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Abstract. Gastric cancer (GC) is one of the leading causes 
of malignancy-associated mortality worldwide. However, the 
underlying molecular mechanisms of GC are unclear and the 
prognosis of GC is poor. Therefore, it is important and urgent 
to explore the underlying mechanisms and screen for novel 
diagnostic and prognostic biomarkers, as well as therapeutic 
targets. In the current study, scale-free gene co-expression 
networks were constructed using weighted gene co-expression 
network analysis, the potential associations between gene sets 
and clinical features were investigated, and the hub genes were 
identified. The gene expression profiles of GSE38749 were 
downloaded from the Gene Expression Omnibus database. 
RNA-seq and clinical data for GC from The Cancer Genome 
Atlas were utilized for verification. Furthermore, the expression 
of candidate biomarkers in gastric tissues was investigated. 
Survival analysis was performed using Kaplan-Meier and 
log-rank test. The predictive role of candidate biomarkers in GC 
was evaluated using a receiver operator characteristic (ROC) 
curve. Gene Ontology, gene set enrichment analysis and gene set 

variation analysis methods were used to interpret the function of 
candidate biomarkers in GC. A total of 29 modules were identi-
fied via the average linkage hierarchical clustering. A significant 
module consisting of 48 genes associated with clinical traits 
was found; three genes with high connectivity in the clinical 
significant module were identified as hub genes. Among them, 
SLC5A6 and microfibril‑associated protein 2 (MFAP2) were 
negatively associated with the overall survival, and their expres-
sion was elevated in GC compared with non-tumor tissues. 
Additionally, ROC curves indicated that SLC5A6 and MFAP2 
showed a good diagnostic power in discriminating cancerous 
from normal tissues. SLC5A6 and MFAP2 were identified as 
novel diagnostic and prognostic biomarkers in GC patients; both 
of these genes were first reported here in connection with GC 
and deserved further research.

Introduction

Gastric cancer (GC) represents the most common malignant 
tumors of the digestive tract (1). Despite significant improve-
ments in diagnostic and therapeutic strategies of GC over the 
past decades, the incidence and mortality rates of GC are still 
increasing due to lack of early diagnostic tactics and effec-
tive treatments (1). However, if GC patients are diagnosed and 
treated early, either by endoscopy or surgery, the 5-year survival 
rate could exceed 90% (2). Consequently, prompt diagnosis 
of GC is significantly improving prognosis. Therefore, it is 
extremely important to discover novel candidate genes, which 
play important roles in the initiation and development of GC, 
and help to reduce mortality rates and improve prognosis.

Thanks to the continuous innovation of technologies on 
microarray and high-throughput sequencing, an increasing 
number of biomarkers and therapeutic targets have been iden-
tified and applied in clinic (3‑6), particularly in the field of 
medical oncology (7-9). The Cancer Genome Atlas (TCGA) 
is a large database, which provides publicly available genomic 
and clinical information for various cancer types (10). Using 
this database, researchers can comprehensively and accu-
rately study the biology and pathology of each cancer (11). 
Additionally, TCGA contributes to precise cancer diagnosis 
and individualized treatment through the identification of 
novel candidate genes and clinical information linked to 
cancer (12).
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Co-expression analysis is a powerful strategy to construct 
scale-free gene co-expression networks (13). The weighted 
gene co-expression network analysis (WGCNA) is widely 
used to analyze large-scale data sets and find modules of 
highly correlated genes (14). In addition, WGCNA has been 
successfully utilized to investigate associations between 
gene sets and clinical traits, and to identify potential candi-
date biomarkers of various cancer types (15-18), including 
prostate (15), esophageal (17) and cervical cancer (18). Thus, 
WGCNA provides a functional interpretation tool for cancer 
biology and has brought new insights into understanding the 
molecular pathogenesis and prognostics of cancer.

In order to explore the underlying mechanisms and to 
identify novel prognostic biomarkers and therapeutic targets 
of GC, in the present study, WGCNA was performed using 
microarray data of GC patients downloaded from the Gene 
Expression Omnibus (GEO) database, and significant 
modules and genes were identified. These genes were further 
confirmed using TCGA datasets and may act as oncogenes. 
Taken together, SLC5A6 and microfibril‑associated protein 2 
(MFAP2) were identified as novel diagnostic and prognostic 
biomarkers, which may provide new insights into early 
diagnosis and targeted therapy for patients with GC.

