (j) of interest. In practice, (3) is evaluated
numerically as a sum:

∑
ALE mutations

Cj

f 0ðγÞ � dγ� ∑
random mutations

Cj

f 0ðγÞ � dγ ¼ φ Cj

� �
ð4Þ

where the subtracted second term is an arbitrary integration constant, chosen here
to zero out random mutations in bystander genes. Next, since genes are the
functional units of genotype, we can rearrange the summation (4) to compute it
gene by gene, for each gene k:

∑
Cj

f 0kðγÞ � dγ� ∑
background mutations

Cj

f 0kðγÞ � dγ ¼ φk Cj

� �
ð5Þ

An individual gene k thus makes no contribution when its mutations in Cj are no
different from what is expected from random chance. However, if gene k is a
resistance driver gene, it should have a non-zero value in (5) and contribute to
φðCjÞ. This enables us to detect genes with mutations associated with the trait Cj .
Below, we compute this EA integral on the mutations in strains grown under
selection pressure and test whether the integral recovers known driver genes of
antibiotic resistance and also whether it identifies new genes not previously
associated with resistance.

It should be noted that, in practice, the calculation of EA scores is performed
separately for each gene and currently no weights are given for genes that are more
conserved across species. For instance, a predicted low impact mutation in an
essential gene like gyrA may influence fitness more than a predicted high impact
mutation in a non-essential gene like pdxY.

Culture medium. Lennox lysogeny broth (LB, BD Biosciences, Franklin Lakes, NJ)
and plates were used for routine propagation. M9 glucose minimal media was used
in ALE experiments and consisted of 0.1 mM CaC12, 1× M9 salts, 2 mM MgSO4,
0.2% glucose (Pfaltz & Bauer, Waterbury, CT) and 10 μg/ml thiamine (Acros
Organics, Geel, BE). The 1× M9 salts were diluted from 5× M9 salts which was
made by dissolving, into 1 L of deionized water, the following: 64 g Na2H-
PO4−7H2O (Santa Cruz Biotech, Dallas, TX), 15 g KH2PO4 (J.T. Baker, Phillips-
burg, NJ), 2.5 g NaCl (MilliporeSigma, Burlington, MA) and 5 g NH4Cl (J.T.
Baker). The mutagenic synergy of nucleotide analogs23 was used to elevate
mutation levels in the WT+mutagen ALE experiments by including 250 μg/ml
2-aminopurine (Alfa Aesar, Ward Hill, MA) and 2.5 μg/ml zebularine (Enzo Life
Sciences, Farmingdale, NY) in the M9 glucose minimal media.

ALE. Overnight cultures grown in LB were inoculated from isolated colonies on LB
plates. These overnight cultures were diluted 1:100 into 50 ml conical tubes con-
taining 5 ml M9 glucose minimal media containing either a minimal inhibitory
concentration of antibiotic (the challenge tube) or ½ the minimal inhibitory
concentration (the maintenance tube). A portion of the overnight starter culture
grown in LB was saved as a day 0 control for sequencing and identification of
founder mutations. After 24 h of growth at 37 °C with shaking at ~300 r.p.m., the
optical density at 600 nm (OD600) was determined. If the challenge tube reached an
OD600 > 0.4, then culture from this tube was used at a 1:100 dilution to start the
next round wherein the antibiotic concentration was doubled. If the challenge
tube’s OD600 was less than 0.4 and the maintenance tube’s OD600 was greater than
0.4, then culture from the maintenance tube was used at a 1:100 dilution to start the
next round wherein the antibiotic concentrations remained the same. If neither

tube had an OD600 > 0.4, the cultures were returned to shake for another 24 hrs. In
this way, less successful cultures had more time to adapt.

Whole-genome sequencing. After an evolution experiment, 4mL of evolved cells
from tubes that would be sequenced were pelleted. Genomic DNA was extracted from
the cells using the QIAGEN (Venlo, NL) Dneasy Blood & Tissue Kit. The purified
DNA was then quantified with the Promega (Madison, WI) QuantiFluor dsDNA
System and adjusted to 0.2 ng/μL. The sequencing libraries were prepared with Illu-
mina (San Diego, CA) Nextera XT DNA Library Prep Kit and sequenced with Illu-
mina Miseq v2 or v3. All sequencing data are available at NCBI SRA PRJNA543834.

