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Abstract
Metalloproteinases were first identified as collagen cleaving enzymes and are now appreciated to play important roles in 
a wide variety of biological processes. The aberrant activity and dysregulation of the metalloproteinase family are linked 
to numerous diseases including cardiovascular and pulmonary diseases, chronic wounds, cancer, fibrosis and arthritis. 
Osteoarthritis (OA) is the most prevalent age-related joint disorder that causes pain and disability, but there are no disease-
modifying drugs available. The hallmark of OA is loss of articular cartilage and elevated activities of matrix-degrading 
metalloproteinases are responsible. These enzymes do not exist in isolation and their activity is tightly regulated by a 
number of processes, such as transcription, proteolytic activation, interaction with their inhibitors, cell surface and extracel-
lular matrix molecules, and endocytic clearance from the extracellular milieu. Here, we describe the functions and roles of 
metalloproteinase family in OA pathogenesis. We highlight recent studies that have illustrated novel mechanisms regulating 
their extracellular activity and impairment of such regulations that lead to the development of OA. We also discuss how to 
stop or slow down the degenerative processes by targeting aberrant metalloproteinase activity, which may in future become 
therapeutic interventions for the disease.
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Introduction

Matrix metalloproteinases (MMPs), adamalysins (or a disin-
tegrin and metalloproteinases (ADAMs)), and ADAM with 
thrombospondin motifs (ADAMTSs) belong to the family of 
zinc endopeptidases collectively referred to as metzincins. 
The metzincin superfamily is distinguished by a highly con-
served motif containing three histidines that bind to zinc 
at the catalytic site and a conserved methionine that sits 
beneath the active site [1].

The human genome contains 23 MMP genes and most 
MMPs have several domains: a signal peptide, a propeptide, 
a catalytic metalloproteinase domain, a linker (hinge) pep-
tide and a hemopexin domain [2]. The family includes col-
lagenases, gelatinases, stromelysins, matrilysins, membrane-
type MMPs and others. MMPs were initially characterised as 

extracellular matrix (ECM)-degrading proteinases. In 1962, 
Gross and Lapiere were the first to describe the activity of 
a collagenase in the resorbing tadpole tail during metamor-
phosis [3]. It is now considered that their actions go far 
beyond ECM proteolysis, and influence cell behaviour by 
releasing growth factors, generating neo-ligands from car-
rier proteins and cell surface molecules, inactivating pro-
teinase inhibitors, and modulating inflammatory mediators 
[4]. MMPs thus have important roles in development, mor-
phogenesis, tissue remodelling, tissue repair, angiogenesis, 
inflammation, and innate immunity.

The ADAM family is conserved type I transmembrane 
metalloproteinases related to the MMPs and ADAMTSs 
with human genome containing 20 ADAMs. The proteo-
lytically active ADAMs mainly function as ‘sheddases’, 
cleaving the juxta-membrane region of their trans-membrane 
substrates to release the soluble ectodomain of the substrate 
to the extracellular milieu [5]. This activity enables them to 
regulate the extracellular availability of autocrine and parac-
rine signalling molecules, such as transmembrane cytokines 
and growth factors, and their receptors.
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ADAMTS proteinases degrade ECM components and 
are secreted multidomain metalloproteinases, consisting of 
a signal peptide, a pro-domain, a metalloproteinase domain, 
a disintegrin domain, a thrombospondin type I motif, a 
cysteine-rich domain, a spacer domain, and a second throm-
bospondin motif of variable numbers of repeats at the C-ter-
minal region [6]. The human genome contains 19 ADAMTS 
proteinases and their evolutionary conservation and expan-
sion in mammals is suggestive of crucial embryologic or 
physiological roles in humans. Mendelian disorders or birth 
defects resulting from naturally occurring ADAMTS-2, 3, 
10, 13, 17, 20 mutations as well as numerous phenotypes 
identified in genetically engineered mice further indicate 
ADAMTS participation in major biological pathways [7].

Most, if not all, of the metalloproteinases are tightly regu-
lated by a number of ways, such as transcriptional regulation, 
proteolytic activation and interaction with tissue inhibitors 
of metalloproteinases (TIMPs). Not surprisingly, aberrant 
activity due to dysregulation of these metalloproteinase fam-
ily are linked to numerous diseases including cardiovascular 
diseases, chronic wounds, pulmonary diseases, cancer, fibro-
sis, rheumatoid arthritis (RA), and osteoarthritis (OA) [8, 9].

OA is the most prevalent age-related joint disorder that 
causes pain and disability, but there is no disease-modifying 
intervention currently available, except surgery at end stage 
of the disease. The hallmark of OA is manifested by progres-
sive degradation of articular cartilage ECM due to elevated 
activities of matrix-degrading metalloproteinases. In this 
review, we describe the functions and roles of metallopro-
teinase family in articular cartilage integrity and degrada-
tion. We highlight recent studies that have illustrated novel 
mechanisms regulating the extracellular activity of cartilage-
degrading metalloproteinases and their inhibitors. We also 
discuss how to stop or slow down the degenerative processes 
in OA by targeting impairment of such regulations, which 
may become therapeutic interventions for the disease.