Materials and methods

Preparing gene expression profile data and clinical information. 
The workflow of this study is presented in Fig. S1. The gene 
expression profile data and clinical information for GC were 
downloaded from the GEO database; GSE38749 (https://www.
ncbi.nlm.nih. gov/geo/query/acc.cgi?acc=GSE38749) is gene 
expression data based on the GPL570 platform (Affymetrix 
Human Genome U133 plus 2.0 Array) (19). The GSE38749 
dataset includes 15 gastric cancer samples. Tumor staging was 
conducted as per the criteria detailed in the 8th edition of the 
TNM Staging Manual of the American Joint Committee on 
Cancer (20). The gene expression levels downloaded with the 
database were calculated as fragments per kilo base of transcript 
per million mapped reads. Clinical data contained age, gender, 
TNM stage and survival time. Clustering analysis was performed 
by calculating the correlation coefficient matrix, which indicated 
that the genes were qualified for subsequent analyses and that 
variation was small. Data standardization was performed using 
the robust multi-array average algorithm in the affy package 
within Bioconductor (http://www.bioconductor.org) in R 3.5.2 
(https://cran.rstudio.com/).

Screening for differentially expressed genes (DEGs). Limma 
package was used to screen the differentially expressed genes 
with R 3.5.2 (https://cran.rstudio.com/). According to an estab-
lished statistical method (21), 21,648 genes were identified for 
further studies. Based on the variance of each gene in each 
sample, the genes with standard deviations >0 were selected as 
DEGs. The top 50% of variant genes based on an analysis of 
variance (10,824 genes) were selected for WGCNA.

Constructing the co‑expression network. WGCNA is a system-
atic biological method for constructing scale-free networks 
using gene expression data. All analyses were performed using 
the WGCNA v1.68 package in R 3.5.2 (https://cran.rstudio.

com/). Firstly, the similarity matrix of gene expression was 
constructed by calculating the Pearson's correlation coefficient 
between two genes. Then, the gene expression similarity matrix 
was converted into the adjacency matrix and the network type 
is assigned; β=12 was selected as soft threshold. The purpose 
of this step was the strengthening of strong and weakening of 
weak correlations at the expression level. Then, the adjacency 
matrix was transformed into the topological matrix (TOM); 
TOM was used to describe the degree of association between 
genes. Based on TOM, which represented diverse degree of 
genes, (1-TOM) was used for hierarchical clustering of genes. 
The dynamic tree cut algorithm was used to module recog-
nition and the most representative gene in each module was 
called eigenvector gene or module eigengene (ME), repre-
senting the overall level of gene expression in this module and 
the first principal component in each module.

Identifying clinically significant modules. Two approaches 
were used to identify a correlation between modules and 
clinical information obtained from patients with GC. Analyses 
were performed using the WGCNA v1.68 and Cor packages 
in R 3.5.2 (https://cran.rstudio.com/). The minimum number 
of genes per module was 30, the correlation threshold of hub 
genes was 0.90 and the unsigned network edge threshold was 
0.05. Firstly, the expression profiles of a gene in all samples 
and of a vector gene were calculated using Pearson's corre-
lation as module membership (MM). ME was defined as 
the first principal component of each gene module and the 
expression of ME was considered representative of all genes 
in a given module. Clinically significant modules were identi-
fied by calculating the correlation between ME and clinical 
traits, and the degree of the connection was measured. Gene 
significance (GS) was used to measure this degree; a higher 
GS indicated increased biological significance of genes. MS 
were defined as the mean GS of all the genes involved in the 
module.

Enrichment analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. 
DAVID 6.8 (https://david.ncifcrf.gov/) was used for GO 
and KEGG enrichment analysis. GO and KEGG pathway 
enrichment analyses were used to identify potentially 
involved biological processes, molecular function and cellular 
component. GO contained three categories: i) Biological 
processes (BPs); ii) cellular components (CCs); and iii) molec-
ular function (MF). The potential biological features and 
pathways of genes in the modules were further explored using 
DAVID (https://david.ncifcrf.gov/). To avoid missing discov-
eries, the significance threshold was adjusted based on an 
established statistical method (22); data were evaluated with 
the adjusted cut‑off value P<0.1. The associations between 
genes in ‘black’ module were visualized with Cytoscape 3.5.1 
(https://cytoscape.org/), as this module had the highest 
correlation coefficient with clinical traits.

