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Abstract: The study of congenital virus infections in humans requires suitable ex vivo platforms for
the species-specific events during embryonal development. A prominent example for these infections
is rubella virus (RV) which most commonly leads to defects in ear, heart, and eye development. We
applied teratogenic RV to human induced pluripotent stem cells (iPSCs) followed by differentiation
into cells of the three embryonic lineages (ecto-, meso-, and endoderm) as a cell culture model for
blastocyst- and gastrulation-like stages. In the presence of RV, lineage-specific differentiation markers
were expressed, indicating that lineage identity was maintained. However, portrait analysis of the
transcriptomic expression signatures of all samples revealed that mock- and RV-infected endodermal
cells were less related to each other than their ecto- and mesodermal counterparts. Markers for
definitive endoderm were increased during RV infection. Profound alterations of the epigenetic
landscape including the expression level of components of the chromatin remodeling complexes
and an induction of type III interferons were found, especially after endodermal differentiation of
RV-infected iPSCs. Moreover, the eye field transcription factors RAX and SIX3 and components of
the gene set vasculogenesis were identified as dysregulated transcripts. Although iPSC morphology
was maintained, the formation of embryoid bodies as three-dimensional cell aggregates and as
such cellular adhesion capacity was impaired during RV infection. The correlation of the molecular
alterations induced by RV during differentiation of iPSCs with the clinical signs of congenital rubella
syndrome suggests mechanisms of viral impairment of human development.

Keywords: ectoderm; mesoderm; human development; embryogenesis; interferon response;
interferon-induced genes; self-organizing map (SOM) data portrayal; epigenetic signature; embryoid
body; TGF-β and Wnt/β-catenin pathway

1. Introduction

The enveloped, single stranded (positive-sense) RNA virus rubella virus (RV) of the genus
Rubivirus within the family Togaviridae is one of the few viruses that can cause an intrauterine infection.
How these viruses are transmitted vertically from the infected mother to the fetus and how they
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impact human development is only partially resolved. In the case of the very efficient teratogen
RV, the human-specific symptoms are categorized as congenital rubella syndrome (CRS) with the
classical triad of clinical symptoms being sensorineural deafness, congenital heart disease (including
cardiovascular and vascular anomalies), and cataracts [1,2]. Heart defects in CRS may comprise
ventricular/atrial septal defects, patent ductus arteriosus, and patent foramen ovale. In congenital
rubella, ocular (ophthalmic) pathologies include cataract, microphthalmia, glaucoma, and pigmentary
retinopathy [1,2]. Furthermore, in tissue samples from three fatal CRS cases RV was detected in cardiac
and adventitia (aorta and pulmonary artery) fibroblasts in association with vascular lesions [3]. The
risk for the development of congenital defects is especially prevalent during maternal rubella until
gestational week 11 and 12 [4–6]. Thus, intrauterine RV infection is only of concern during the first
trimester. While congenital malformations are common, premature delivery and stillbirths are not
markedly increased after intrauterine RV infection [1].

There are a number of ethical constraints associated with the study of human embryogenesis and
congenital malformations, especially as early implantation stages of human embryos are inaccessible [7].
With embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), as the two types of
human pluripotent stem cells (PSCs), these novel ex vivo cell culture platforms allow for the analysis
of human embryonic germ layer segregation and as well as for developmental toxicity testing [8]. As a
cell culture model, they represent a blastocyst-like stage, which can be extended to gastrulation-like
stages through their differentiation into derivatives of the embryonic germ layers (ectoderm, mesoderm
and endoderm). Additionally, their suitability as a developmental model has been demonstrated for
cardiac commitment during development [9] as the heart is the first organ to develop and cardiac cell
fate decisions occur very early. Furthermore, cultivation of ESCs in combination with suitable 3D
matrices or together with trophoblast cells enables the formation of blastoids, gastruloids, and even
embryoids (or embryo-like entities) as culture dish models for human embryogenesis [7,10].

PSCs and PSC-based differentiation models, especially the mouse (m) ESC test, are already
validated for testing of teratogenic and embryotoxic substances such as thalidomide (brand name
Contergan®), [11,12]. However, their potential for the study of infections during pregnancy is just at
the beginning of evaluation [13,14]. In line with the limited number of viruses that can cause perinatal
infection, iPSCs possess intrinsic mechanisms that restrict virus infections. In addition, compared
to differentiated somatic cells, iPSCs have a higher expression level of a distinct set of interferon
(IFN)-induced genes [14]. This appears to counterbalance the absence of a type I IFN response in iPSCs
as an essential component of antiviral innate immunity [15].

Teratogenic RV can be maintained in iPSCs over several passages followed by directed
differentiation into embryonic germ layer cells [13], highlighting iPSCs as a promising model for the
very early mechanisms involved in rubella embryopathy. As a follow-up to this study we aimed at the
identification of RV-induced molecular alterations in these cells before and after initiation of directed
differentiation through transcriptomics. The most profound effects associated with RV infection were
detected in endodermal cells derived from RV-infected iPSCs. Markers for definitive endoderm were
upregulated, which occurred in association with profound epigenetic changes, an upregulation of
factors involved in vasculogenesis, and reduced activity of the TGF-β signaling pathway. Additionally,
ectodermal cells revealed an altered expression profile of essential transcription factors for eye field
development during RV infection. Thus, the study of RV infection on iPSCs and derived lineages
provides insights into viral alterations of early developmental pathways and as such into congenital
diseases in general.

