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Abstract
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked

reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in met-

abolic models, a large-scale analysis was performed using a previously published dataset

of 130 genome-scale models. The results showed that a large number of reactions (~22%)

are blocked in all the models where they are present. To unravel the nature of such incon-

sistencies a metamodel was construed by joining the 130 models in a single network. This

metamodel was manually curated using the unconnected modules approach, and then, it

was used as a reference network to perform a gap-filling on each individual genome-scale

model. Finally, a set of 36 models that had not been considered during the construction of

the metamodel was used, as a proof of concept, to extend the metamodel with new bio-

chemical information, and to assess its impact on gap-filling results. The analysis performed

on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models

were already present in the metabolic database used during the reconstructions process; 2)

the presence of inconsistencies in a metabolic database can be propagated to the recon-

structed models; 3) there are reactions not manifested as blocked which are active as a con-

sequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are

highly dependent on the consistency and completeness of the metamodel or metabolic

database used as the reference network. In conclusion the consistency analysis should be

applied to metabolic databases in order to detect and fill gaps as well as to detect and

remove artifacts and redundant information.

Introduction
Metabolic reconstruction is the computational process that aims to elucidate the biochemical
network of reactions and metabolites which defines the cell metabolism of a certain organism
[1,2]. Since metabolic reconstruction is tightly integrated with genomic information, it can be
viewed as a detailed functional annotation of the genome [3,4]. In the first stages of a
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reconstruction, the genome sequence and its annotation are the main source of information
used to infer the biochemical pathways of an organism [5]. Furthermore, each entry annotated
as an enzyme coding gene usually contains some identifiers, such as Gene Ontology (GO)
terms or Enzyme Commission (EC) numbers, which allow the construction of the gene-pro-
tein-reaction rules [6], by mapping one or more coding sequences to one or more reactions,
through a protein or protein complex. After this, a metabolic database is used to map the enzy-
matic activities to instances of biochemical reactions, through their EC numbers [7]. A meta-
bolic database typically describes collections of enzymes, reactions and biochemical pathways,
which cover most of the known biochemistry [8,9]. Databases commonly used in metabolic
reconstruction include the SEED [10], BiGG [11], KEGG [9] or Metacyc [12], among others.

Although the objective of a metabolic reconstruction may be to create an organism's specific
metabolic database, in many cases the final goal is to develop a genome-scale metabolic model
(GSM), that is to say, an in-silico representation of a metabolic network [13]. A GSM can be
used to generate hypotheses about the metabolic capabilities of the network through the
computational framework known as constraint-based modeling (CBM), which eventually may
be experimentally tested [14,15]. Genome-scale reconstruction has rapidly grown in recent
years, as has its range of applications [16,17]. Moreover, CBM can be used to improve model
formulation by the detection and resolution of inconsistencies. In this sense the analysis of a
GSM can be used to refine the annotation of the genome [18,19] and thus to improve model
formulation.

In general, inconsistencies will appear as holes in the structure of the network. These holes
might indicate either global or organism specific gaps in biological knowledge. Global gaps are
reflected in the existence of metabolites with an unknown biochemical fate [20], as well as the
large number of orphan enzymatic activities [21,22]. On the other hand, organism specific
gaps are commonly associated with genome annotation errors reflected in the absence of enzy-
matic activities coded in the genome, or in the inclusion of activities that are not present in the
considered metabolism [23].

The resolution of inconsistencies in GSMs is known as network curation. This is a decision-
making process where wrongly annotated reactions are removed and candidate reactions are
included for the purpose of solving model gaps. The prediction of candidate reactions for filling
gaps is referred to as the gap-filling problem [23,24]. Several methods have been proposed for
identifying and solving inconsistencies in GSMs in an automatic fashion. Some of these meth-
ods rely on the application of optimization techniques [18,24–29], while others focus on a
genomic approach to find missing genes [30,31]. In general, these methods require a metabolic
database to search for candidate reactions. However, in optimization-based methods the data-
base itself is treated as a large metabolic model where the GSM to be gap-filled is embedded
[18,32]. Since metabolic databases include, in general, reactions that span across the tree of life,
they can be considered as global networks ormetamodels [33].

The analysis of ametamodel through the CBM approach can lead to the detection of struc-
tural inconsistencies, as well as coupling relations [34], such as enzyme subsets [35]. Remark-
ably, the presence of inconsistencies in a metamodel will be propagated to any particular GSM
derived from it. As a consequence, the consistency of the metamodel is of critical importance
in order to reconstruct a consistent GSM. On the other hand, the information derived from the
coupling relations present in a metamodel can facilitate the reconstruction and curation of
GSMs. Previous studies have focused on the use of a global network to improve the reconstruc-
tion of single organisms [33], although a graph-based approach was there adopted rather than
the constraint-based modeling [36].

The aim of the large-scale analysis proposed in this paper is to detect both the recurrent
errors in the automatic reconstruction process as well the sources of these inconsistencies, and
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to assess the impact of the metamodel completeness and consistency in the gap-filling process.
To this end, a dataset of 130 GSMs of bacteria reconstructed using the Model SEED pipeline
[37] was selected for this study, from which a metamodel was formulated. The main reason for
choosing the mentioned dataset relies on the fact that the SEED is a wide extended pipeline for
metabolic reconstruction. Additionally, it has been used in several works to perform large scale
studies of bacterial metabolism, and to draw important biological conclusions [38–42].

A consistency analysis was performed on the metamodel using the unconnected modules
approach [43]. The detected inconsistencies were manually resolved using information from
the following metabolic databases: SEED [10], KEGG [9] and Metacyc [12]. The resulting con-
sistent metamodel was used as reference to solve the gap metabolites and blocked reactions in
each individual GSM, using a modified version of the fastcore algorithm [26]. Moreover, each
GSM was also gap-filled using the initial metamodel (i.e. without manual curation). A compar-
ative analysis was performed between both versions of each GSM to investigate the impact of
perform gap-filling using an inconsistent reference network. Finally, a set of models of certain
organisms not considered during the construction of the metamodel was used, as a proof of
concept, to extend the metamodel with new biochemical information, and asses its impact on
the gap-filling results.

Background
Any biochemical network such as cellular metabolism can be represented by its corresponding
stoichiometric matrix Nmxn. This matrix, where rows and columns correspond to metabolites
and reactions respectively, represents the structure of the network [44]. Moreover, the set of
reactions J indexes can be partitioned into two disjoint subsets: 1) the set JINT of biochemical
reactions that take place inside the cell, as well the transport reactions that operate between the
cell and the surrounding medium; 2) the set of exchange fluxes JEX, which are auxiliary vari-
ables used to represent the rate at which the metabolites that are allowed to cross the system
boundary are consumed/produced [45].