Identifying and validating hub genes. The correlation of 
genes was calculated using absolute of Pearson's correlation 
values via Cor package in R 3.5.2 (https://cran.rstudio.com/). 
Genes that had high correlation with a module were regarded 
as hub genes of this module (cor. MM, >0.9). Furthermore, 
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to validate the hub genes, the data downloaded from TCGA 
(https://cancergenome.nih.gov/) contained clinical informa-
tion and RNA sequencing data. mRNA sequencing data were 
normalized using edgeR package in R 3.5.2 (https://cran.
rstudio.com/). GC data from TCGA contained 406 samples, 
which included 375 tumor and 31 corresponding adjacent 
normal tissues. Hub genes were validated in 375 tumor tissue 
samples using WGCNA. Kaplan Meier-plotter 3.0.0 (www.
kmplot.com) was used for the survival analysis of hub genes.

Immunohistochemistry analysis. The Human Protein 
Atlas (https://www.proteinatlas.org/) was used to validate 
candidate hub genes via immunohistochemistry. Images 
were obtained from the following sources: i) SLC5A6 
in normal tissue (n=6; https:// www.proteinatlas.org/ 
ENSG00000138074-SLC5A6/tissue/ stomach); ii) SLC5A6 
in tumor tissue (n=12; https://www.proteinatlas.org/ 
ENSG00000138074-SLC5A6/pathology/tissue/stomach+ cancer# 
ihc); iii) MFAP2 in normal tissue, (n=5; https://www.protein-
atlas.org/ENSG00000117122‑MFAP2/tissue/stomach); and 
iv) MFAP2 in tumor tissue (n=12; https://www.proteinatlas.
org/ENSG00000117122‑MFAP2/pathology/stomach+cancer). 
The immunohistochemical staining pattern of each tissue sample 
was annotated manually. Images of sections were evaluated 
and scored by two pathologists independently. The annotation 
was based on staining intensity (negative, weak, moderate or 
strong) and fraction of stained cells (<25%, 25~75%, >75%). The 
staining quantity of each protein via IHC was determined as the 
percentage of stained cells in 10 high power fields. All annota-
tion data and immunohistochemistry images from the standard 
tissue set of 44 tissues, together with data from extended tissue 
samples analyzed in the present investigation and all antibody 
validation data are publicly available at v18.proteinatlas.org.

Statistical analysis. Data are presented as the mean ± SEM 
and were analyzed with SPSS (version 19.0; IBM Corp.). 
Significant differences were calculated using one-way 
ANOVA with Dunnett's or Newman‑Keuls test, or by 
two‑tailed Student's t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

WGCNA construction and identification of clinically signifi-
cant modules. Cluster analysis was performed on the samples 
of GSE38749 using average linkage and Pearson's correlation 
(Fig. 1). The co-expression network was constructed using 
co-expression analysis. To ensure a scale-free network, the power 
β=12 was identified as soft‑threshold in the present study (Fig. 2). 
A total of 29 modules were identified via the average linkage 
hierarchical clustering, calculating with MEs and combing 
adjacent modules with the same module and height=0.25 
(Fig. 3A). As shown in Fig. 3B and C, the ‘black’ module (r=0.73; 
P=0.002) was found to have the highest association with cancer 
prognosis. Therefore, this module was selected as the key clini-
cally significant module for subsequent analysis. The modules 
‘skyblue’ (R=0.70; P=0.0034) and ‘blue’ (R=0.71; P=0.0031) also 
had high correlations with clinical traits and further evaluation 
may focus on the correlation between genes and the disease. The 
connectivity of integrated modules and genes with clinical traits 
was calculated and the correlation was significantly different 
(R=0.64; P=9.7x10-7; Fig. 3D). In addition, the correlation of 
modules was calculated according to MEs (Fig. 4).

GO and enrichment analysis of the key module. The genes 
in the key clinically significant module were categorized into 
three functional groups, namely BP, CC and MF. The key 

Figure 1. Cluster dendrogram for 15 gastric cancer samples from the GSE38749 dataset. Classification is according to American Joint Committee on Cancer; 
with stage reported as stage III, green; stage IIIa, yellow; stage IIIb, red; and status reported as survival, red; and death, green.
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Figure 3. Identification of modules associated with the clinical traits of gastric cancer. (A) Cluster dendrogram of all differentially expressed genes clustered 
on a dissimilarity measure. (B) Heatmap of the correlation between module eigengenes and clinical traits of gastric cancer. (C) Distribution of average gene 
significance errors in the modules associated with tumor prognosis of gastric cancer. (D) Connectivity of gene significance with module membership in the 
‘black’ module.