2. Materials and Methods

2.1. Cell Lines and Cultivation

Vero (green monkey kidney epithelial cell line, ATCC CCL-81) and A549 (human lung carcinoma
epithelial cells, ATCC, LGC Standards GmbH, Wesel, Germany) were cultured in Dulbecco’s modified
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Eagle’s medium (DMEM; Thermo Fisher Scientific, Darmstadt, Germany) with high glucose, GlutaMAX,
10% fetal calf serum (FCS) and 100 U/mL penicillin–streptomycin. If not otherwise indicated, the
vector-free human episomal A18945 iPS cell line (alias TMOi001-A), (Thermo Fisher Scientific)
was maintained in mTeSR™1 medium (StemCell Technologies, Cologne, Germany) with 10 µg/mL
gentamycin on Matrigel™ (BD Biosciences, dispensed in DMEM/F-12)-coated culture plates with daily
medium change. They were passaged enzymatically at a ratio of 1:6 to 1:10 every 3 to 5 days with
collagenase type IV (Thermo Fisher Scientific) in DMEM-F12 with the addition of 10 µM Y-27632
ROCK inhibitor.

2.2. Directed and Undirected Differentiation of iPSCs

Directed differentiation was performed as an endpoint differentiation assay through the
STEMdiffTM trilineage differentiation kit (StemCell Technologies). The differentiation protocol was
performed according to the manufacturer’s instructions and required cultivation of A18945 iPSCs in
mTeSR™1 medium. Single cells, as obtained after treatment with Accutase (Merck/Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany), were plated on Matrigel. Every 24 h medium change of the
respective STEMdiffTM trilineage differentiation medium for ectoderm, mesoderm, and endoderm was
performed. Samples were collected after 5 days (mesoderm and endoderm) and 7 days (ectoderm) of
cultivation. Undirected differentiation was initiated 24 h after collagenase-passaging of iPSC cultures at
a ratio of 1:4 through application of undirected differentiation medium (DMEM-F12, 1x MEM-NEAA,
0.2 mM L-glutamine, 20% FBS, 0.11 mM β-mercaptoethanol, and 100 U/mL penicillin) followed by
further cultivation for 5 days.

2.3. Embryoid Body Formation

EB formation as based on a previous publication [16] and (http://www.biolamina.com/media.
ashx/instructions-bl010.pdf) was carried out in suspension culture and single cell suspensions were
obtained after Accutase (Sigma-Aldrich) treatment. A total of 1 × 106 cells was seeded in 200 µL of EB
culture medium (DMEM-F12, 20% KnockOut™ Serum Replacement (Thermo Fisher Scientific), 1×
MEM-NEAA, 0.2 mM L-glutamine, 0.11 mM β-mercaptoethanol and 1 mg/mL Gentamicin) medium
into one well of a nontreated conical 96-well plate and centrifuged at 600× g for 5 min. After cultivation
for 2 days the EBs were transferred according to the protocol to a low attachment flat-bottom six-well
plate and medium was changed every third day.

2.4. Virus Infection and Interferon Assays

The supernatant of infected Vero cells was collected and cleared from cellular debris by
centrifugation at 350× g for 10 min at 4 ◦C and filtration through a 0.45 µm syringe filter. Thereafter
ultracentrifugation with a 20% sucrose cushion (w/v in PBS) was performed for 2 h at 25,000 rpm and 4
◦C. The obtained pellets were resuspended in mTeSR1. Viral titers were determined by standard plaque
assay. As described previously [13], iPSC cultures with a 40–50% confluency were acutely infected with
7.5 × 105 plaque forming units (PFU) of RV per well of a 24-well plate. This corresponds approximately
to an MOI of 20. The applied MOI can only be estimated as iPSCs were passaged enzymatically in
clumps. The inoculum was replaced with fresh mTesR1 medium after 2 h of incubation [13]. After 4 to
5 days of cultivation, RV-infected iPSCs were passaged.

For exogenous (or paracrine) IFN treatment human recombinant IFN lambda 1 (IL-29, #300-02L)
and 2 (IL28A, #300-02K), were purchased from Peprotech (Hamburg, Germany), and 3 (IL-28B, #CS26)
from Novoprotein (Novoprotein, PELOBIOTECH GmbH, Planegg/Martinsried, Germany). The Accuri
C6 flow cytometer (BD Bioscience, Heidelberg, Germany) was used for IFN measurement by the
LEGENDplex human type 1/2/3 IFN panel (BioLegend, San Diego, CA, USA). The double-stranded
(ds) RNA analogue polyinosinic-polycytidylic acid (poly I:C; Santa Cruz Biotechnology, Heidelberg,
Germany) was added either directly to the cell culture or transfected at a concentration of 1 µg using
Lipofectamine 2000 (Thermo Fisher Scientific) as transfection reagent.

http://www.biolamina.com/media.ashx/instructions-bl010.pdf
http://www.biolamina.com/media.ashx/instructions-bl010.pdf
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2.5. Calcein Live Cell Staining

For live cell staining, EBs were incubated with mTeSR1 plus calcein FM (Sigma-Aldrich) at 1 µM.
After an incubation period for 30 min, EBs were washed twice with PBS and analyzed on an inverted
fluorescence microscope.