The structural properties of such networks may be assessed through the CBM approach.
CBM relies on the use of constraints with the aim of reducing the system's functional states, to
those that are physiologically more relevant [14,46]. Two fundamental constraints, and a set of
reaction bounds, are used to define the so-called flux space. First, the steady state assumption,
imposed over the mass balance equation of each metabolite of the network:

N � v ¼ 0 ð1Þ
where v is the vector of reaction fluxes, or flux distribution. Second, the thermodynamic con-
straints, which ensure that the irreversible reactions take non-negative flux values.

0 � vj8j 2 Irr ð2Þ

where Irr is the set of the irreversible reaction indexes. Besides, lower and upper bounds are
imposed over each reaction to represent additional constraints, such as the maximum capacity
of an enzyme and also to model the surrounding environment of a metabolic system, i.e. by
constraining the exchange fluxes JEX:

bi � vj � ai8j 2 J ð3Þ

where βi and αi correspond to the lower and upper bound of reaction i, respectively.
Definition: Any non-trivial vector v feasible with respect to Eqs (1) and (2) is called a flux

distribution.
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The set of all possible flux distribution spans the so-called flux space:

F ¼ fv! 2 Rn : N � v! ¼ 0; bi � vj � ai8j 2 J; bi ¼ 08i 2 Irrg ð4Þ

An important step in the reconstruction of a metabolic model is to check the consistency of
the network definition. In general terms, the structural inconsistencies of a metabolic model
may manifest as blocked reactions, i.e. reactions which cannot display a steady-state flux other
than zero, and gap metabolites, i.e. nodes in the network through which there can be no steady
state flow [24]. Formally speaking, given a metabolic model with stoichiometric matrix N and a
set of irreversible reactions Irr, structural inconsistencies are defined as follows:

Definition: a reaction j is defined as blocked if for every possible flux distribution v the cor-
responding flux value vj = 0.

Definition: a metabolite is defined as a gap if all the reactions in which it participates are
blocked.

Moreover, the relation between blocked reactions and gap metabolites can be unambigu-
ously established by means of the unconnected modules [43], as following defined:

Definition: an unconnected module (UM) is defined as a connected bipartite sub-graph of
blocked reactions connected through gap metabolites.

Definition: a metabolic model with a stoichiometric matrix N and a set of irreversible reac-
tions Irr is said to be flux consistent if it does not contain blocked reactions nor gap
metabolites.

Materials and Methods

Computational Tools
Constraint-based analysis was performed using the python-based toolbox COBRApy [47]. LP
and MILP problems were solved using the Gurobi Solver [48] accessed through COBRApy.
Graph algorithms were accessed through Python-based NetworX library [49]. Graphs were
draw using the yEd Graph Editor [50]. Computations were done on a desktop computer with
an Intel1 Core™ i7 CPU 950 processor, with 23.5 GiB, running under Fedora 17 Linux OS. All
the scripts developed for this paper were programmed in Python language [51], and can down-
load from the following repository: https://github.com/migp11/consistency-analysis/. The
scripts allow consistency analysis to be performed on any model, computing blocked reactions,
gap-metabolites and the set of unconnected modules. Moreover, the code allows gap-filling to
performed, based on fastcore algorithm.

Dataset
The Model SEED currently includes 236 publicly available models [10]. A total of 41 models
were not available in SBML format, and were therefore not considered. The remaining 195
models comprised: 195 bacteria, 1 archaea (Methanosarcina barkeri str. Fusaro) and 1 eukary-
ote (Ostreococcus tauri). Since this paper focuses on the analysis of bacterial metabolism, the
two models corresponding to the archaea and the eukaryote organisms were excluded from the
analysis. A total of 27 of the remaining 193 models corresponded to older versions of some of
the models, and therefore they were also excluded from the dataset in order to reduce
redundancies.

After these filtering steps, a dataset of 166 bacterial GSMs from a wide taxonomic range was
obtained. The 166 selected models included a subset of 130 GSMs which corresponded to the
dataset first published by Henry et al., albeit with slight differences which are detailed at the
end of this section (see also S1B Table), and included twenty-two models optimized and
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validated using data from gene essentiality and growth condition experiments [37]. Since these
130 models received particular attention during the reconstruction process, and have also been
extensively used to perform large-scale studies of bacterial metabolism [38–42], this subset was
chosen as a reference to conduct a consistency analysis and construct the first version of the
metamodel. On the other hand, the remaining 36 bacterial models available at the SEED (not
previously used in the referred studies, [38–42]) were selected to be used as a proof of concept
to assess the impact of extending a metamodel by the adding of new models to a pre-existing
one (see S1C Table).

The models were downloaded in SBML format [52] from the SEED (http://www.theseed.
org). Moreover, when retrieving the models corresponding to the dataset previously published
by Henry et. al [37], new versions of three of the models were found, and they were selected
instead of the earlier versions. Additionally, the ID for one of the models (Seed39765.1), corre-
sponding to T. crunogena XCL-2, was not available; however, by using the species name a
model with a different ID was found (Seed317025.3), and this model was used to replace the
unavailable model. Finally, the models were grouped according to taxonomic range, using the
color schema employed in the Fig 2A in the original publication [37] (see S1A and S1B Table).
However, the grouping differed slightly from that of the original publication: 2 GSMs belong-
ing to the Actinobacteria (light green) and the Bacteroidete (dark blue) groups respectively, had
been grouped with the Gammaproteobacteria (yellow). Additionally, when the biomass equa-
tions of the models were compared, it was found that some models share the same formulation.
There are a total of 157 biomass equation and the following organisms share a common equa-
tion:M. genitalium G-37 (Opt243273.1),M. pulmonis UAB CTIP (Opt272635.1); S. typhimur-
ium LT2 (Opt99287.1), E. coli K12 (Opt83333.1), V. choleraeO1 biovar eltor str. N16961
(Opt243277.1); S. frigidimarina NCIMB 400 (Seed318167.13), S. halifaxensis HAW-EB4
(Seed458817.7), S. woodyi ATCC 51908 (Seed392500.5), S. amazonensis SB2B (Seed326297.9),
S. pealeana ATCC 700345 (Seed398579.6), S. sediminisHAW-EB3 (Seed425104.6), Shewanella
sp. MR-4 (Seed60480.18) (see S3D Table for the details). All the details concerning to the
description of the dataset can be found in S1B and S1C Table.