Calculation of EA scores. EA scores were calculated18. Homologs for all protein-
encoding genes of the E. coli MG1655 reference genome U000096.3 were obtained
from the NCBI nr, UniRef100 and UniRef90 databases74. The homologs for each
protein gene are retrieved from different genomes because different proteins have
different evolutionary rates throughout evolutionary history. From each database,
up to 5000 sequences were retrieved using an e-value cut-off of 10−5 and a
minimum of 30% sequence identity. The recovered sequences from each database
were aligned using MUSCLE75 to generate three separate multiple sequence
alignments for each protein. Next, the rvET method was used to rank amino acids
by evolutionary importance76–78. The rvET scores from the three alignments were
then averaged. The second parameter of EA, the log-odds of amino acid sub-
stitution, was computed following BLOSUM methodology79 except separate odds
were calculated according to deciles of rvET score. In other words, positions with
rvET scores 1-10 had a separate log-odds substitution matrix calculated from
positions with rvET scores of 11–20 and so on up to the 91–100 decile. Odds were
calculated based on over 67,000 multiple sequence alignments and rvET scores
generated from proteins deposited in the Protein Data Bank.

Analyzing ALE data. Sequencing reads were mapped to E. coli K-12 MG1655
reference genome and variants were called by breseq version 0.31.0 using the “–no-
junction-prediction” option to ignore reads that partially map to the reference and “-p”
option to estimate allele frequency in the population80. Mutations with allele frequency
smaller than 0.1 were removed from further analysis. A recalculated EA score (ranges
from 0 to 100) was assigned to each missense mutation. Nonsense mutations were
arbitrarily assigned with EA = 100. All mutations that appeared in the evolved strains
were pooled together according to the condition under which they were selected (level
of mutagenesis and antibiotic) and had founder mutations removed to yield 6 datasets.
Each dataset was processed individually. 10 random MG1655 genomes, each with
10,000 point mutations, were generated using breseq. Coding mutations were called
and tallied. A total of 63,507 coding mutations have EA scores assigned, and they were
used as randomly simulated background. In order to identify genes that acquired a
significantly different distribution of mutations during the evolution experiments, EA
integration was approximated with a one-sided Kolmogorov–Smirnov test (EA-KS) or
the sum of EA scores (EA-sum). EA-KS was performed between the EA distribution of
each gene against the in silico generated random EA distribution background. The
p-values for the KS tests were used to rank the genes. EA-sum for a given gene i with
mi mutations in the samples is calculated with:

EAsumi ¼ ∑
mi

j¼1
EAij � E EAsumi

� �

¼ ∑
mi

j¼1
EAij � E mi

� �
´EðEAijÞ

¼ ∑
mi

j¼1
EAij �

∑g
1mi

∑g
1li

´ li ´EðEAijÞ

¼ ∑
mi

j¼1
EAij �

∑g
1mi

∑g
1li

´ li ´ EAðrandomÞ ð6Þ

Where EAij is the EA score of the jth mutation in gene i, l is the gene length, m is the
mutation count, g is the number of genes in MG1655, EA randomð Þ is the average EA
scores of random mutations and E is the expected value. Frequency-based analyses
were performed based on the assumption that the probability of x mutations occurring
in a protein with given length l, follows a Poisson distribution with λ ¼ l ´m, where m
is the average mutation rate in each dataset. The frequency p-value for each gene was
calculated by p ¼ P½X ≥ x�. One EA integral-based and one frequency-based gene list
was generated for each dataset. An aggregate ranking algorithm (R package: Robus-
tRankAggreg version 1.1)28 based on order statistics was used to combine three EA
integral lists or frequency lists from the same antibiotics condition into one single list
(Supplementary Data 2).

Evolutionary trace on the top ranked genes or their homologs. The evolu-
tionary trace of gyrA (PDB: 1AB4), parC (PDB: 1ZVU), parE (PDB: 1S16), rob
(PDB: 1D5Y), udk (homolog from Thermus thermophilus, PDB: 3W8R), basR
(homolog from Klebsiella pneumoniae JM45, PDB: 4S04) and ispB (PDB: 3WJK)
were calculated using the UET web server81. The ET scores were color mapped to
the protein structures with PyMOL 2.5.2 (Schrodinger, LLC)82.
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Reverting mutations in evolved strains. All strains used in this study are listed in
Supplementary Data 3. The genome library collection of 94 intergenic kanamycin
resistance cassette insertions in E. coli MG1655 (i-Deconvoluter) was previously
generated by Nehring et al.83. P1 lysate was generated with a strain from
i-Deconvoluter library that has the kanamycin marker nearest to the gene of
interest. An overnight culture of the selected i-Deconvoluter strain was diluted 1:50
in 10 mL of phage broth (LB+ 5 mM CaCl2+ 0.2% glucose) and incubated at
37 °C for 2 hours. 10 μL of 2-Mercaptoethanol was added to the cells. After 30 min
of incubation, the cells were spun down, resuspended in 1 mL of phage broth and
then infected with 400 μL of P1vir. After the mixture was shaken at 37 °C for
20 min, 7.5 mL of molten agar was added and distributed onto 3 bottom agar
plates. The plates were incubated at 37 °C overnight. The top agar was then
transferred to Beckman tube, treated with 300 μL of chloroform and incubated at
room temperature for 30 min. Debris were pelleted (10000 rpm, 10 min, 4 °C) and
supernatant (P1 stocks) were collected and stored at 4 °C for future use.