2.6. RNA Isolation

Total RNA was extracted from mock- and RV-infected cells by Trizol reagent (Thermo Fisher
Scientific). The purification was performed with the Direct-zol RNA kit (Zymo Research, Freiburg,
Germany) according to manufacturer’s instructions. The integrity of the RNA samples was
confirmed through analysis on a fragment analyzer (Advanced Analytical). Only samples with
a RIN (RNA integrity number as a means of quality assessment) equal to 7 or greater were subjected to
further analysis.

2.7. Microarray Gene Expression Analysis and SOM Portrayal

Isolated RNA was processed and hybridized to Illumina HT-12 v4 Expression BeadChips (Illumina,
San Diego, CA, USA) and measured on the Illumina HiScan. Raw intensity data of 47,323 gene probes
was extracted by Illumina GenomeStudio and subsequently background corrected, transformed into
log10-scale, quantile normalized, and centralized to obtain gene expression estimates. Two independent
samples per condition and cell type were processed.

Expression data were then further processed using self-organizing map (SOM) machine learning.
The method distributes the gene-centered expression values among 2500 microclusters called
meta-genes, which were arranged in a two-dimensional 50× 50 lattice and colored in maroon-to-blue for
high-to-low meta-gene expression values. These mosaic images visualize the transcriptome patterns of
each individual sample and therefore can be understood as their molecular portraits exhibiting clusters
of coexpressed genes in the samples studied [17]. Mean portraits over replicates were calculated by
averaging the meta-gene landscapes of replicated samples while difference portraits between different
cell types were obtained by subtracting the respective metagene values to highlight differentially
expressed genes. Clusters of coexpressed genes were identified by selecting so-called ‘spot-areas’ in the
SOM portraits using overexpression criteria as described previously [17]. For functional interpretation
of the expression-modules, we applied gene set enrichment analysis using the gene set Z-score
(GSZ), [17]. Enrichment of functional gene sets in the spot cluster was calculated by applying Fisher’s
exact test. We considered gene sets related to biological processes (BP) of the gene ontology (GO)
classification, standard literature sets [17,18], and literature sets curated by our group. Downstream
analysis methods were described previously [17,19] and are implemented in the R-package ‘oposSOM’
used for analysis [20].

Pathway activity was analyzed based on pathway topologies and gene expression data using the
pathway signal flow method as implemented in oposSOM [21].

2.8. Quantitative Real-Time PCR Analysis of Viral and Cellular RNA

For determination of the mRNA expression level of selected cellular genes, 1.2 µg of total
RNA were reverse transcribed with Oligo(dT)18 primer and AMV reverse transcriptase (Promega,
Mannheim, Germany) at 42 ◦C for 1 h. This was followed by an incubation step at 70 ◦C for 10 min.
The carousel-based LightCycler 2.0 (Roche, Mannheim, Germany) was used for quantitative real-time
PCR (qRT-PCR) experiments. These experiments included a 1:5 dilution of the respective cDNA
samples together with 1 µg BSA and the GoTaq® qPCR master mix (Promega). Supplement Table S1
lists oligonucleotides and probes targeting viral p90 gene that were used for quantification of viral
RNA as described [22]. Two different approaches for relative expression analysis were pursued. For
direct comparison of one sample type after mock- and RV-infection, comparative delta delta Ct (∆∆Ct)
was used. For comparison of gene expression levels among different cell types within a large data
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set, a modified version of the comparative delta delta Ct (∆∆Ct) method was used. The normalized
relative quantity (NRQ) values were derived from qbase+ software (Biogazelle, Zulte, Belgium) which
are based on the mean expression values of all samples and replicates within a given data set [23].

2.9. Immunofluorescence

For assessment of viral proteins, immunofluorescence was carried out as described [13]. Briefly,
cells were fixed with 2% (w/v) paraformaldehyde in PBS and permeabilized with 0.1 Triton X-100
followed by incubation with mAb anti-E1 from Viral Antigens (Viral Antigens Incorporation, Memphis,
TN, USA) at a 1:200 dilution as primary antibody.

2.10. Statistical Analysis

All statistical calculations were done with Graph Pad Prism software (GraphPad Software, Inc.,
La Jolla, CA, USA). Asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) highlight the level of
significance in diagrams which include data as means ± standard deviation (SD). For comparison of
normalized mRNA expression levels in RV-infected samples with the corresponding mock controls, a
paired Student’s t test (consistent ratios of paired values) was applied. Statistical analysis for different
samples was based on one-way ANOVA followed by Bonferroni’s multiple comparison test.