Metalloproteinases in OA Pathogenesis

Aggrecanases, a Group of ADAMTSs, Play a Major 
Role in Aggrecan Degradation in Cartilage

Degradation of aggrecan, the major proteoglycan in articu-
lar cartilage is an early event in the pathophysiology of OA 
and a considerable amount of research has been carried out 
to identify the enzyme(s) responsible. MMP-3 was isolated 
from human articular cartilage [10] and found to cleave the 
Asn341 ~ Phe342 bond (where ~ indicates the cleavage site) 
in the aggrecan inter-globular domain (IGD) [11]. Several 
other MMPs, including MMP-1, 2, 7, 8, 9 and 13, were later 
found to be able to cleave the same site, as well as other sites 
towards the C-terminus of the molecule [12]. However, the 

contribution of MMP-mediated aggrecan cleavage to the OA 
pathology is under debate [13]. Sandy et al.[14] revealed that 
the majority of aggrecan fragments present in the synovial 
fluid of OA patients were cleaved not at the MMP-sensitive 
Asn341 ~ Phe342 bond, but at the Glu373 ~ Ala374 bond in the 
IGD.

Aggrecanase activity was first defined as the ability to 
cleave at the Glu373 ~ Ala374 bond in the IGD and this cleav-
age causes aggrecan depletion from cartilage and ablation 
of the molecule’s function in cartilage. The first aggre-
canase was identified as a member of the ADAMTS fam-
ily and designated as ADAMTS-4 (aggrecanase 1) [15]). 
ADAMTS-1, 5 (aggrecanase 2), 8, 9, 15, 16 and 18 also 
have aggrecanase activity, but among these, ADAMTS-5 
is the primary aggrecanase in mice. This was demon-
strated by the finding that Adamts5−/− mice develop less 
severe cartilage damage in a murine surgical model of OA 
and in an antigen-induced arthritis model, respectively 
[16, 17]. Similarly, transgenic mice with a knock-in muta-
tion of aggrecan preventing ‘aggrecanase’ cleavage of the 
Glu373 ~ Ala374 bond also develop less severe OA in the 
surgical OA and antigen-induced arthritis models [18]. 
Adamts1−/− and Adamts4−/− mice are not similarly protected 
[19, 20]. ADAMTS-5 is approximately 30-fold more potent 
than ADAMTS-4 [21], supporting the view that ADAMTS-5 
is the major aggrecanase in cartilage catabolism. While there 
is some evidence that ADAMTS-4 may contribute to carti-
lage degradation in humans [22, 23], recent studies by Lar-
kin et al.[24] with neutralizing monoclonal antibodies have 
shown that ADAMTS-5 is more effective than ADAMTS-4 
in aggrecan degradation in human OA cartilage and non-
human primates in  vivo. Furthermore, a recent study 
revealed that ADAMTS-5 also cleaves inter-α-inhibitor and 
releases active heavy chain 2, which is detectable in synovial 
fluids from both RA and OA patients, and may contribute 
to the progression of arthritis beyond the degradation of 
aggrecan [25].

Collagen Fibrils are Degraded by Collagenases, 
a Group of MMPs

Whilst aggrecan loss can be reversed, collagen degradation 
is irreversible, and cartilage cannot be repaired once collagen 
is destroyed [26, 27]. Type II collagen is extremely resist-
ant to degradation by most proteinases because of its triple-
helical structure. Only the classical collagenases including 
MMP-1, 8, and 13, and to a much lesser extent, MMP-14, 
are able to degrade triple-helical type II collagen fibrils into 
three-quarter and one-quarter fragments [28]. This is a cru-
cial step for collagenolysis in the tissue, and denaturing them 
into gelatin, which can then be subsequently digested into 
small peptides by the gelatinases (MMP-2 and 9). The exact 
order in which cartilage matrix components are degraded 
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during the development of OA is difficult to ascertain, but 
a number of in vitro studies on cartilage explants suggest 
that collagen degradation occurs only after aggrecan is lost 
from the tissue, and that the presence of aggrecan protects 
the collagen from degradation [29, 30].