An overnight culture of the recipient cell was diluted 1:50 into 2 mL of LB. After
2 h of growth at 37 °C, the OD600 nm was measured. Cells were pelleted (7000 rpm,
2 min) and adjusted to OD = 0.45 with LB+ 5 mM CaCl2+ 10 mM MgSO4.
0.1 mL of phage was mixed with 1.3 mL of cells and incubated at 37 °C for 20 min.
The cells were then pelleted (7000 rpm, 2 min) and resuspended in 150 μL LB with
100 mM sodium citrate (MilliporeSigma). After 1 hr of incubation at 37 °C, the
transductants were plated on LB plate with 100 mM sodium citrate and 40 μg/mL
of kanamycin (Fisher Bioreagents, Waltham, MA) to select for transductants that
received the kanamycin resistance cassette and ~100 kb of wild type genomic DNA
flanking the cassette. Individual clones were sequenced using primers listed in
Supplementary Data 5. to detect the presence of the wild type allele.

Generating target mutations in MG1655 background. We used 2 different
approaches to generate target mutations in MG1655 background. The specific
method used for each strain is listed in “Supplementary Data 3. Strains used in this
study”. For the P1 transduction approach, P1 lysate was generated with a strain from
i-Deconvoluter library83 that has the kanamycin marker nearest to the gene of
interest. Then the lysate was P1 transduced into the evolved strain that contains the
target mutation. Individual clones of the transductants were screened for the target
mutation. This strain was then used to generate P1 lysate, and further transduced into
MG1655. Individual clones were sequenced for the target mutation. To generate the
other strains, we used CRISPR-FRT84. In brief, P1 lysate was generated with a strain
from KEIO KO library that has the deletion of the gene of interest, and then this gene
KO was P1 transduced into MG1655. CRISPR-FRT plasmids were then transformed
into the strain through electroporation. Overnight culture was diluted 1:50 in LB+
0.2% arabinose and grown at 32 °C for ~3 hr. Rescue DNA was generated by PCR
using the evolved strain that contains the target mutation with primers binding at
around ±200 bp of target gene, and then the purified product was transformed into
the cells and plated on LB plates containing aTc to induce expression of Cas9/sgRNA-
FRT and antibiotics to select for plasmids. Single clones were screened for kanamycin
sensitivity, and then PCR products sequenced to check for presence of the target
mutation. Strains will be made available upon request to the corresponding authors.

Minimum inhibitory concentration (MIC). The MIC of ciprofloxacin or colistin
on selected E. coli strains were tested with microbroth dilution in LB85. In brief,
overnight cultures were diluted 1:100 in LB and incubated for 2 hr. Cells were
adjusted to OD = 0.1, and further diluted 1:100 in LB. 50 μL of cells were mixed
with 50 μL of LB with colistin in 96 well plates (Greiner Bio-One, Frickenhausen,
DE) to reach final antibiotic concentrations of 65.54, 32.77, 16.38, 8.192, 4.096,
2.048, 1.024, 0.512, 0.256, 0.128, 0.064, 0.032, 0.016, 0.008, and 0.004 μ μg/mL for
colistin. After overnight incubation, the minimal antibiotic concentration that can
inhibit E. coli growth was recorded. Each strain was tested at least 3 times.

Competition assay. Overnight cultures of two competing strains were mixed at a
1:1 ratio. The mixed culture was diluted 1:100 in LB and grown at 37 °C for
24 hours with or without the presence of antibiotics, which recapitulate the
adaptive evolution conditions where cultures are allowed to enter stationary phase
during overnight growth. The original and overnight mixtures were used as tem-
plates in PCR (Q5 NEB, Ipswich, MA) reactions to amplify the gene of interest. The
PCR product was sent for Sanger sequencing (Baylor College of Medicine
sequencing core, Houston, TX or Genewiz, South Plainfield, NJ). The obtained
electropherograms were analyzed with R according to the method described by
Carr et al86. for quantification of the allele frequency of the two variants. The
relative allele frequency change for a given mutation was calculated by:

relative AF change ¼ AF24 � AF0
1� AF0

ð7Þ

where AF0 is the AF of the mutation in the original mixture, AF24 is the AF of the
mutation after 24 h of competition. Each mutation was tested at least 4 times using
biological replicates. One sample t-tests (μ0 = 0) were performed. Mutations with
adjusted p-values (Bonferroni correction) smaller than 0.05 were considered as
having a fitness effect.