3. Results

3.1. In the Presence of RV, iPSCs Maintain Pluripotent Properties and Lineage Identity after Initiation of
Differentiation

Specification to one of the three germ lineages is the first critical step in directing differentiation
to downstream cellular phenotypes. Therefore, directed as well as undirected differentiation was
induced in RV-infected iPSCs which were subcultured for two to five passages. Passaging of infected
iPSCs results in a homogenous level of infection within iPSC cultures without affecting the protein
expression level of the pluripotency marker OCT4 [13]. During passaging of RV-infected iPSCs,
replication occurred at a rather constant rate as assessed by viral titer and E1 protein expression
rate [13]. Furthermore, passaging allows for adaptation of RV to iPSCs and excludes any possible
effects of the differentiation process itself on the otherwise acute infection with RV (Figure 1A).
Undirected differentiation is spontaneous and was thus induced to assess whether RV, without a
specific differentiation stimulus, directs a gene expression profile different from the mock-infected
population. Directed differentiation of RV-infected iPSCs into ecto-, endo-, or mesodermal cells
(thereafter referred to as RV-infected) was initiated with the STEMdiff trilineage differentiation kit as
an endpoint differentiation approach to determine which of the early cell fate decision pathways could
be affected by RV.

RV establishes a noncytopathic infection of iPSCs with a homogenous distribution of infected
cells within the respective colony (Figure 1B), [13]. Differentiation into all three embryonic germ layers
supported RV replication at a comparable rate (Figure 1C [i,ii]), [13]. As a next step, we generated
an expression heatmap of selected marker genes (based on microarray whole transcriptome data)
for assessment of pluripotency and lineage identity (Figure 1D). In agreement with the maintenance
of OCT4 (octamer-binding transcription factor 4, also known as POU5F1) expression in RV-infected
iPSCs [13], high expression of pluripotency markers CDH1 and OCT4 was noted. Their expression
was maintained to some degree in endodermal cells, which is in agreement with the conditions of
the STEMdiff trilineage differentiation kit. The same applies to the expression of the pluripotency
marker SOX2 (SRY (Sex Determining Region Y)-Box 2) in ectodermal cells. The expression profile of
lineage-specific markers confirmed ectodermal (PAX6 (Paired Box 6), DLK1 (Delta-Like 1 Homolog),
and FABP7 (Fatty Acid Binding Protein 7)), mesodermal (HAND1 (Heart and Neural Crest-Derived
Transcript 1), CDX2 (Caudal Type Homeobox 2), APLNR (Apelin Receptor)) and endodermal (LEFTY1
(Left-Right Determination Factor 1), EOMES (Eomesodermin), NODAL (Nodal Growth Differentiation
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Factor)) identity after initiation of directed differentiation in mock- and RV-infected iPSCs (Figure 1D).
Additionally, some overlap between lineages, especially between mesoderm and endoderm, was noted
for RV-infected samples (Figure 1D). Transcriptomic data was confirmed by RT-qPCR of pluripotency
marker OCT4 and of selected markers for ectoderm (PAX6), mesoderm (HAND1), and endoderm
(NODAL) lineages followed by relative quantification by qbase+ method (Figure 1E). Figure 1D and E
indicate that during undirected differentiation, especially mesodermal markers were expressed, which
occurred at a comparable level between mock- and RV-infected cells. Among the lineage-specific
markers, the expression level of HAND1 was significantly downregulated in mesodermal cells after
RV infection. Additionally, RV infection did not alter stemness-related expression signatures as
indicated by the transcriptomic activity of the GO gene set telomere maintenance (Figure 1F). Telomere
maintenance is active in stem cells, but gets deactivated in differentiated somatic cells [24].

In summary, comparable to the mock-control, RV maintained the pluripotent properties of iPSCs
and enabled initiation of differentiation into embryonic germ layer cells as indicated by expression of
essential germ layer markers.

3.2. High-Resolution Transcriptomic Maps Reveal Modules of Coregulated Genes Promoted by RV Infection
during Endodermal Differentiation