The first human collagenase to be purified was MMP-1 
(collagenase-1), isolated from rheumatoid synovium [31], 
where it was localized in the synovial lining cells at the 
junction of pannus and cartilage [32], suggesting its role 
in tissue destruction. MMP-1 also efficiently cleaves type 
II collagen (R. Visse, Y. Tominaga, M. Wang, H. Nagase, 
personal communication), but its role in OA cannot be 
studied using murine models as murine MMP-1 differs con-
siderably from the human enzyme [33]. MMP-8 is mainly 
produced by neutrophils, although it is also expressed by a 
wide range of cells including chondrocytes [34] and synovial 
fibroblasts [35]. A role of MMP-8 in RA pathogenesis has 
been suggested [36, 37] but little is known about its role 
in OA. MMP-13 (collagenase-3) is considered as a major 
collagenase in the development of OA [38] because of its 
elevated expression in human OA cartilage and its effective 
ability to degrade collagen II fibrils [39–41]. Further support 
for this is a study with Mmp13−/− mice, whose cartilage was 
protected from degradation in the surgically induced OA 
model [42]. In addition to fibrillar collagen types I, II and 
III, MMP-13 cleaves other ECM molecules such as N-termi-
nal non-helical telopeptides of type I collagen, gelatins, type 
IV, IX, X, and XIV collagens, large tenascin C, fibronectin, 
aggrecan, perlecan, fibrillin-1, and osteonectin [43]. Another 
collagenase, MMP-14, is a membrane-bound protein and 
has been shown to promote invasion of rheumatoid syno-
vial fibroblasts into cartilage [44]. It is highly expressed in 
rheumatoid synovial lining cells but similarly expressed 
in normal and OA cartilage [45–47]. The role of MMP-14 
in OA has not been studied in murine surgical models as 
Mmp14−/− mice exhibit severe skeletal abnormalities that 
lead to early death [48].

MMP‑13 in Bone ECM Remodelling and Osteophyte 
Formation

OA is now widely accepted as a whole joint disease [49]. 
In addition to the cartilage degradation, synovitis (syno-
vial inflammation) and meniscal damage are common and 
altered levels of inflammatory mediators are detected in OA 
synovial fluid. Furthermore, osteophytes form in joint mar-
gins, and bone remodelling occurs, leading to bone mar-
row lesions and bone sclerosis [50]. The cross-talk between 
cartilage and other tissues suggests cartilage loss can occur 
secondary to above mentioned OA-related changes to the 
joint [51].

Osteocytes play an active role in remodelling their 
surrounding bone matrix—a process called perilacunar/

canalicular remodelling (PLR) [52]. It is a dynamic process 
by which osteocytes secrete MMPs, cathepsin K and other 
enzymes to dynamically resorb and then replace the local 
bone matrix. Recently, Mazur et al.[53] established a novel 
mouse model in which MMP-13 is ablated in osteocytes, but 
not chondrocytes. They found that osteocyte-intrinsic defi-
ciency in MMP-13 is sufficient to suppress PLR and induce 
premature OA accompanied by subchondral sclerosis and 
cartilage degradation in otherwise healthy young mice. This 
study highlights a new, causal role for osteocytic MMP-13 in 
the regulation of bone and cartilage homeostasis, and sug-
gests reduction of PLR as a novel mechanism in OA.

Extracellular Regulation 
of Cartilage‑Degrading Proteinases

The activity of metalloproteinases is tightly regulated by 
a number of mechanisms [54], and their activity is often 
not readily detected in steady state tissues (Fig. 1). Many 
of the MMPs are secreted from the cell in a zymogen form 
and are then activated extracellularly by other proteinases. 
The membrane-type MMPs (MMP-14, 15, 16, 17 and 24) 
and ADAMTSs are activated intracellularly by pro-protein 
convertases such as furin. The activity of mature metallo-
proteinases is regulated by endogenous inhibitors such as 
α2-macroglobulin (α2M) in blood plasma or body fluids 
and TIMPs in the tissue [55]. In addition to these regula-
tions, cartilage-degrading metalloproteinases and their 
inhibitor TIMP-3 have been found to be very short-lived 
in the extracellular space, as they are rapidly endocytosed 
by the cells that produce them [56–60]. They also bind to 
sulphated glycosaminoglycans (GAGs) on the cell surface 
or in the ECM, with their extracellular availability deter-
mined by their relative affinity for each. These findings add 
further complexity to the regulation of activity of cartilage-
degrading proteinases.

Proteolytic Activation of Pro‑MMPs by Serine 
Proteinases

The majority of MMPs are synthesised as zymogens and 
serine proteinases are likely physiological activators of pro-
MMPs [61]. There are 178 serine proteinases in humans, 
making up approximately 1/3rd of the ‘degradome’ [62]. 
Serine proteinases harbour a ‘catalytic triad’ of serine195, 
Histidine57 and Aspartate102 (chymotrypsin nomencla-
ture), which provide a charge relay system, allowing potent 
nucleophilic attack of substrate carbonyl bonds [63]. Ser-
ine proteinases can be broadly separated into trypsin-like, 
chymotrypsin-like and elastase-like proteinases, with par-
ticular residues in and surrounding the active site pockets, 
governing substrate specificity. Activation of pro-MMPs 
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by serine proteinases usually occurs via an initial cleavage, 
which leads to the formation of a partially active intermedi-
ate enzyme, capable of the final processing into the fully 
active form [64, 65].

A well-established activator of MMPs is plasmin, an 
important serine proteinase in the fibrinolytic system. Plas-
min is a broad-spectrum proteinase which is able to directly 
degrade many ECM components but also functions as a 
pro-MMP activator,  promoting ECM remodelling. These 
include MMP-1, 3, 13 and 14 [66]. Plasminogen mRNA 
expression is not detectable in human cartilage, but protein 
levels in the synovial fluid have been examined previously 
[67]. When plasminogen is added to cytokine-stimulated 

bovine cartilage, it promotes cartilage collagen release, sug-
gesting the presence of plasminogen activators within this 
system [68].