Clinical/environmental data. The ciprofloxacin clinical data set was downloaded
from European Nucleotide Archive PRJEB2329444. It consists of 192 ciprofloxacin
sensitive and 63 resistant environmental E. coli isolates. The whole-genome
sequencing data was assembled using SPAdes genome assembler v3.13.087. ORFs
were predicted through GeneMarkS-288. Predicted partial genes were removed
from downstream analysis.

The colistin clinical data set was obtained from SRA BioProject PRJEB280203,
which consist of 146 colistin-resistant clinical isolates that are caused by
chromosomal mutations. A set of 313 reference E. coli genomes that were used by
Bourrel et al. were used here as sensitive isolates. The annotated protein sequences
were downloaded from the database and directly used for downstream analysis.

Modelling of clinical datasets. Nonsynonymous mutations were called against E.
coli K-12 MG1655 proteome with an internal R script. If a protein sequence could
not be aligned to MG1655, it is removed from future analysis. An EA score was
then assigned to each nonsynonymous mutation.

The clinical/environmental data sets were first analyzed in a similar approach as
our adaptive laboratory evolution data. Mutations from the sensitive isolates were
removed from the resistant isolates. Mutations that occurred in the sensitive
isolates were also used as background mutations. EA-KS was performed between
the EA scores of all the mutations in a gene against the background. The genes
were ranked based on p-values. For a given gene that has m mutations in the
resistance strains, and n mutations in the sensitive strains, EA-sum was calculated

with EAsum ¼ ∑m
1 EAi

Sresistant
� ∑n

1EAj

Ssensitive
(8), where Sresistant and Ssensitive are the number of

resistance and sensitive strains in the dataset. Genes were then ranked based on
EA-sum values. Frequency-based analyses were performed based on the
assumption that the probability of x mutations occurring in a protein with given
length l, follows a Poisson distribution with λ ¼ l ´m, where m is the average
mutation rate in each dataset. The frequency p-value for each gene was calculated
by p ¼ P½X ≥ x�.

Downsampling analyses. For the ALE data, subsamples with different sizes
(from 1 to maximum sample size at interval of 1) were randomly drawn from
the full datasets. The number of phenotypic drivers (ciprofloxacin: gyrA, gyrB,
marR, acrR, parC, parE, soxR, ompF and rob; colistin: basS, basR, lapB, waaQ,
asmA, ybjX, ispB, ynjC, and osmE) that have at least one mutation in the sub-
sample were determined. Each subsample size was repeated 10 times. Each
subsample was then analyzed with EA integration and frequency-based meth-
ods. Note that the downsampling was performed on the evolved strains only. All
day 0 strains were used in the analyses. Gene ranks for the phenotypic drivers
were determined. Median and interquartile range for each phenotypic driver was
computed for each subsample size. If a phenotypic driver was not mutated in a
subsample, that subsample was ignored when computing the median gene rank
and interquartile range.

The same concept was applied to the clinical/environmental dataset.
Subsamples were drawn at sizes 10−60 at an interval of 10 for ciprofloxacin dataset
(maximum sample count of 62) and 10−150 at an interval of 10 for colistin dataset
(maximum sample count of 160). GyrA, parC, parE and acrR were used as drivers
for ciprofloxacin, while basS and basR were used as drivers for colistin, because
other driver genes were not picked up by any methods in the clinical dataset. Note
that the downsampling was performed on the resistant strains only. All the
sensitive strains were used in the analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited in the Sequence
Read Archive database under SRA accession code PRJNA543834. The E. coli K12
MG1655 reference sequence U00096.3 was used to map reads and make SNP calls.
Protein Data Bank entries for gyrA (PDB: 1AB4), parC (PDB: 1ZVU), parE (PDB: 1S16),
rob (PDB: 1D5Y), udk (homolog from Thermus thermophilus, PDB: 3W8R), basR
(homolog from Klebsiella pneumoniae JM45, PDB: 4S04) and ispB (PDB: 3WJK) were
used to map ET scores on structures. The data generated in this study are provided in the
Supplementary Information/Source Data file. EA scores for all mutations in E. coli
MG1655 and our proposed methods are available on our website (http://bioheat.
lichtargelab.org). Our website can intake lab evolved E. coli sequencing data and identify
phenotype driven genes using methods described here. In addition, EA scores for specific
mutations in E. coli MG1655 can be queried through this website. The data and analyses
presented here can be viewed and accessed from the interactive web page (http://bioheat.
lichtargelab.org) and in the online supplementary material.

Code availability
The code used in the analyses presented here can be viewed and accessed at https://
github.com/LichtargeLab/EA_antibiotics_resistance89.
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