As we found out that RV infection did not affect unspecific differentiation of iPSCs and enabled
their lineage-specific differentiation, we wanted to focus on the effect of RV on lineage identity. The
self-organizing map (SOM) transcriptome data portrayal provides a high-resolution visualization of
the transcriptome landscape of each cell system studied in terms of a quadratic mosaic image and
decomposes into clusters of coregulated genes. They are represented as colored spot-like areas where
red and blue colors code activated and deactivated gene clusters, respectively. These transcriptomic
portraits were then used to evaluate the mutual relatedness between the cell systems by means of
a phylogenetic similarity tree (Figure 2A). The tree structure results from the fact that common and
different spot patterns in the portraits reflect mutual similarities and differences of the activated cellular
programs which enable judging the effect of RV-infection on the different lineages (see the portraits
in Figure 2A). For an overview, we generated a spot-summary map in Figure 2B which shows the
activated spots observed in any of the samples together with their functional context as extracted by
means of gene set enrichment analysis of the genes in each of the spot-clusters of coexpressed genes
(see also Supplement Table S1). In total, we identified five relevant spots labeled with capital letters
A–E. Each of the spots is characterized by a specific expression profile (Supplement Figures S1 and S2)
which, in turn, shows close similarities with the expression profiles of distinct gene sets (shown as
‘barcode’ plots in Figure 2C).
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ectodermal cells n = 3, mesodermal cells n = 7, endodermal cells n = 4), respectively. (D) Expression 
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and derived cells after initiation of undirected and directed differentiation was determined by real-
time quantitative PCR (RT-qPCR) and analyzed by qbase+ software. For normalization, 
chromosome 1 open reading frame 43 (C1orf43) and hypoxanthine guanine phosphoribosyl 
transferase 1 (HPRT1) were used. Relative gene expression was calculated as normalized relative 
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levels were assigned based on literature data and transcriptomics data by Stemcell Technologies for 
the Trilineage differentiation kit. (F) Analysis of stemness-related expression signatures was based 
on the GO gene set telomere maintenance. An embryonal stem cell signature and a gene set 
collecting OCT4 targets were both taken from [25]. 

Figure 1. The identity of iPSCs and derived lineages was maintained in the presence of rubella virus
(RV). (A) Overview of the methods applied to initiate differentiation in mock- and RV-infected iPSCs.
(A) [i] Undirected differentiation in the respective induction medium started at the rim region of
iPSC colonies (indicated by white arrows) and extended to their center over time of incubation. (A)
[ii] Additionally, directed differentiation into the primary germ layers ectoderm, mesoderm, and
endoderm was induced with the STEMdiff differentiation kit. (B) Immunofluorescence analysis
with anti-E1 antibody (shown in red) was performed to monitor distribution of RV-positive cells
within iPSC colonies. Nuclei are shown in blue. Ph, phase contrast (C) To assess RV replication
in iPSCs and derived lineages, (i) virus progeny, and (ii) the amount of genomic viral RNAs was
determined by standard plaque assay (n = 11 for passaged iPSCs, otherwise n = 3) and TaqMan-based
reverse transcription-quantitative PCR (passaged iPSCs and ectodermal cells n = 3, mesodermal cells
n = 7, endodermal cells n = 4), respectively. (D) Expression heatmap of selected marker genes of
pluripotency and lineage identity (based on microarray whole transcriptome data) in mock- and
RV-infected iPSCs and iPSC-derived lineages. Shading indicates overlap in the expression of some
of the marker genes between iPSCs and iPSC-derived lineage cells, respectively. (E) The expression
of indicated target genes in mock- and Wb-12-infected iPSCs and derived cells after initiation of
undirected and directed differentiation was determined by real-time quantitative PCR (RT-qPCR) and
analyzed by qbase+ software. For normalization, chromosome 1 open reading frame 43 (C1orf43) and
hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1) were used. Relative gene expression was
calculated as normalized relative quantity (NRQ) and given as means ± SD (n = 3 to 5). As a reference,
lineage-specific expression levels were assigned based on literature data and transcriptomics data by
Stemcell Technologies for the Trilineage differentiation kit. (F) Analysis of stemness-related expression
signatures was based on the GO gene set telomere maintenance. An embryonal stem cell signature and
a gene set collecting OCT4 targets were both taken from [25].
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Figure 2. RV supports expression of markers for definite endoderm. (A) Similarity tree of the gene
expression portraits of the cell systems studied. Both, mock- and RV-infected mesodermal and
ectodermal cells share relatively high mutual similarity of their transcriptomes. In contrast, mock- and
RV-infected endodermal cells form a separate branch that is closer to the mock- and RV-infected iPSCs.
(B) Spot summary map (I) provides an overview of activated cellular programs and their functional
context, which is depicted in more detail in (II). (C) Barplot representation of the expression profiles of
gene sets related to different functions. Their genes were enriched in the spots that were identified in
the SOM portraits. They are thus indicated accordingly (see also the overview map in part B of the
Figure and Table S2). (D) Selected marker genes for definite endoderm are illustrated in the heatmap of
the transcriptome of mock- and RV-infected iPSCs and iPSC-derived lineages. (E) The expression of
marker genes for definite endoderm was determined by RT-qPCR in mock- and Wb-12-infected iPSCs
and iPSC-derived lineages by qbase+ software. For normalization, C1orf43 and HPRT1 were used.
Relative gene expression was calculated as normalized relative quantity (NRQ) and given as means ±
SD (n = 3 to 5). See also Figures S1 and S2.
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Mapping of the position of genes into the SOM enables us to deduce their expression profile in the
cell systems studied according to the gene’s location in or near the spots and the respective spot profiles
(Figure 2B and Supplement Figure S1). Importantly, key genes of ectoderm and mesoderm development
are found in spots D and E, respectively, and are confirmed to be upregulated in the ectoderm and
mesoderm cells. On the other hand, genes related to gastrulation and heart-tube development were
enriched in spot B and found to be activated in RV-infected endoderm cells. This occurred together
with genes that are activated upon interferon response (see next subsection). Stemness key genes
locate in spot C together with part of the developmental genes of the endoderm (Supplement Figure
S1). Difference portraits clearly indicate that spot B associates with RV infection (Figure 2B), which
contains the genes NODAL, CER1, SOX17, and GATA4, reflecting their activation upon RV infection
in endodermal cells. In addition, we are able to show that mesoderm and ectoderm cells share
similar expression patterns characterized by upregulated spots D and E and downregulated stemness
genes (spot C), which, in contrast, are upregulated in endoderm cells. This is in agreement with
the expression level of pluripotency genes in the endodermal lineage which was higher than in the
remaining two embryonal germ layers (Figure 1D,E). As a consequence, mesoderm and ectoderm
cells occupy neighboring positions at one end of the similarity tree, while endoderm cells are found
at the opposite end. These findings highlight two important aspects: (I) there is a close similarity of
transcriptional patterns among ecto-, mesoderm, and iPSC samples without and with RV infection;
and (II) the endodermal lineage is an exception, where RV infection induces a notable shift away from
the corresponding mock sample.