In OA, cartilage collagen destruction can be initiated in 
the chondrocyte pericellular space [69], making membrane-
bound serine proteinases of particular interest. The type II 
transmembrane serine proteinase (TTSP) matriptase is 
upregulated in OA cartilage and can activate both MMP-1 
and 3. MMP-3 is well-known activator of other MMPs, 
including MMP-13 [70]. Addition of matriptase to human 
OA cartilage induces destruction of the cartilage ECM in an 
MMP-dependent manner [65, 71]. Matriptase can also acti-
vate proteinase-activated receptor 2 (PAR2), which induces 
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Fig. 1   Extracellular regulation of cartilage-degrading metallopro-
teinase activities. Metalloproteinases are regulated in the extracellu-
lar environment by a number of mechanisms, including proteolytic 
activation of zymogens (a), interaction with endogenous inhibitors 
(TIMPs and α2M)(A), endocytic clearance mediated by cell sur-
face scavenging receptor LRP1 (b), binding to the cell surface mol-

ecules and ECM via sulphated GAGs (c). Sulphated GAGs inhibit 
ADAMTSs activity by two modes of action including interact-
ing with their ancillary domains and increasing TIMP-3 affinity for 
ADAMTSs (c). LRP1 and sulphated GAGs can compete each other 
for binding to several metalloproteinases and TIMP-3 (b and c)
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the expression of MMPs in chondrocytes [65, 72]. Hepsin is 
a different TTSP which is also capable of activating MMP-1 
and 3 but has a weaker propensity to cleave and activate 
PAR2 [73]. Importantly, TTSPs are able to auto-activate, a 
characteristic which has led to suggestions they lie at the top 
of proteolytic cascades.

Inhibition by TIMPs

TIMPs are the endogenous inhibitors of the MMPs and 
some members of the ADAM and ADAMTS families [55]. 
There are four TIMPs expressed in humans and all MMPs 
tested to date are strongly inhibited by all four of the mam-
malian TIMPs (TIMP-1, 2, 3 and 4), with the exception of 
some of MT-MMPs that are poorly inhibited by TIMP-1. 
Besides MMPs, TIMP-1 inhibits ADAM10 and TIMP-3 
inhibits ADAM10, 12, 17, 28 and 33, and ADAMTS-1, 2, 
4 and 5 [55]. As TIMP-3 can inhibit both collagenases and 
aggrecanases, it is a central inhibitor for regulation of carti-
lage ECM turnover. Addition of exogenous TIMP-3, but not 
TIMP-1 or TIMP-2 blocks cartilage degradation in explant 
cultures [74], and injection of TIMP-3 blocks cartilage 
breakdown in a rat surgical model of OA [75]. The chon-
droprotective role of TIMP-3 is confirmed by the finding that 
Timp3−/− mice develop increased cartilage degradation upon 
ageing [76] and increased cartilage damage in an antigen-
induced arthritis model [77]. The susceptibility of other 
Timp-null mice to developing OA has not been reported, 
but the deterioration of bone quality in these mice render 
them ineffective model [78, 79] similar to the recent quad-
ruble knock out of TIMPs [80]. TIMP-2 has little effect on 
aggrecan degradation in bovine, porcine or human cartilage 
explants, whilst TIMP-1 has been shown to partially inhibit 
aggrecan degradation in human but not bovine or porcine 
cartilage [30, 74, 81]. TIMP-3 mRNA levels are not signifi-
cantly altered in OA [82–84], whereas expression of TIMP-4 
is decreased in OA cartilage [46], and a single nucleotide 
polymorphism in the 3′ untranslated region of TIMP-4 is 
reportedly associated with OA in a Korean cohort [85].

Endocytic Clearance by Cell Surface Receptor LRP1

Low-density lipoprotein (LDL) receptor-related protein 1 
(LRP1 or CD91) is a member of a family of scavenger recep-
tors related to the LDL receptor [86]. It is a type I transmem-
brane protein consisting of a 515-kDa α-chain containing the 
extracellular ligand-binding domains and a non-covalently 
associated 85-kDa β-chain containing a transmembrane 
domain and a short cytoplasmic tail. LRP1 was first charac-
terized as a receptor for apolipoprotein E-containing lipopro-
tein particles [87] and for α2M-proteinase complexes [88]. 
This endocytic process is a general mechanism to eliminate 
excess active proteinases from tissues and body fluids, since 

most extracellular endopeptidases with different catalytic 
mechanisms can react with and be entrapped by α2M [89]. 
To date, more than 80 of structurally and functionally dif-
ferent molecules have been identified as LRP1 ligands [90, 
91] and the list is still growing. The importance of LRP1 
in biological processes is demonstrated by the lethality of 
LRP1 gene deletion at an early stage of murine embryonic 
development [92]. This indicates that endocytic scaveng-
ing of bioactive molecules is essential to maintain tissue 
homeostasis and that disruption of this process may result 
in pathological conditions.