Figure 2. Determination of the soft‑threshold in weighted genes co‑expression network analysis. (A) Analysis of the scale‑free fit index for various soft‑thresh-
olds determining scale independence. (B) Analysis of the mean connectivity for various soft‑thresholds.
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module genes in the BP group were associated with positive 
regulation of endothelial cell proliferation, lung development, 
positive regulation of peptidyl-threonine phosphorylation, 
cellular response to fibroblast growth factor stimulus, collagen 
fibril organization, DNA repair, DNA duplex unwinding, trans-
membrane transport, cellular response to amino acid stimulus 
and cellular response to transforming growth factor β-stimulus 
(Fig. 5A). In the MF groups in metallopeptidase activity, telo-
meric DNA binding and identical protein binding associated 
genes were enriched and in the CC group proteinaceous extra-
cellular matrix genes were enriched (Fig. 5A). KEGG pathway 
analysis demonstrated that these genes were associated with 
positive regulation of endothelial cell proliferation, protein-
aceous extracellular matrix and metallopeptidase activity 
(Fig. 5B). The gene co‑expression network was constructed 
including all genes from the ‘black’ module using Cytoscape, 
SLC5A6 and MFAP2 were most closely associated with the 
prognosis of GC in the ‘black’ module and were selected as 
hub genes for further analysis (Fig. 5C).

Identification of clinically significant hub genes. Based on the 
cut-off criteria (cor. MM, >0.9), three genes with high connec-
tivity in the key module were identified (P<0.001; Fig. 6). 
SLC5A6 and MFAP2 were significantly negatively associated 
with the overall survival (OS; SLC5A6, P=2.40x10-8; MFAP2, 
P=8.00x10-8) and EVA1A showed a non‑significant negative 
association with OS (P=0.16; Fig. 7).

Validation of clinically significant hub genes. Using TCGA 
data, no correlation between cancer stage and SLC5A6 or 
MFAP2 was identified (Fig. 8A and B). RNA‑sequencing 
expression levels of SLC5A6 or MFAP2 were significantly 
increased in tumor tissues compared with normal tissues 
(P<0.01; Fig. 8C and D).

SLC5A6 and MFAP2 may serve as novel diagnostic markers 
for GC. ROC curves showed that SLC5A6 and MFAP2 exhib-
ited excellent diagnostic efficiency for GC (P<0.001; Fig. 9). 
The area under the ROC curve was calculated using 375 tumor 

Figure 4. Correlation of modules based on their eigengenes. Visualization of hierarchical clustering dendrogram of the eigengenes (top); the eigengene network 
represents the relationships among modules. Heat map of the eigengene adjacency (bottom); the colored bars on the left and below indicate the module for 
each row or column.



SUN et al:  SLC5A6 AND MFAP2 ARE NOVEL DIAGNOSTIC AND PROGNOSTIC BIOMARKERS IN GASTRIC CANCER 465

and 32 normal samples; for SLC5A6 an area under the curve 
of 1.000 and for MFAP2 0.9842 were determined. These 
results indicated that SLC5A6 and MFAP2 may serve as novel 
diagnostic marker for GC.

Furthermore, the diagnostic efficiency of SLC5A6 and 
MFAP2 was verified via immunohistochemistry results using 
the Human Protein Atlas database. Data for the two hub genes 
were obtained, including antibody staining, intensity and quan-
tity in immunohistochemistry. Immunohistochemistry results 
indicated that the protein expression of SLC5A6 in tumor tissues 
was increased compared with normal tissues (Fig. 10). However, 
protein expression of MFAP2 in tumor and normal tissues was 
not markedly different (Fig. 11). This was inconsistent with the 
results of mRNA expression using the TCGA data.