To further elucidate this specific effect of RV, we analyzed the transcriptomic data for markers for
definitive endoderm (CXCR4 (C-X-C Motif Chemokine Receptor 4), MIXL1, SOX17, FOXA2 (Forkhead
Box A2), EOMES, GATA6, CER1 (Cerberus, DAN family BMP Antagonist), and LEFTY, [26]. The
expression heatmap shown in Figure 2D indicates an increased expression level of CER1 and SOX17
after RV infection. Figure 2E shows qPCR analysis followed by relative quantification by qbase+

method and highlights that the definite endoderm markers CXCR4, MIXL1, SOX17, GATA4/6, and
CER1 were significantly higher expressed in RV-infected endodermal cells as compared to their
mock-infected counterparts. While RV infection did not induce these markers above a cut-off of a
two-fold increase during mesodermal and ectodermal differentiation, EOMES, GATA4, and CER1 were
specifically induced by RV during undirected differentiation.

In conclusion, similarity analysis supports the hypothesis that ectodermal and mesodermal lineage
identity was maintained after infection with RV, while endodermal cells derived from RV-infected
iPSCs were enriched in markers for definitive endoderm.

3.3. RV Infection Activates IFN Type III Response Pathways on iPSCs and Derived Lineages

Difference portraits (Figure 3A) indicated that RV-infection specifically upregulated genes in spot
B, which were associated with “IFN response” characteristics. This is supported by the profiles of gene
expression signatures of viral infections such as by influenza virus and pneumonia that is accompanied
by interferon activation. These genes were consistently upregulated in RV-infected samples with the
largest observed effect in endodermal cells (Supplement Figure S3), [27–29]. Spot B highlighted in
the SOM landscapes contained genes involved in IFN and viral response mechanisms (Figure 3A,
a list of genes is given in Figure 3B). This is further emphasized by the expression heatmap shown
in Figure 3C. Whereas genes involved in IFN-sensing, including the type III IFN receptor IFNLR1
(IFN lambda receptor 1), were not altered in their expression level, the IFN-signaling components
STAT1 (signal transducer and activator of transcription 1) and IRF9 (interferon regulatory factor 9)
appeared to be slightly upregulated at their mRNA expression level after infection with RV, especially
in endodermal cells. The highest level of upregulation was found for IFN-stimulated genes (ISGs),
notably for MX1 (MX dynamin like GTPase 1), IFITM2 (interferon induced transmembrane protein
2), and ISG15 (interferon-stimulated gene 15). Mapping of these genes into SOM space further
underlines these findings: The IFN-signaling genes and the ISGs accumulate in and around spots B



Cells 2019, 8, 870 10 of 22

and D, respectively, while IFN-sensing genes are located outside these spot regions (Figure 3B). The
increase in the expression level of selected marker genes of the IFN pathway in the presence of RV was
confirmed by RT-qPCR (Figure 3D). Compared to RV-infected iPSCs and ecto- and mesodermal cells,
the expression level of IRF9 and STAT1 and selected ISGs (IFITM1/2, IFIT1, and ISG15) was significantly
higher in RV-infected endodermal cells. The highest increase in mRNA expression after RV infection
was noted for the ISGs IFIT1 and ISG15. Therefore, we determined whether this gene expression
pattern was indeed associated with IFN generation during RV infection through quantification of type I
(α and β), type II (γ), and type III (λ1 and λ2/3) IFNs by the LEGENDplex assay from the supernatants
of RV-infected cells (Figure 3E). In iPSCs as well as iPSC-derived lineage cells, RV infection induced
secretion of type III IFNs, namely IFN λ2/3 (Figure 3E). As a positive control, the synthetic dsRNA
analog poly I:C was used, which was either transfected into iPSCs or added directly to the supernatant.
Either application of poly I:C did not lead to secretion of any type I, II, or III interferons (Figure 3E).
The activation of type III IFNs by RV was also confirmed at the mRNA level by RT-qPCR (Figure 3F).
Compared to the mock-infected control, RV induced a significant increase in the mRNA expression of
IFN λ2/3 in endodermal cells (Figure 3F). Thereafter, we addressed the discrepancy between IFN λ2/3
protein (Figure 3E) and mRNA level (Figure 3F). Gene set analysis revealed that mRNAs associated
with the KH type-splicing regulatory protein (KHSRP) were specifically enriched in endodermal cells
(Figure 3G). KHSRP is involved in post-transcriptional regulation of mRNA expression, including IFN
λ3 [30]. This could explain the discrepancy between IFN λ2/3 protein and mRNA expression level.