The Partridge group first reported that rat MMP-13 dis-
appeared from the culture medium of a rat osteoblast cell 
line and demonstrated that this occurred through a receptor-
mediated process [93]. Subsequently, the disappearance was 
shown to be due to endocytosis of MMP-13 by LRP1 with 
the assistance of a 170 kDa MMP-13-specific receptor [94]. 
Yamamoto et al.[59] demonstrated that MMP-13 directly 
binds to cell surface LRP1 in human chondrocytes isolated 
from healthy adults, and it was constitutively expressed and 
secreted but rapidly endocytosed by the cells. Furthermore, 
both ADAMTS-4 and 5 also bind to LRP1 and their extracel-
lular activity is tightly regulated by LRP1-mediated endo-
cytic clearance in human cartilage [57, 58]. This regulation 
also applies to TIMP-3 [95, 96]. These findings suggest that 
cartilage-degrading proteinases and their inhibitors probably 
function for a very short period of time to maintain normal 
homeostatic turnover of ECM components of the tissue.

Increase in Ectodomain Shedding of LRP1 in OA 
Cartilage

While ADAMTS-5 is considered as a major aggrecanase, 
its mRNA levels are not significantly elevated in human OA 
compared to normal cartilage [97, 98]. Studies by Yamamoto 
et al.[57] shed new insight into the regulation of ADAMTS-5 
in OA, showing that endocytic clearance of ADAMTS-5 
by LRP1 is impaired in OA chondrocytes. A reduction in 
MMP-13 endocytosis in OA chondrocytes was also reported 
[99]. In human OA cartilage, proteolytic shedding of LRP1 
ectodomain is increased and two membrane-bound metal-
loproteinases MMP-14 and ADAM17 are the responsible 
sheddases [45]. Shed LRP1 retains ligand-binding capacity 
and can act as a decoy receptor [100]. Scilabra et al.[96, 
101] reported that shed LRP1 competes with cell surface 
LRP1 for binding to TIMP-3, and that extracellular LRP1-
TIMP-3 complexes retain their ability to inhibit target metal-
loproteinases. Shed LRP1 also binds to ADAMTS-4 and 5, 
and MMP-13, and prevents them being endocytosed without 
interfering with their activities [45]. Recently, Coveney et al.
[102] demonstrated that disruption of intraflagellar transport 
protein 88, a core ciliary trafficking protein, increases LRP1 
shedding and reduces endocytic clearance of ADAMTS-5 
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and MMP-13. As ectodomain cleavage of membrane protein 
occurs primarily on the cell surface, the ciliary machinery 
may regulate cell surface localisation of LRP1 and the shed-
dase enzymes.

Regulation by Sulphated Glycosaminoglycans 
(GAGs)

Many metalloproteinases interact with heparan sulphate or 
chondroitin sulphate GAG chains of proteoglycans on the 
cell surface or in the ECM [103]. Binding of metallopro-
teinases to the cell surface could position the enzyme for 
directed proteolytic attack for activation of or by other pro-
teinases and for regulation of other cell surface proteins. On 
the other hand, binding to the ECM could prevent loss of 
secreted enzyme, provide a reservoir of latent enzyme, and 
facilitate cellular sensing and regulation of enzyme levels 
[104]. In addition to these regulations by location, inter-
action of the metalloproteinases with sulphated GAGs can 
regulate their activity by dictating or limiting access to sub-
strates, or by directly modulating activity [56].

Heparin, which is a highly sulphated GAG, binds to 
MMP-13 in vitro [105] and solubilises the enzyme from 
tissues [106]. Both ADAMTS-4 and 5 bind to the ECM 
via their non-catalytic C-terminal (ancillary) domains [21, 
107] and heparin solubilises ADAMTS-5 from the ECM 
[21]. Nagase’s group found that heparin and calcium pen-
tosan polysulphate, a chemically sulphated xylanopyra-
nose, inhibit ADAMTS-4 and 5 by interacting with their 
ancillary domains [60, 108]. Sulphated GAGs also affect 
the interaction of metalloproteinases with TIMP-3, the only 
TIMP that binds to the ECM. It increases TIMP-3 affinity for 
ADAMTS-4 and 5 [60] and the ability of sulphated GAGs to 
increase their affinity is highly dependent on the sulphation 
pattern of the GAG [109].

Several of the metalloproteinases and TIMPs studied to 
date are able to bind to both LRP1 and sulphated GAGs, and 
they can compete with each other for binding to ligands [56]. 
This competition thus also regulates extracellular availability 
of cartilage-degrading proteinases and TIMP-3.