Constraint-Based Methods
Blocked reactions were computed using the fast consistency check method [26]. Its advantage
is that it only needs to solve a small number of linear programs in order to detect blocked reac-
tions. In this paper the algorithm was implemented in python. In all the cases, computation of
blocked reaction was performed by relaxing the bounds of the exchange fluxes, allowing the
external metabolites to be consumed or produced by the system. The set of gap metabolites
and UMs were computed as previously described [43]. The manual curation of UMs was per-
formed with the following set of elementary operations: 1) modifications of the reversibility or
direction of one or more reactions; 2) addition of intracellular reactions or transporters; 3)
inclusion of exchange fluxes; 4) if there was not enough biochemical information to solve
inconsistencies, blocked reactions and gap metabolites were removed from the model.

Flux coupling analysis was computed following the algorithm previously described [34].
Moreover, FCA was performed on a modified version of a model where the constant biomass
composition imposed by the stoichiometry of the biomass equation was relaxed in the follow-
ing manner: first, each metabolite contained in at least one of the biomass equations (i.e. those
metabolites that are a biomass component in at least one GSM) was allowed to be drained from
the system in an independent way through demand fluxes; second, each reaction correspond-
ing to a biomass equation was removed. Artificial variables (i.e. exchange and demand fluxes)
were not considered for analysis of the coupling relation.
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The fastcore algorithm used to perform the gap-filling on the GSM was re-implemented in
Python programming language according to [32], and is included in the following repository:
https://github.com/migp11/consistency-analysis/. The inputs of the algorithms are a metamo-
del also referred as a consistent global network, a set of penalties, and an inconsistent model.
The output is a consistent version of the model which includes a minimal set of new reactions
needed to solve the inconsistencies. The algorithms is an iterative procedure that at each step
solves linear programs at each step, in order to identify a set of gap-filling reactions that should
be added to the model in order to solve a subset of blocked reactions.

Results

Large-scale consistency analysis of 130 GSMs
Using the dataset previously published by Henry et al. [37], composed of 130 GSMs of bacterial
metabolisms (see Dataset in Materials and Methods section), a consistency analysis was per-
formed for each model in order to detect: 1) the set of blocked reactions; 2) the set of gap
metabolites, and; 3) the set of UMs. As a consequence of this analysis the frequency and distri-
bution of blocked reactions and gap metabolites among the GSMs were determined (see S1A
Table). In Fig 1A, the number of blocked reactions versus the total number of reactions for
each model is shown. Although there is a high dispersion in the percentage of blocked reactions
found across the models, varying between 19–50%, the dispersion is lower than the one repre-
sented in the original publication [37]. This is due to the fact that for the present paper the last
version of each individual GSM was used (see Data in Material and Methods section). The
model with the lowest percentage of blocked reactions (19%) corresponds to the GSM of
Escherichia coli K12 (Opt83333.1) whereas the highest ~47% was found in Thermus thermophi-
lusHB8 (Seed300852.3). Despite this wide range it is still possible to appreciate a trend between
the number of blocked reactions and the total number of reactions in a GSM, as previously

Fig 1. Consistency analysis of 130 GSMs. a) the number of blocked reactions found in each GSM is plotted against the number of total reactions. Grey
lines represent iso-probabilities (20%, 25%, and so). Colors of dots correspond to the groups of the Fig 2A previously published [37], and are also included in
S1A Table; b) the times a reaction was found in a GSM is plotted against the times it was found blocked. The main diagonal indicates reactions found blocked
in all the GSMs where they were present.

doi:10.1371/journal.pone.0143626.g001
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reported by the authors [37]. This trend suggests that the difficulty of reconstructing a meta-
bolic network increases with the size of the network.

Fig 1B shows the relation between the number of models where a given reaction is present
and the number of times the reaction was found blocked (details can be found in S2A Table).
Accordingly, 608 reactions (~28%) were never found blocked (points on the x-axis). This sub-
set of reactions includes reactions belonging to well-known pathways and reactions involved in
biosynthetic pathways which produce biomass components, such as amino acids or nucleotides
(see S2A and S2B Table). Furthermore, a total of 1107 reactions (~50%) were found blocked in
some models and active in others, indicating that certain pathways could be correctly recon-
structed in some GSMs while in others the reconstruction contained some gaps (see S2A and
S2C Table).

The situation described above can be illustrated by the case of the biosynthesis of siroheme
(Fig 2A), a prosthetic group present in assimilatory sulfite and nitrite reductases, and found in
many prokaryotes. The pathway is mainly composed of three enzyme activities (EC 2.1.1.107,
EC 1.3.1.76 and EC 4.99.1.4), and uses uroporphyrinogen-III as a precursor [53]. This pathway
is present in 85 GSMs with different degrees of completeness: in 34 GSMs (~40%) it is complete
and active; in 28 models (~33%) it is complete but blocked because the end product (siroheme)
is not included in the biomass equation, and in 23 models (~27%) there is at least one missing
reaction, which causes the remaining ones to be blocked. Due to the fact that uroporphyrino-
gen-III is also a precursor in at least two other metabolic pathways (adenosylcobalamin biosyn-
thesis and heme biosynthesis), the automatic inference of the siroheme biosynthetic pathway
shown to be far from trivial.

Finally, 480 reactions (~22%) were found blocked in every model where they are present, as
depicted by the points on the main diagonal of Fig 1B. Moreover, a total of 570 metabolites
(472 intracellular / 98 extracellular) were always found as gaps. For example, according to the

Fig 2. Examples of twometabolic pathways inconsistently reconstructed. a) The siroheme biosynthetic
pathway in prokaryotes. b) The biotin biosynthetic pathway from pimelate; yellow colored metabolites indicate
root deadends. Numbers in brackets refer to the total number of GSMs in which the reactions were found
blocked and present, respectively. Metabolite abbreviations can be found in S3C Table.

doi:10.1371/journal.pone.0143626.g002
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dataset, the synthesis of biotin from pimelate includes five reactions (Fig 2B). Interestingly,
none of the models include the synthesis of pimelate, which was an enigma until recently when
experimental support for two different routes of synthesis was obtained in E. coli and B. subtilis
[54].

The detection of always blocked reactions indicates the existence of recurrent inconsisten-
cies within the reconstruction process (see S2A and S2C Table). These inconsistencies can be
artifacts produced during the reconstruction, or the consequence of gaps already present in the
metabolic databases. This topic is discussed in the next section.

Construction and curation of the metamodel
For the purpose to analyzing global inconsistencies, ametamodel was constructed by joining
the 130 GSMs used in the previous section into a single network. The resulting metamodel,
referred as MM130.0, contains a total of 2195 reactions, 1811 metabolites and 370 exchange
fluxes (see S3A–S3C Table for details). The metamodel includes a total of 126 different biomass
equations because certain GSMs share the same biomass equation (see S3D Table).