To address the influence of the type III IFNs secreted during RV to the cell culture supernatant
on the gene expression landscape of iPSCs, type III IFNs were added exogenously for two weeks of
cultivation during daily medium change of iPSCs. The zoom-in similarity tree shown in Figure 3H
highlights the relatedness between the expression portraits of mock- and RV-infected iPSCs as well
as iPSCs after application of type III IFNs. The gene expression profile of passaged RV-infected cells
shifted away from iPSCs after exogenous IFN type III application, but closer to the mock-infected cells,
suggesting an adaptation of RV to iPSCs.

In conclusion, in iPSCs and iPSC-derived embryonic lineages, RV infection induced a type III IFN
response together with activation of ISGs, notably MX1 and ISG15. This activation appeared to be
specifically profound in endodermal cells.

3.4. RV Infection Is Associated with Chromatin Remodeling

Alterations of gene expression patterns during development are governed by epigenetic
mechanisms in cooperation with regulation via transcription factor networks [32,33]. Particularly, we
found that gene signatures of epigenetic impact, such as targets of the polycomb repressive complex 2
(PRC2), of H3K27me3, and of bivalently (H3K4me3 and H3K27me3) marked gene promoters, have
an almost antagonistic expression profile as compared to the stemness signatures (Figure 4A, in
comparison to Figure 1F).
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Figure 3. RV infection activates an IFN response in iPSCs and derived lineages. (A) Expression portraits
of the embryonal germ layers before and after RV infection and the respective difference portraits
reveal characteristic spot patterns, where spots C, D, and E are specific for endoderm, ectoderm, and
mesoderm cells, respectively. Spot B appears after RV infection mainly in endodermal cells. (B) IFN
response genes with signaling and stimulated functions in the IFN response pathways accumulate in
spots B and C and were upregulated predominantly in iPS and endodermal cells after RV infection
as also indicated by the IFN and viral response gene signature profiles. (C) Expression heatmap of
selected marker genes involved in IFN-sensing and -signaling in mock- and RV-infected iPSCs and
iPSC-derived lineages. Interferon-stimulated genes (ISGs) that were identified by the SOM analysis
shown in (A) are included. (D) The mRNA expression level of the IFN-signaling components IRF9 and
STAT1 and indicated ISGs was verified by RT-qPCR analysis. Data are given as means ± SD (n = 3
and n = 5 for RV-infected mesoderm, IRF9 and STAT1). (E) The IFN profile for RV-infected iPSCs and
derived lineages was determined by the LEGENDplex IFN panel for undiluted supernatants collected
after five (iPSCs and mesodermal cells) and seven days (endodermal and ectodermal) of cultivation.
(F) The mRNA expression level of type III IFNs was verified by qPCR analysis and given as means
± SD (n = 3). (G) Mean expression of a gene set (gene set Z-score, GSZ) that is controlled by KSRP,
which appears to keep inflammatory gene expression within defined limits [31]. (H) Similarity tree of
the gene expression portraits of mock- and RV-infected iPSCs in comparison to iPSCs after cultivation
in the presence of exogenous type III IFNs. (D,F) For normalization of qRT-PCR data in the 2−∆∆Ct

method, the HPRT1 gene was used. See also Figure S3.
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A–E according to their expression profiles. This suggests their involvement in the regulation of 
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chains and affecting DNA methylation. Notably, a very strong variability was observed for KDM6a 
(alias UTX), a constituent of the SWI/SNF ATP-dependent chromatin remodeling machinery. (C) 
Expression of KDM6a directly relates to stemness programs (Figure 1F) and inversely relates to 
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Figure 4. RV infection is accompanied by an altered expression of components of the SWI/SNF and
NURF chromatin remodeling complexes. (A) Mean GSZ expression signatures of stemness-related
transcriptional programs which act via epigenetic programming (PRC2 targets, repressive and bivalent
chromatin marks). (B) Expression heatmap of chromatin modifying enzymes in the cell systems
studied. The gene expression data of methyltransferases (MTs) and demethylases (DMs) of DNA
cytosines, histone lysine and arginine side chains were assigned to the expression spot-cluster A–E
according to their expression profiles. This suggests their involvement in the regulation of chromatin
structure as writers and erasers of methylation marks at histone lysine and arginine side chains and
affecting DNA methylation. Notably, a very strong variability was observed for KDM6a (alias UTX),
a constituent of the SWI/SNF ATP-dependent chromatin remodeling machinery. (C) Expression of
KDM6a directly relates to stemness programs (Figure 1F) and inversely relates to programs repressing
stemness functions (part A of the Figure). See also Figure S4.
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Next, we focused on chromatin remodeling which is essential for lineage segregation [9,34]. The
analysis of transcription factor networks that act in regions of euchromatin with transcriptionally
active genes and regulatory elements revealed that genes in repressed and bivalent states of endoderm
progenitors become more rigorously deactivated in RV-infected endoderm cells than genes from
these states of mesoderm progenitors in RV-infected mesoderm cells (Supplement Figure S4A). This
suggests that RV infection specifically dedifferentiates endoderm cells by suppressing developmental
suppressors. We then studied enzymes affecting methylation of DNA and of arginine and lysine side
chains of histones such as H3K4, H3K9, H3K27, and H3K36, with potential impact on chromatin
structure. The profiles of the DNA methylation maintenance methyltransferase DNMT1, of PRMT6,
a methyltransferase of histone arginine side chains, and of JMJD1c, a H3K9 demethylase, and
KDM5b demethylating H3K4me3 correlate with the ‘stemness’ spot cluster C upregulated in iPS and
endodermal cells.