Therapeutic Potential of Targeting Aberrant 
Metalloproteinase Activity in OA

Considering that metalloproteinases play essential roles 
under both physiological and pathological conditions, inhi-
bition of activities of metalloproteinases other than the 
target enzyme(s) likely results in side-effects. Indeed, the 
initial wave of MMP inhibitors offered poor selectivity and 
resulted in adverse effects such as musculoskeletal pain and 
tendonitis, and mild anaemia with elevated levels of liver 
enzymes. Increased understanding of the structure, function 

and regulation of individual metalloproteinases is thus criti-
cal for more effective strategies. On the other hand, since 
several metalloproteinases are involved in cartilage destruc-
tion, targeting multiple enzymes even with partial inhibition 
might be an effective way to protect cartilage from destruc-
tion (Fig. 2).

Targeting Proteolytic Activity

Inhibitors Against Specific Metalloproteinases

In the human genome there are more than 50 closely related 
human metalloproteinases with similar basic active-site 
structures, which can make them susceptible to the same 
inhibitors. Among MMPs, MMP-13 is unusual as it has a 
very deep S1′ subsite. This feature has been exploited to 
generate highly selective MMP-13 inhibitors able to block 
collagen degradation in cartilage explants [110, 111] as well 
as animal OA models [112, 113] without musculoskeletal 
side-effects. Further evaluation of the therapeutic efficacy 
of these inhibitors is eagerly awaited.

The availability of highly specific ADAMTS-5 blocking 
antibodies [24, 114, 115] is a major breakthrough, since 
small molecule active-site inhibitors, despite the advantage 
of oral bioavailability, generally lack exquisite specificity 
and have broad side-effects, as noted above. Nevertheless, 
concerns about side-effects of ADAMTS-5 inhibitors are 
valid, mostly arising from observed roles of ADAMTS-5 in 
embryogenesis, as well as potentially in ECM turnover in the 
adult cardiovascular system [116–118]. A possible solution 
to bypassing a systemic toxicity is intra-articular administra-
tion of the blocking antibodies, but it has not been explored. 
Another challenge presented by OA is its long sub-clinical 
period, such that ADAMTS-5 inhibition may be most effec-
tive early in the disease process. Early treatment necessitates 
not only improvement of biomarkers for early OA diagnosis, 
but due consideration to long-term side-effects, or complica-
tions that may only become apparent decades after treatment 
initiation.

Exosite Inhibitors

Studies reporting an absolute requirement for the hemopexin 
domain of collagenases to cleave triple-helical collagens 
[119, 120], and the non-catalytic domains of ADAMTS-4 
and 5 for cleaving aggrecan [21, 107, 108]. These studies 
suggest that the ancillary domains could be good targets for 
developing allosteric or exosite inhibitors that would exhibit 
higher specificity than conventional active site-directed 
inhibitors. Santamaria et al.[115] demonstrated that the 
antibody reacting with the spacer domain of ADAMTS-5 
blocked the enzyme action only when aggrecan was sub-
strates, but not against a peptide substrate. This finding 
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supports the concept of exosite inhibitors for multidomain 
metalloproteinases.

Engineered TIMP‑3 Against Multiple Metalloproteinases

The engineering of TIMPs has been an attractive approach 
to develop inhibitors for a group of metalloproteinases. The 
crystal structures of the TIMP-MMP complexes [121, 122] 
have provided clues to enable the modification of TIMPs 
towards greater selectivity. TIMP molecules have an 
extended ridge-like metalloproteinase interaction site. This 

region slots into the active site of metalloproteinases such 
that the amino and carbonyl groups of the N-terminal Cys1 
residue chelate the active site zinc of the enzyme. Mutation 
around this reactive ridge of the TIMPs alters their speci-
ficity, giving selectivity for particular metalloproteinases. 
Addition of an extra alanine to the N-terminal of TIMP-3 
(named [-1A]TIMP-3) or Thr2Gly mutation interferes with 
the inhibition of MMPs by TIMP-3, but inhibitory activity 
for ADAMTS-4 and 5, and ADAM17 is retained [30, 123]. 
This modified activity is driven by conformational changes, 
in which the active site is tilted and the interaction of Phe34 
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Active-site inhibitors
• Small molecule inhibitors
• Antibodies

Exosite inhibitors
• Antibodies
• Sulfated GAGs

Tageting multiple proteinases
• Engineered TIMPs
• Small molecule inhibitors

BB)) TTaarrggeettiinngg aacctt iivvaatt iioonn ooff zzyymmooggeennss

Activated MMPMMP zymogen

Serine proteinase inhibitors
• Serpins
• Matriptase inhibitors

C) Targeting extracellular tra cking

Inhibition of LRP1 shedding Protection of TIMP-3 from endocytic clearance

• Sulfated GAGs
• Soluble LRP1 fragments

TIMP-3
• Endocytosis-resistant
engineered TIMP-3

• Inhibitory antibodies
• Small molecule inhibitors

MMP-14ADAM17

Fig. 2   Targeting dysregulation of metalloproteinase activities at 
the extracellular milieu to protect cartilage. Metalloproteinases play 
essential roles under physiological conditions, inhibition of activities 
of metalloproteinases other than the target enzyme(s) most probably 
caused the side-effects. The agents that inhibit proteolytic activity 
of cartilage-degrading metalloproteinases (a) or activation of these 