A consistency analysis was conducted on MM130.0. The result showed that the metamodel
contains 417 blocked reactions and 520 gap metabolites (431 intracellular / 89 extracellular)
grouped into 229 UMs (see S1 Fig and S3 Table). As expected, all the reactions classified as
sometimes blocked (1107), together with the never blocked (608) were found to be active in
MM130.0. Furthermore, the 417 reactions found blocked in MM130.0 are a subset of the 480
always blocked reactions. In the same way, the 520 gap metabolites found in MM130.0 are a
subset of the 570 metabolites always gap. This indicates that 63 out of 480 always blocked reac-
tions and 50 gap metabolites previously classified as always gap were “restored” as a conse-
quence of the metamodel construction.

In order to understand how this spontaneous connectivity restoring occurred, we mapped
these 63 reactions and 50 metabolites onto a bipartite graph, which resulted in 18 connected
components (see S2 Fig). Further analysis showed two different scenarios which explain the
spontaneous restoring of the connectivity. The first scenario involves the cases of incomplete
metabolic pathways in individual GSMs that became complete in the metamodel (Fig 3A). The
second scenario corresponds to two classes of artifacts: in-to-out linear pathways and stoichio-
metric cycles. The in-to-out linear pathways, as the example depicted in Fig 3B shows, are cases
where a single metabolite is imported and subsequently excreted, after a few steps. On the
other hand, the cycles correspond to in-silico flux modes that violate the principle of energy
conservation and thus do not have any physical meaning [55,56]. A clear example is depicted
in Fig 3C involving two alternative pathways for the biosynthesis of vitamin B12 which, when
considered together, form a closed loop. Clearly, both classes of artifacts correspond to a situa-
tion with non-physiological meaning, and thus manual curation is needed.

The size distribution of the 229 UMs found in MM130.0 indicates the presence of three dif-
ferent groups. The three biggest UMs included a total of 99 reactions involved in the biosynthe-
sis of membrane lipids and teichoic acids. Interestingly, since lipids and teichoic acids are
elongated by iterative reactions, if the corresponding reactions are considered as enzyme activi-
ties (i.e. by considering the set of EC numbers) the three UMs decrease dramatically in size. It
is worth noting that the curation of such pathways is particularly difficult. On the other hand,
179 UMs were composed of a single reaction, many of which were unconnected transporters.
Within these two extremes, the third group of UMs included a significant number of biological
pathways, as well as artifacts. As a consequence of this diversity, the curation of the UMs
included in this group usually did not have a trivial solution. Thus, each UM was manually
curated according to the procedure described in the Methods section.
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As an example, the curation of UM4 (Fig 2B), found in most of the GSMs which involved
the transformation of pimelate in biotin [54], is described. This UM contains three deadend
metabolites: metabolites: S-adenosyl-4-methylthio-2-oxobutanoate (previously described as a
gap [20]), a by-product of 7,8-diaminopelargonic acid synthase (EC 2.6.1.62); 5'-deoxyadeno-
sine (also described as a deadend [57]), which is a by-product of biotin synthase (EC 2.8.1.6);
and biotin, the final product of the pathway. For the two first metabolites, and in the absence of
information about their further metabolic use, exchange fluxes representing sinks were added.
Finally, since biotin is an essential cofactor, its consumption is a consequence of cellular main-
tenance and growth, and therefore it should be included in the corresponding biomass
equations.

Another illustrative example is the curation of UM7, composed of 5 reactions belonging to
the methanogenesis, a metabolic process exclusive to members of the domain Archaea (see

Fig 3. Three examples of pathways unblocked as a consequences of the metamodel construction. In a) a partial representation of the aerobic
degradation of catechol is depicted (metabolites in circles were manually added to clarify the diagram). In b) the import of choline sulfate is shown as an
example of an in-to-out linear pathway artifact. In c) an example of an artifact is shown, with a set of reactions corresponding to two different variants of the
adenosylcobalamin biosynthetic pathway: early cobalt insertion (right side); late cobalt incorporation (left side). Cofactors and currency metabolites were
excluded from this representation. Metabolite abbreviations can be found in S3C Table.

doi:10.1371/journal.pone.0143626.g003
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Fig 4). Strikingly, four of these reactions were found in the GSMs of three proteobacteria: Bur-
kholderia xenovorans LB400;Methylococcus capsulatus str. Bath; andMethylobacillus flagella-
tus KT. Thus, it is sensible to assume that these reactions were present in these GSMs as a
result of errors in the functional annotation of the corresponding bacterial genomes. Interest-
ingly, the three above- mentioned bacterial species code for diverse methylotrophic pathways
[58] that in some aspects are analogous and share some enzymes with the methanogenesis
pathway [59]. In order to refine the metamodel, reactions with EC numbers 1.2.99.5, 1.5.98.1,
1.5.98.2 and 2.3.1.101 that belong exclusively to the methanogenesis pathway were removed.
Furthermore, reactions EC 4.2.1.147, EC 1.5.1.- and reaction formyltransferase/hydrolase (for-
mation of formate from 5-formyl-H4MPT with no assigned EC) were added. These changes,
together with EC 3.5.4.27 already present in the metamodel, constitute the so-called formalde-
hyde oxidation V (H4MPT pathway) as in the Metacyc database. This resulting pathway is
more in accordance with the bacterial methylotrophic phenotype.

As a consequence of the curation process, a total of 259 reactions were unblocked. All the
reactions added to MM130.0 for solving the different UMs were extracted from the SEED data-
base, except for 22 manually added reactions were based on those found in Metacyc and KEGG
(see S1 Fig). Moreover, the reactions and metabolites that were present in non-solvable UMs,
referred to asmetablocked andmetagaps respectively, were removed from the metamodel.
Finally, a set of metabolites considered to be biomass components but not included in the

Fig 4. Relation between the pathways: methanogeneis from CO2 and the so-called formaldehyde
oxidation V (H4MPT). Black colored reactions were removed frommetamodel because they belong
exclusively to the methanogenic pathway. The white colored reaction is involved in the metanogenesis but
also in the formaldehyde oxidation V (H4MPT) pathway. Grey reactions belonging to the formaldehyde
oxidation V (H4MPT) pathway and were manually added to the metamodel to gap-fill the former pathway.
Metabolite abbreviations can be found in S3C Table.

doi:10.1371/journal.pone.0143626.g004
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biomass equations, were also found. After the curation process a flux consistent metamodel,
named MM130.1, was obtained. Table 1 summarizes the main differences between the initial
and final versions of the metamodel. All the details concerning the metamodel curation can be
found in S3A–S3E Table (S1 File includes MM130.1 in SBML format).