Discussion

GC has high reoccurrence even after combined treatments and 
it is a serious health thread (23). Multiple factors are involved 

in the tumorigenesis and progression of GC, including tumor 
suppressor gene inactivation, oncogene overexpression, tumor 
microenvironment remodeling, lifestyle, environmental 
factors and others (1,24). Due to the roles of genetic factors 
in GC occurrence, development, progression and prognosis, 
microarray and high-throughput sequencing can further help 
to study the function of genes at the whole genome level (25). 
As a systematic biology method to depict how clinical char-
acteristics associate with genes, in this study, WGCNA was 
applied to investigate co-expression in GC and normal tissues.

In the present study, 21,648 DEGs were identified and 
further processed and the top 50% of genes (10,824 genes) 
were selected for WGCNA analysis. Using comprehensive 
analyses of GS, MS and MM, it was inferred that SLC5A6, 
MFAP2 and EVA1A were the hub genes of the ‘black’ module. 
However, only SLC5A6 and MFAP2 were identified as clini-
cally significant hub genes, which were further successfully 
validated using TCGA data. Additionally, SLC5A6 and 
MFAP2 exhibited excellent diagnostic efficiency for GC 
tissues compared with normal tissues.

According to the distribution of mean GS and errors in the 
modules associated with prognosis of GC, the ‘black’ module 
was identified as the clinical significant module, and the 
majority of enriched genes were associated with BP, including 
the positive regulation of endothelial cell proliferation. KEGG 
pathway analysis indicated that these genes were involved 
in longevity regulating pathway-multiple species, insulin 
signaling pathway and mTOR signaling pathway. These results 
implied that the cluster of genes in this significant module may 
play an important role in promoting tumor growth, increasing 
proteinaceous extracellular matrix production and activating 
metallopeptidase. The abnormal proliferation of endothelial 
cells is closely associated with occurrence and development 
of GC (26,27). In addition, metalloproteinases activation and 
tumor microenvironment remodeling pave the way for cancer 
metastasis and progress (28-30). Further studies may explore 
the roles and functions of the hub genes identified in this study.

SLC5A6 and MFAP2 were negatively associated with 
OS of GC patients. mRNA expression of these genes were 
significantly increased in tumor tissues compared with normal 
tissues; however, it did not significantly vary by tumor stage. 
This suggested that these two genes have only a small impact 
on disease grading. The protein expression of SLC5A6 was 
significantly increased in tumor tissues, but protein expression 
of MFAP2 was observed in both in normal and tumor tissues. 
According to these results, it was suggested that SLC5A6 and 
MFAP2 were novel diagnostic and prognostic biomarkers 
for GC, with SLC5A6 potentially being more reliable than 
MFAP2.

MFAP2 is an abundant component of microfibrils (31,32). 
The research of MFAP2 mainly focuses on its role in regu-
lating the deposition of proelastin on microfibers to form 
elastic fibers (31), and few studies have been conducted to 
investigate the function of MFAP2 in cancer. MFAP2 has 
been identified to be co‑expressed in association with the 
NF-κB/Snail/YY1/RKIP signaling pathway in multiple 
myeloma (33). In addition, MFAP2 has been shown to 
be markedly elevated in head and neck squamous cell 
carcinoma, particularly in lymph node metastasis (34). 
Recently, Wang et al (35) demonstrated that MFAP2 can 

Figure 5. Pathway analysis of hub genes. Significantly enriched genes using 
Gene Ontology annotations for the ‘black’ module, including (A) biological 
processes, molecular function and cellular components and (B) Kyoto 
Encyclopedia of Genes and Genome pathways. (C) Weighted co-expression 
network for the ‘black’ module genes, with nodes displayed according to the 
connectivity of genes.
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Figure 8. Validation of SLC5A6 and MFAP2 expression in gastric cancer. mRNA expression at different stages for (A) SLC5A6 and (B) MFAP2, with P>0.01 
for all comparisons (ANOVA). mRNA expression in tumor and normal tissues for (C) SLC5A6 and (D) MFAP2. *P<0.0001 (paired Student's t‑test). MFAP2, 
microfibril‑associated protein 2.

Figure 7. Overall survival of patients with gastric cancer associated with hub gene expression. Curves were created using the Kaplan Meier-plotter and patients 
were stratified into high‑ and low‑level expression groups according to median expression. Survival is plotted for (A) EVA1A, (B) SLC5A6 and (C) MFAP2 
expression. MFAP2, microfibril‑associated protein 2.