enzymes (b) can be of benefit. On the other hand, since several met-
alloproteinases are involved in the degenerative processes, targeting 
multiple enzymes by engineered TIMPs (a), inhibition of LRP1 shed-
ding (c) or prevention of TIMP-3 endocytosis (c) might be an effec-
tive way to protect cartilage from destruction
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of the inhibitor with MMPs is lost.[-1A]TIMP-3 overex-
pressed in mouse cartilage led to a significant protection 
of the articular cartilage in a murine surgical model of OA 
[124] and a naturally occurring OA model in the STR/ort 
mice [125]. The unusual property of the specific inhibitor 
of aggrecanases and ADAM17 might provide a clue for the 
generation of a new type of inhibitor for metalloproteinases.

Targeting Activation of Zymogens

Serine proteinase activity is countered by a host of anti-
proteinases, the largest family of which are the serpins (ser-
ine proteinase inhibitors). Serpins are a unique and ancient 
family of proteins with an elegant mode of inhibition. Target 
proteinases cleave an extended reactive-centre loop or ‘bait 
region’, after which the serpin undergoes a major confor-
mational change, and renders a hyperstable and covalent 
proteinase:serpin complex [126]. Serpins have been shown 
to have protective functions in cartilage. In the inflammatory 
collagen-induced arthritis model, intraperitoneal SERPINA1 
(alpha-1 anti-trypsin) administration led to joint preservation 
and reduced inflammatory load, and this serpin also blocked 
collagen release from cytokine-stimulated bovine nasal car-
tilage [68, 127, 128]. We have recently observed that several 
other serpins are able to protect against collagen loss in this 
model (D. Wilkinson, unpublished observations). While 
the principle role of serpins is likely to be the inhibition of 
serine proteinases, serpins may have protective roles out-
side this inhibition. SERPINE2 has been demonstrated to 
downregulate expression MMP-13 in IL-1-stimulated chon-
drocytes. This inhibitory effect is likely regulated through 
a pathway involving ERK 1/2, NF-kappaB and the down-
stream transcription AP-1 [129].

Serine proteinases in the synovial joint will have mul-
tiple sources, including both the cartilage and synovium. 
The identification of specific MMP activators in arthritic 
disease is a major challenge which will likely differ depend-
ing on whether pathology is driven by an invasive synovium 
or the pathological activity of chondrocytes. Nevertheless, 
identification of disease-specific MMP activators could lead 
to novel avenues for therapy. One good candidate might be 
matriptase, since administration of small molecule inhibitors 
against the proteinase provided protection from cartilage loss 
in a murine model of OA [71].

Targeting Extracellular Trafficking

Inhibition of LRP1 Shedding

Both ADAM17 and MMP-14 are responsible for shedding 
LRP1 in human chondrocytes [45]. However, their protein 
levels were not significantly changed between healthy and 
OA cartilage, suggesting that the activation process of these 

enzymes is post-translational. Importantly, combination of 
inhibitory antibodies against ADAM17 and MMP-14 blocks 
LRP1 shedding, restores endocytic capacity and reduces the 
degradation of aggrecan and collagen in OA cartilage [45]. 
An increase in LRP1 shedding in local tissues under inflam-
matory or chronic pathologic conditions may alter the traf-
ficking of cartilage-degrading enzymes and TIMP-3. MMP-1 
and MMP-3, whose KD,app values for binding to immobilized 
LRP1 are > 1 µM, were markedly increased in the medium 
of human chondrocytes when endocytosis was blocked by a 
LRP ligand antagonist, receptor-associate protein (RAP)(K. 
Yamamoto, unpublished result). They are transcriptionally 
modulated presumably by increased factors that are normally 
endocytosed but elevated in the presence of LRP1 antago-
nists. Mantuano et al.[130] have shown similar transcrip-
tional regulation for pro-inflammatory mediators, TNFα, 
IL-6 and CCL2, in macrophages when their LRP1-mediated 
endocytosis was blocked by RAP. In articular cartilage, such 
changes appear to dysregulate normal turnover of ECM and 
cellular homeostasis, leading to slowly progressing chronic 
diseases such as OA.

LRP1 endocytoses not only aggrecanases and colla-
genases but also a number of other secreted metallopro-
teinases either directly or through making a complex with 
TIMPs [59, 131, 132]. Inhibition of elevated LRP1 sheddase 
activities in OA cartilage may be an effective way to prevent 
cartilage matrix degradation. However, the systematic inhi-
bition of ADAM17 and MMP-14 may be problematic as 
these enzymes are biologically important in the release of 
growth factors and cell surface receptors in many cell types 
[133, 134]. Thus, local administration of inhibitory antibod-
ies or small molecule inhibitors for ADAM17 and MMP-14 
may be worth investigating as disease-modifying OA drugs.