Flux Coupling Analysis of the Metamodel
The flux coupling analysis (FCA) allows the elucidation of the topological and flux connectivity
features of a metabolic network [34]. These features include groups of reactions that operate
together in fixed flux proportions under steady-state conditions (i.e. full coupling sets or reac-
tion subsets [34,35,60]), as well as conditional implication between pairs of reactions (direc-
tional coupling). In the context of metabolic reconstruction, we found that the coupling
relation of a metamodel allows the immediate resolution of certain gaps during the creation of
a specific GSM. For example, given a consistent network N if a reaction j is fully or directionally
coupled to other reactions, then any subnetwork N' which includes the reaction j should also
include the reactions required by j, otherwise j will become blocked. Therefore, if the coupling
structure of a metamodel is known, it is possible to detect missing reactions in any model con-
tained on the metamodel.

These results are a consequence of the mathematical properties of the coupling relations,
which have previously been studied by Marashi and Bockmayr [61]. The main result proved by
the authors states that the coupling relations between any pair of non-blocked reactions will
tend to relax (or stay the same) as a network is extended by adding new reactions. Conse-
quently, the coupling relation between any pair of non-blocked reactions will never become
stricter (e.g. directionally coupled! fully coupled) as a consequence of adding reactions. The
only case where the coupling between reactions can become stricter occurs when a certain reac-
tion i is found as blocked in a model, and then becomes active as a result of adding a new reac-
tion j. This special case was considered in the Construction and curation of the metamodel
section. On the other hand, when one or more reactions are removed from a consistent net-
work there are different possible outcomes: 1) the couplings between the remaining reactions
are not affected; 2) the coupling between some pairs of non-blocked reactions becomes stricter;
3) one or more reactions become blocked. Thus, based on the results commented above, the
coupling structure of a metamodel can be used to detect missing reactions in any model that
held to be a subnetwork of the metamodel.

Table 1. Results of the construction andmanual curation of the metamodel.

Element MM130.0 (Initial) Removed Added MM130.1 (Curated)

Metabolites 1811 222 77 1666

† Reactions 1767 106 230 1891

Transporters 428 55 23 396

Exchanges 328 52 19 295

* Sinks — — 3 3

The first column indicates the elements that define a metabolic model. The second column describes the initial metamodel created by joining all the 130

GSMs. The third and fourth columns indicate the number of elements removed/added respectively as a consequence of the manual curation. The last

column describes the final version of the metamodel.

† Biomass equations are not included.

* A sink is a special type of exchange flux, introduced in order to allow a metabolite without a known biochemical fate to leave the system, and thus

preventing it from becoming a deadend.

doi:10.1371/journal.pone.0143626.t001

Consistency Analysis of Genome-Scale Models of Bacterial Metabolism

PLOSONE | DOI:10.1371/journal.pone.0143626 December 2, 2015 11 / 22



FCA was performed on the curated metamodel MM130.1 in order to detect all the coupling
relations existing between the reactions in the network. The analysis was conducted on a modi-
fied version of model where the constant biomass composition imposed by the stoichiometry
of the biomass equation was relaxed (see Methods section). The results showed that the net-
work contains 364 full-coupled sets (FCS) of reactions. Moreover, a total of 1070 (~47%) reac-
tions belong to one of the FCSs present in the model, while the remaining are not involved in
fully coupled relations. This indicates that the actual size of the network, in terms of indepen-
dent reactions, is 1581 instead of 2287. Considering each FCS as a single node, a total of 793
directional coupling relations were also found (see S3 Fig).

The size of the FCSs varies between 2 to 34 reactions with a mean size of ~3 reactions. The
biggest FCS is composed of reactions involved in core oligosaccharide biosynthesis, the major
component of the outer membrane of Gram-negative bacteria. Other larger FCSs (> 10 reac-
tions) were also involved in the biosynthesis of cell envelope components such as different
membrane lipids and peptidoglycan. However, FCSs of a similar size involved in other biologi-
cal processes were also found, e.g. the biosynthesis of cofactors and some amino acids.

Gap-filling of 130 GSMs
The initial metamodel (MM130.0) and its curated version (MM130.1) were used alternatively
as the reference network to perform a gap-filling on each individual GSM. In this way, the com-
parison between models gap-filled with different metamodels can help to assess the impact of
the metamodel consistency and completeness on the gap-filling of a GSM.

The gap-filling was carried out using a slightly modified version of the fastcore algorithm to
allow the inclusion of a vector of linear weightings, as previously described [32]. Every reaction
classified asmetablocked was removed from individual GSMs before the application of fastcore.
The number ofmetablocked reactions is 417 and 161 for MM130.0 and MM130.1, respectively.
Furthermore, the coupling information obtained from each metamodel version was used to
assist the curation process. Finally, the set of weights used in each GSM was individually com-
puted in the pre-processing step. The overall curation process was divided into 5 steps (see
Fig 5), as described below.

1. Pre-processing step: allmetablocked reactions present in the GSM are removed.

2. FCA completion: for each blocked reaction in the GSM, the set of fully coupled and direc-
tionally coupled reactions detected in the metamodel are selected. The selected reactions
not already present in the GSM are included before applying fastcore.

Fig 5. Workflow diagram of the gap-filling process. The set of blocked is classified either as non-
metablocked or Metablocked. Metablocked (red) reactions are the ones that couldn't be curated on the
metamodel and thus are excluded or removed from the models. Non-metablockeds, are reactions found
blocked in at least one GSM but actives in the metamodel and thus can be curated in the GSM. gap-filling
reactions (green) are the set of reactions that need to be added to a model in order to unblocked the complete
set of blocked non-metablocked. Finally, some of the gap-filling reactions can be associated to one or more
genes (mapped) whereas others remain orphans.

doi:10.1371/journal.pone.0143626.g005
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3. Generate penalties: the set of penalties for all the reactions not included in the GSM is con-
structed as follows: spontaneous reactions, sinks, and exchanges fluxes are weighted to 0.
The reactions that have an associated EC-number which matches the one associated to a
reaction already present in the model are also weighted to 0. All the remaining reactions are
assigned the same penalty, namely a value of 10, as previously described [32].

4. Gap-filling step: fastcore algorithm is run using a metamodel as the global network refer-
ence and the set of penalties generated in step 2.

5. Post-processing step: the EC numbers of the gap-filling reactions are compared to those
present in the GSM and, if there is a match, the gene-protein-reaction association is trans-
ferred to the added reaction.