Figure 6. Correlation of three genes with module membership in the ‘black’ module. Associations between module membership for the ‘black’ module and the 
expression of (A) EVA1A, (B) SLC5A6 and (C) MFAP2 are plotted. MFAP2, microfibril‑associated protein 2.
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Figure 11. Immunohistochemistry analysis of MFAP2 expression in gastric cancer samples. Data were obtained from the Human Protein Atlas. (A‑E) Protein 
levels of MFAP2 in normal tissue (staining: not detected; intensity: negative; quantity: negative). (F‑J) Levels of MFAP2 in tumor tissue (staining: not detected; 
intensity: negative; quantity: negative). Scale bar, 200 µm. MFAP2, microfibril‑associated protein 2. Normal tissue (n=5), tumor tissue (n=12).

Figure 10. Immunohistochemistry analysis of SLC5A6 expression in gastric cancer samples. Data were obtained from the Human Protein Atlas. (A‑E) Protein 
levels of SLC5A6 in normal tissue (staining: not detected; intensity: negative; quantity: negative). (F) Protein levels of SLC5A6 in tumor tissue (staining: 
medium; intensity: moderate; quantity: 25%~75%). (G) Protein levels of SLC5A6 in tumor tissue (staining: medium; intensity: moderate; quantity: 25~75%). 
(H) Protein levels of SLC5A6 in tumor tissue (staining: not detected; intensity: weak; quantity: <25%). (I) Protein levels of SLC5A6 in tumor tissue (staining: 
not detected; intensity: weak; quantity: <25%). (J) Protein levels of SLC5A6 in tumor tissue (staining: not detected; intensity: weak; quantity: <25%). Scale 
bar, 200 µm. Normal tissue (n=6), tumor tissue (n=12).

Figure 9. ROC curves for hub genes. Area under the ROC curve were determined for (A) SLC5A6 and (B) MFAP2. ROC, receiver operating characteristic; 
AUC, area under the curve; MFAP2, microfibril‑associated protein 2.
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promote epithelial-mesenchymal transition via activating the 
TGF-β/SMAD2/3 signaling pathway in GC cells. Consistent 
with previous findings, our results suggested that MFAP2 
may play a crucial role in progression of GC and that it may 
act as an oncogene. However, the functions and underlying 
mechanisms of MFAP2 involved in the development and 
progression of GC need to be further investigated.

To the best of our knowledge, no studies have been 
conducted evaluating the role of SLC5A6 in cancer to 
date. SLC5A6 encodes the Na+/multivitamin transporter 
(SMVT) (36), a member of the SLC5 family of Na+/solute 
symporters (37), and it mediates the Na+-dependent uptake 
of structurally diverse water-soluble vitamins, such as panto-
thenic acid and biotin (38,39). Ghosal et al (40) generated an 
intestine‑specific (conditional) SMVT knockout (KO) mouse 
model using Cre/lox technology. They found that the KO 
mice exhibited growth retardation, decreased bone density, 
decreased bone length and decreased biotin status, and about 
two-thirds of the KO mice died prematurely between the age 
of 6 and 10 weeks (40). Our results indicated that SLC5A6 
was a potential diagnostic and prognostic biomarker for 
GC, which implied that SLC5A6 was likely to play a role in 
tumorigenesis and progression. Details need to be clarified 
in further studies.

Other prognostic biomarkers for GC were previously 
identified via WGCNA using different GEO datasets, 
including sorting nexin 10 (41), elastin microfibril inter-
face 1 (42) and follistatin like 1 (42). The present study has 
various limitations. First, the expression levels of SLC5A6 
and MFAP2 were not further analyzed in clinical speci-
mens or GC cell lines. Second, the functions and molecular 
regulatory mechanisms of SLC5A6 and MFAP2 in GC need 
to be further explored. Third, in this study, the sample size 
for screening hub genes was limited and further studies 
could include a lager sample pool to validate the results and 
conclusions presented here.

In conclusion, WGCNA was utilized to identify hub genes 
in GC that were further studied using RNA sequencing and 
available clinical data from TCGA. SLC5A6 and MFAP2 
were hub genes associated oncogenesis and may act as inde-
pendent prognostic factors for OS in GC patients. SLC5A6 
and MFAP2 further may have the potential to be diagnostic 
and prognostic biomarkers in GC patients contributing to 
personalized therapy. However, further in-depth investigations 
are required to clarify the clinical and biological functions of 
these candidates.
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