Protection of TIMP‑3 from Endocytic Clearance

A canonical mode of ligand recognition by LRP1 under-
lies a central role for the cysteine-rich complement-type 
repeats (CRs). These cage-shaped CRs present a character-
istic acidic pocket that forms salt bridges with a specific 
lysine on the ligand moiety, as it was shown for a number of 
LRP1 ligands [135, 136]. Previous structural and mutagen-
esis studies on LRP1 ligands have revealed that a proximal 
pair of lysine residues provides the dominant ligand-bind-
ing contribution to LRP1 [137, 138]. Doherty et al. [139] 
engineered LRP1-resistant mutants of TIMP-3 (Lys26Ala/
Lys45Ala and Lys45Ala/Lys110Ala) without altering inhibi-
tory activity against metalloproteinases. These TIMP-3 
mutants have a longer half-life in cartilage and inhibit carti-
lage degradation at lower concentrations and for longer than 
wild-type TIMP-3. This illustrates that targeting the TIMP-3 
endocytosis pathway is a potential strategy for inhibiting 
cartilage loss in OA. As mentioned above, sulphated GAGs 
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including heparin, heparan sulphate and pentosan poly-
sulphate are also able to inhibit TIMP-3 binding to LRP1, 
increase extracellular levels of TIMP-3 and thus protect 
cartilage ECM from degradation [60, 96]. However, such 
sulphated GAGs have poor pharmacokinetics and limited 
clinical scope. Chanalaris et al.[140] found that suramin, a 
polysulfphonated naphthalene derivative of urea, has similar 
chondroprotective activity to the sulphated GAGs. Although 
suramin’s clinical use has been limited by its adrenal toxic-
ity, suramin might serve a scaffold for the development of 
novel therapeutics to target cartilage loss in OA.

The ligand-binding regions in LRP1 occur in four clus-
ters (clusters I-IV) containing between 2 and 11 individual 
ligand-binding CRs. Most of the ligands for LRP1 for which 
the binding sites have been mapped interact with ligand-
binding repeats in clusters II and IV [141]. As mentioned 
above, soluble LRP1 works as a decoy receptor and each sol-
uble cluster binds to certain LRP1 ligands and inhibits endo-
cytosis. Scilabra et al.[101] generated soluble mini-receptors 
(sLRPs) containing the four distinct binding clusters or part 
of each cluster. Interestingly, a soluble mini-receptor con-
taining the N-terminal half of cluster II selectively blocked 
TIMP-3 internalisation, without affecting the turnover of 
ADAMTS-4, 5 or MMP-13. This soluble mini-receptor 
represents a biological tool that can be used to modulate 
TIMP-3 levels in the tissue. Engineering LRP1 clusters is 
thus a unique way to prevent endocytosis of certain LRP1 
ligands in a selective manner.

Conclusion and Perspective

OA is now widely accepted as a whole joint disease, and 
indeed all the joint structures including the adjacent bone 
surfaces, the synovial lining of the joint cavity, tendons, 
ligaments, and menisci are affected in OA. Although chon-
drocytes have been considered to be responsible for main-
taining cartilage homeostasis by balancing synthesis and 
degradation of matrix molecules, it is still not clear that 
the loss of chondrocytes affects cartilage integrity or not 
[142]. Furthermore, to date, the role of proteinases in car-
tilage structural changes has been studied extensively, but 
their roles in synovial hypertrophy, osteophyte formation 
and subchondral bone remodelling is less well understood. 
Interestingly, [-1A]TIMP-3 overexpression led to a signifi-
cant increase in bone mass, providing a novel concept that 
balance in aggrecanase and collagenase activities is crucial 
in bone remodelling [125].

Endocytic processes, including LRP1-mediated endo-
cytosis, represent important mechanisms for regulating 
metalloproteinase activity, modulating extracellular levels 
of the enzymes and their endogenous inhibitors. In addi-
tion to endocytic scavenger functions, LRP1 can act as a 

signalling receptor via interaction of its cytoplasmic domain 
with various scaffolding and signalling proteins. A study 
by the Gonias group indicates that LRP1 can initiate differ-
ent signalling pathways in response to binding of particular 
ligands to its extracellular domain [130]. This raises the pos-
sibility that LRP1-mediated uptake of metalloproteinases 
and their inhibitors is not merely a mechanism for clear-
ing them from the extracellular environment, but that it also 
serves to deliver information to cells about turnover of their 
surrounding environment.

During the development of OA, cartilage ECM is slowly 
and gradually degraded. A prolonged period where biologi-
cal changes are continuously taking place in a whole joint 
is a major challenge presented by the disease. If the rate of 
ECM degradation is reduced by the agents that inhibit activ-
ity of cartilage-degrading metalloproteinases—activation of 
these enzymes or LRP1 shedding without affecting the syn-
thesis of ECM—this can be of benefit. However, inhibition 
of specific or multiple proteinases may be only effective at 
specific stages in the disease process. Further insights into 
regulations of individual enzymes in the complex environ-
ment at multiple stages of the OA development may allow 
us to develop effective approaches to ameliorate global joint 
pathology.
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