The described procedure was applied to each of the 130 GSMs present in the dataset using
alternatively MM130.0 and MM130.1, which resulted in two consistent versions of each GSM.
The results showed that in both scenarios the size of the GSMs tended to increase significantly
after the gap-filling. As expected, the size of the gap-filled model is, in most of the cases, higher
when MM130.1 was used as the reference (Fig 6A and 6B). However, certain models do not
seem to be affected by the metamodel used in the curation. This happens for the cases of M.
genitalium G-37, M. pulmonis, OY. phytoplasma (red dots), T. pallidum and B. burgdorferi B31
(brown dots). These five organisms are known pathogens and possess the smallest genomes of

Fig 6. Comparative results of the gap-filling on the 130 GSMs using MM130.0 andMM130.1. In a) and b) the number of reactions in the curated GSM
against the number of reactions in the original GSM (not considering metablocked reactions), using MM130.0 and MM130.1 respectively. In c) and d) the
number of orphan gap-filling reactions added to each GSM plotted against the total number of curated reactions. Dotted line represents the function y = x.
Yellow and white squares correspond to E. coli and T. Thermophilus, respectively.

doi:10.1371/journal.pone.0143626.g006
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the dataset (see S1A Table). Furthermore, the relation between the size of the gap-filled GSMs
and their original versions follows a linear relation. The same trend is also found if meta-
blocked reactions are considered in the size of the original GSM (see S4 Fig).

As shown in Fig 6C and 6D, the ratio between the totals of gap-filling orphan reactions and
curated reactions was, for most of the models, lower than 1. In such cases this indicates that, on
average, solving a blocked reaction requires the addition of a new orphan reaction. Interest-
ingly, T. thermophilus, the GSM with the largest percentage of blocked reactions, required a rel-
atively small number of gap-filling reactions in order to become flux consistent. However, in
several cases the number of orphan gap-filling reactions significantly exceeds the number of
blocked reactions that are curated. This suggests that in these cases many blocked reactions can
be artifacts, and thus should be pruned rather than gap-filled. This is quite clear for the cases of
the five pathogenic organisms with reduced genome mentioned above.

When the reaction content between each pair of curated GSMs was compared, it was found
that 121 of the GSMs curated with MM130.1 include at least 90% of the reactions of the version
curated with MM130.0. This indicates that, for most of the cases, the consistent GSM obtained
when MM130.0 was used as a reference is almost completely included in the consistent version
obtained when MM130.1 was used. However, in five models the percentage of inclusion was
lower than 80%. These models, which correspond to the five outliers mentioned above, have
almost the same number of reactions in both gap-filled versions, and significantly differ when
the complete set of reactions is compared.

The manually curated pathways of MM130.1 were correctly gap-filled in the models con-
taining some of the pathways. For instance, biotin biosynthesis was correctly gap-filled in 97
GSMs. Similar results were found for the cases of the siroheme biosynthesis, as well as vitamin
B12. Nevertheless, none of these pathways could be gap-filled when using MM130.0, as
expected. Moreover, when using MM130.0 as a reference network, and with respect to the
GSMs that included at least one reaction which belongs to either of the two alternative path-
ways for vitamin B12 biosynthesis (see Fig 3), it was found that the gap-filling solution resulted
in the inclusion of a futile cycle. This indicates that the presence of such cycles may generate
artifacts in GSMs when applying automatic gap-filling algorithms.

Extending a metamodel with new biochemical information
Metabolic databases such as the SEED or BioCyc are constantly being updated by the recon-
struction of new metabolic models, as well as the addition of new biochemical information (e.g.
MetaCyc). New organisms not considered during the construction of MM130.1 may contain
reactions and compounds, or even previously unconsidered new metabolic pathways. Conse-
quently, a metamodel will eventually need to be extended or updated. Thus, in order to assess
how extending a metamodel affects the performance of gap-filling, 36 GSMs which had not
been considered in the construction of MM130.1 were used to extend the metamodel (see
Material and Methods section and S1C Table).

The extension process was performed in the following way: each new model was inspected
in order to find reactions and compounds that were not present in MM130.1. A total of 243
new metabolites and 331 new reactions were found, and used to extend the metamodel. The
first version of the extended metamodel, named MM166.0, included a total of 1909 metabolites
and 3047 reactions. A consistency analysis performed on MM166.0 showed that 143 out of 331
new reactions were blocked. Moreover, 119 reactions in the set of blocked reactions were found
to have been previously classified as metablocked, and were therefore removed from the meta-
model (see the Construction and Curation of the Metamodel section and S3A Table). The
remaining 24 blocked reactions were mapped into unconnected modules and manually curated
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by the addition of twelve new reactions and two exchange fluxes. After this, a consistent version
of the extended metamodel, named MM166.1, was obtained. Table 2 summarizes the results of
the extension process (S1 File includes MM166.1 in SBML format).

In order to assess the impact of the metamodel extension on the gap-filling of individual
models, the process described in the previous section (Gap-filling of 130 GSMs) was repeated,
but using MM166.1 as the reference network instead. Moreover, the gap-filling procedure was
also applied to the additional 36 GSMs using the two metamodels (MM130.1 and MM166.1) as
the reference networks. As a result two consistent versions of each of the 166 modes were
obtained. In order to compare the two curated versions of each GSM two factors were consid-
ered: 1) the efficacy of the gap-filling algorithm (number of curated reactions per added orphan
reaction); and 2) the differences between both versions with respect to the gap-filled reactions.

The mean efficacies for the models curated with MM130.1 and MM166.0 were ~0.87 and
~0.93, respectively for the 130 models, and 0.90 and 0.99 for the 36 additional models (see S4
Table). The increase in the gap-filling efficacy when the expanded metamodel was used can be
explained by the fact that fastcore finds a minimal consistent model by minimizing the number
of reactions which should be added to the model in order to solve the set of inconsistent reac-
tions. Therefore, if a bigger metamodel which includes new pathway branches and reactions is
used, an improvement in efficacy (as previously defined) is clearly expected. However, this fac-
tor does not provide information about the degree of similarity between the gap-filling solu-
tions obtained for each metamodel. Thus, the two versions of each curated model were
compared to quantify the degree of similarity between them, in terms of the reactions they con-
tain, using the Jaccard index. The Jaccard index, defined as the total number of elements in the
intersection over the number of elements within the union of two sets, was calculated for each
pair of models considering only the subsets of gap-filling reactions, i.e. the reactions added to
solve the inconsistent ones.

The mean value of the Jaccard index of the 130 models was ~0.71, and the same mean value
was obtained for 36 models, which means that on average each pair of curated versions shares,
approximately 85% of the new reactions (see S4 Table). Surprisingly, no significant differences
were found between the index calculated for the dataset of the 130 models, and the index for
the dataset of the 36 models. This suggests that most of the biochemical information needed to
curate the models was already contained in MM130.1 and that the additional 196 reactions
added during the extension were probably concentrated in a few models. However, since most
of these new reactions were already consistent in the individual models, they are not expected
to affect the gap-filling results.

Discussion

Finding structural inconsistencies in GSMs
The consistency analysis performed on a dataset of 130 GSMs of different bacteria showed that
most of the models have at least 25% of their reactions blocked. The results also showed that

Table 2. Results of the metamodel extension with 36 newmodels.

Element MM130.1 New added MM166.1 (Curated)

Metabolites 1666 113 1779

† Reactions 1891 141 2032

Transporters 396 55 451

Exchanges 295 30 325

† Biomass equations are not included.

doi:10.1371/journal.pone.0143626.t002
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the reconstruction of a non-model organism tends to become easier when the GSM of a phylo-
genetically closer organism exists, as previously discussed [16]. In the analyzed dataset, this is
reflected by the fact that the models with less than 25% of their reactions blocked belong to the
class of gammaproteobacteria, which includes E. coli.

As expected, the model with the lowest percentage of blocked reactions was the one corre-
sponding to E. coli K12 (Opt83333.1) with a value of ~19%. The same measure was also evalu-
ated for the last version of the manually reconstructed GSM of E. coli K12, named iJO1366
[57], and the result showed that 10% of its reaction were blocked. The difference found was
expected, since iJO1366 has been extensively manually curated, whereas Opt83333.1 was auto-
matically reconstructed. On the other hand, T. thermophilus (Seed300852.3) was shown to be
the model with the highest percentage of blocked reactions (~47%). As in the case of E. coli,
this measure was compared against the value obtained for a recently published GSM of T. ther-
mophilus, named iTT548 [62], where ~27% of its reactions were found blocked. This value,
although high, shows that manual curation dramatically improves the consistency of a GSM.
Furthermore, the use of additional experimental data will also help to improve the consistency
and completeness of a GSM.

Gap-filling through metamodel analysis
A comparative analysis surprisingly showed that 480 reactions (~22%) are blocked in each
GSM where they are present (i.e. “always blocked”). This showed a remarkable number of net-
work inconsistencies at the level of the metabolic database used as a reference during the recon-
struction process. When these reactions were grouped by subsystem, 25% were found to be
involved in the biosynthesis of cell wall components as well as membrane lipids (see S2D
Table). This showed that the automatic inferences of such metabolic pathways is particularly
hard because of its iterative nature, along with the diversity of cell envelope components, and
the absence of experimental information about cell membranes for most of the organisms ana-
lyzed. Furthermore, pathways for the biosynthesis of important cofactors, such as siroheme,
biotin and vitamin B12, were also found to be always blocked. In some cases the pathway was
incomplete whereas in other cases it was complete but blocked. For example, the curation of
the biotin biosynthesis is an illustrative example of how models must evolve in parallel to bio-
chemical knowledge (see Construction and curation of the metamodel in result section).

The detection of recurrent inconsistencies motivated a global consistency analysis, i.e. the
analysis of the global metabolic network. In the present paper a metamodel, named MM130.0,
including 130 GSMs was reconstructed using the SEED pipeline. The consistency analysis and
the visual inspection of the set of UMs founded in MM130.0 allowed: first, the detection of
reactions wrongly included during the reconstruction of the individual GSMs (e.g. some activi-
ties belonging to methanogenesis); second, the detection and resolution of incomplete path-
ways by the addition of the corresponding missing reactions, e.g. the pimelic acid biosynthesis
(i.e. the first stage of biotin biosynthesis); third, the detection and resolution of global deadend
metabolites such as the cases of S-adenosyl-4-methylthio-2-oxobutanoate and of some biomass
components not previously included in the biomass reaction of any GSM. The curated meta-
model MM130.1 can be used as a reference network for the curation of any model generated
using the SEED. In this way, different algorithms and weights can be tested for the curation of
a particular model. Additionally, the metamodel presented here can be modified or extended
to adjust to particular situation such as the case of organisms with highly reduced genomes.
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Impact of metamodel consistency on automatic gap-filling
Many gap-filling algorithms have been developed by focusing on the structure of the objective
function. However, the possible impact of the reference network consistency, which affects the
gap-filling process, has received little or no attention. Therefore, a gap-filling was performed
on the whole dataset to evaluate the impact of the metamodel completeness and consistency,
using alternatively MM130.0 and its curated version MM130.1. When the reaction content was
compared within each pair of curated GSMs, in 125 of the cases the version gap-filled with
MM130.1 contained 85% or more of the reactions present in the version gap-filled with
MM130.0. Strikingly, in five models the percentage of inclusion varies between 65–80%, which
indicates a remarkable difference between the two versions. Thus, it can be concluded that in
some cases the result of an automatic gap-filling can be highly dependent on the metamodel
used as the reference. In particular, the divergence was found to be greater for the smaller mod-
els. Since, these organisms correspond to obligate parasite and symbionts, their metabolisms
tend to lack many biosynthetic capabilities and thus, they should import a great number of
metabolites from the surrounding environment. Furthermore, the possibility of a metabolic
complementation between parasites or symbionts and their hosts may result in the exchange of
metabolites not commonly included in growth media. Thus solving such situation requires a
manual inspection of individual UMs to evaluate the possibility of adding unknown transport-
ers and the corresponding exchanges fluxes [43]. As a consequence, the metabolic reconstruc-
tion of such organisms is more susceptible of gap-filling artifacts

Finally, the gap-filling results showed that in many cases the number of orphan gap-filling
reactions included to solve gaps significantly exceeds the number of gaps. This result is inde-
pendent of the metamodel version used, and suggests that in many situations blocked reactions
can be artifacts and should be removed from the model instead of adding new reactions to
solve what at first looked like a gap. For example, the initial GSM ofM. genitalium G-37
(Opt243273.1) contained 292 reactions, of which 118 were blocked, whereas both gap-filled
versions included more than 500 reactions. The manually reconstructed model ofM. genita-
lium G-37 iPS189 [28] contains 265 reactions, of which 90 are orphans, which indicates that
gap-filled version of Opt243273.1 significantly overestimates the number of reactions. Such
kinds of discrepancies clearly indicate that, in this case, most of the blocked reactions should be
pruned rather than gap-filled. This result showed that the curation of a metamodel is necessary,
but not sufficient condition, in order to perform automatic model curation.

The extension of MM130.1 to MM166.1 by the addition of 36 GSMs allowed us to show
how a metamodel can be updated to include new biochemical information. In this particular
case the inclusion of 36 additional models provided only 141 reactions and 55 and transporters,
and most of these reactions belong to a single organism (P. difficile). Nevertheless, this new
information was enough to affect the outcome of the gap-filling process, as has been shown
(see section Extending a metamodel with new biochemical information). Moreover, the
increase in fastcore's efficacy when the expanded metamodel was used was expected, taking
into account the fact that fastcore finds a minimal consistent model by minimizing the number
of reactions added to solve inconsistent reactions. Consequently, if new pathway branches are
available due to the utilization of a bigger metamodel, an improvement in the achieved mini-
mum is possible. However, this minimization criteria may lead to artifacts such as chimerical
pathways composed of reactions of organisms not related to the one being analyzed. Taking
everything into account, it is worth to note that the automatic reconstruction and curation of
metabolic models should consider the taxonomic distribution of the reactions, so that the
weights assigned to them can be properly adjusted when formulating the gap-filling problem,
as has been discussed by other authors [29,63].
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The reconstruction of a GSM depends, to a great extent, on the quality of the genome anno-
tation. Thus, errors in the annotation will lead to the presence of inconsistencies in the model
formulation. In this context, in principle there are two different types of annotation error: 1)
the absence of certain functional annotations, e.g. an enzyme coding gene not annotated as
such; 2) the incorrect assignment of an enzymatic activity to certain coding sequences. The
presence of type 1 and 2 errors will produce the absence, or the wrong inclusion, of some reac-
tions in the GSM, respectively. Thus, gaps in a GSM caused by distinct types of errors will
require a differential treatment. In the case of type 1, missing reactions should be gap-filled.
However, in the case of type 2 errors, the wrong added reactions should be removed. Since
both types of errors will manifest as blocked reactions and gap metabolites, we argue that the
problem resides in how to differentiate, in an automatic fashion, between the blocked reactions
that have to be gap-filled (in order to restore their connectivity) and the erroneous reactions
that should be removed. As shown in this paper the distinction between these types of errors is
far from trivial, and not considering them will result in the overestimation of the reaction con-
tent of an organism.

Although there have been considerable advances in the automatic reconstruction of GSMs,
the outputted models still contain many structural inconsistencies, as the results presented
have shown. Furthermore, the detection of recurrent inconsistencies manifested as meta-
blocked reactions indicates that gaps may already be present in the metamodel or the metabolic
database used to perform the reconstructions. As a consequence, we argue that consistency
analysis, such as the one presented in this paper, should be applied to metabolic databases in
order to detect and fill gaps as well as to remove artifacts and redundant information.

Supporting Information
S1 Fig. Curation of the unconnected modules of MM130.0. The diagram represents the set
of unconnected modules obtained for MM130.0, together with other artifacts detected, and set
of reactions added during the curation process. White nodes correspond to blocked reaction
solved; green nodes correspond to the reactions added during the curation; red nodes indicate
the set reaction that were removed from the metamodel (metablocked).
(SVG)

S2 Fig. Blocked and gap metabolites “restored” as a consequence of the metamodel con-
struction. The diagram depicted the sub-graph corresponding to the subset of reaction find as
always blocked in the dataset of 130 GSMs, which becomes active as a consequence of the con-
struction of the MM130. In a) the sub-graphs the representing cycles which correspond to in-
silico flux modes that violate the principle of energy conservation. In b) the cases of in-to-out
linear pathways are shown (see section “Construction and curation of the metamodel” in the
main text). In c) the cases of incomplete metabolic pathways in individual GSMs that became
complete in the metamodel are depicted.
(PNG)

S3 Fig. Flux Coupling Graph corresponding to MM130.1 with uncoupled biomass reac-
tions. The diagram represents the flux coupling graph associated to MM130.1 as previously
described. Grey and red nodes represent single reactions and full coupled sets of reactions
respectively. Directed arrows indicate the presence of directional coupling between the pair of
nodes.
(PNG)

S4 Fig. Comparative results of the gap-filling on the 130 GSMs using MM130.0 and
MM130.1. In a) and b) the number of reactions in the curated GSM against the number of
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reactions in the original GSM are shown (including metablocked reactions), using MM130.0
and MM130.1 respectively.
(PNG)

S1 File. Metamodels in SBML format. Compressed ZIP file including both curated metamo-
dels (MM130.1 and MM166.1) in SBML format.
(ZIP)

S1 Table. Description of the dataset and the main consistency analysis results. The table
contains two sections. In A) the 130 GSMs used in the present paper are listed, including a
detailed description of the models as well as the main results of the consistency. In B) the map-
ping between the version of the models used herein and those used in the original publication
[37]. In C) the description of the 36 addition bacterial models used to extend the metamodel.
(XLSX)

S2 Table. Classification of all the reactions according to their block-presence frequency.
The table contains five sections. In A) the set of 2195 reactions included in at least one GSM.
Each row corresponds to a reaction and includes the reaction's attributes together with the
number of models which include the reaction, the number of models where it is blocked and
the calculated blocked frequency. Sections B), C) and D) presents the reactions (grouped by
subsystems) classified as “never blocked”, “sometimes blocked” and “always blocked”, respec-
tively.
(XLSX)

S3 Table. Description of the metamodel MM130 and its curation process. The table contains
five sections. Section A) includes the complete set of reactions and their description. Addition-
ally, two columns were added to indicate if the reaction was added or removed during the man-
ual curation, and a third column to indicate the unconnected module ID associated to those
reaction first found blocked. In a similar fashion, sections B) and C) described the set of
exchanges fluxes and metabolites of the metamodel respectively. In D) the 157 biomass equa-
tions are presented, indicating the models which have that biomass composition. In E) the list
of new biomass compounds found are shown. In F) and G) the new 226 reaction and 113
metabolites, respectively, found in the set of 36 GSM that was used for the metamodel exten-
sion.
(XLSX)

S4 Table. Comparative results of the gap-filling performed to the 130 GSMs and 36 GSMs,
using alternatively MM130.0, MM130.1 and MM166.1 as the reference network. The table
contains three sections. The results of the gap-filling performed using MM130.0 and MM130.1
are depicted in sections A) and B) respectively. In section C) the results of the comparative
analysis performed on each pair of gap-filled GSM are shown. In D) the results of the gap-fill-
ing performed on the dataset of 130 GSMs using MM166.1 are shown. In E) the results of the
gap-filling performed on the dataset of 36 GSMs using MM130.1 MM166.1 are shown. In F)
the comparative analysis of the gap-filling results obtained using MM130.1 and MM166.1 are
shown.
(XLSX)
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