Notably, the gene encoding the H3K4 demethylase KDM6a (alias UTX) was markedly upregulated
in RV-infected iPSCs and, especially, endoderm-derived cells (Figure 4B). KDM6a is a constituent of the
SWI/SNF ATP-dependent chromatin remodeling machinery. Figure 4C highlights that in comparison
to iPSCs and ecto- and mesodermal cells, the upregulation of KDM6a was highest in endodermal cells.
The alterations of its expression suggest its role in chromatin remodeling after RV infection described
above. This motivated us to estimate the expression patterns of other genes encoding components of
the SWI/SNF and of the NURF chromatin remodeling complexes [9] by mapping them into the SOM
(Supplement Figure S4B). We found that, indeed, Smarcc2, Smarcd3, and Btpf were all upregulated
in endoderm-derived cells after RV infection, which further supports the assumption that SWI/SNF
and possibly also NURF contribute to chromatin remodeling during RV infection. In conclusion,
expression changes of different sets of genes involved in epigenetic regulation and of constituents of the
ATP-dependent chromatin remodeling complexes such as KDM6a-UTX were detected in association
with RV-infection, especially during endodermal differentiation.

3.5. RV Infection Impairs Aggregation of iPSCs into Embryoid Bodies

The progression of embryogenesis does not only involve the activation of developmental pathways,
but also requires cell–cell interactions based on adhesive forces [35]. The relevance of these observations
for RV-infected iPSCs was emphasized by gene ontology analysis regarding focal adhesion and
regulation of cell adhesion (Figure 5A). Transcriptomic analysis revealed that THY-1 (also known as
cluster of differentiation (CD) 90) was among the targets affected by RV (Figure 5B). The relevance of
THY-1 (CD90) for cellular adhesion capacity was highlighted for CD90 negative carcinoma, which
compared to their CD90 positive counterparts lack the ability to form spheres [36]. Accordingly, we
have addressed whether RV alters the spontaneous aggregation capacity of iPSCs into 3D aggregates
called embryoid bodies (EBs). EB formation relies on cell–cell adhesive interactions [35]. Compared to
the mock control, EBs generated from RV-infected iPSCs were reduced in diameter and of irregular
shape (Figure 5C). Furthermore, during cultivation they lost stability and small-sized debris was
generated (Figure 5C). In contrast to RV-infected iPSCs, the mock-infected controls generated viable
EBs as indicated by staining with calcein performed after two weeks of cultivation (Figure 5D). In
conclusion, RV infection impaired the adhesion capacity of iPSCs as shown by their reduced ability to
assemble into EBs. This suggests an impaired cell–cell interaction capacity during lineage segregation.
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Figure 5. RV impairs the cellular adhesion capacity of iPSCs. (A) Gene signatures related to focal
adhesion in mock- and RV-infected iPSCs. (B) Expression heatmap of selected marker genes involved
in cellular adhesion. (C) Assessment of 3D stability through embryoid body (EB) formation. Shown are
images before and after cultivation in suspension. (D) To verify viability, EBs were stained with calcein
after cultivation for two weeks.

3.6. RV Infection Specifically Affects Developmental Pathways during Endodermal Differentiation

For assessment of the effect of RV on global cellular signaling networks, we focused on two
important signaling pathways, namely transforming growth factor β (TGF-β) and Wnt/β-catenin
(Wnt), (Figure 6A,B, respectively). The TGF-β signaling pathway is involved in cell growth and
differentiation during embryogenesis [37]. The Wnt signaling pathway regulates the interaction
between cellular pathways involved in primary germ layer formation and is required for mesodermal
differentiation from pluripotent stem cells [38]. A more detailed view of the TGF-β and Wnt signaling
pathways is provided in Supplementary Figures S5 and S6, respectively. As expected, the highest
TGF-β signaling pathway activity was observed in endodermal cells, while the Wnt signaling pathway
was most active in mesodermal cells (Supplement Figures S5 and S6). Thus, these two lineages were
depicted in Figure 6A,B, respectively, to highlight the effect of RV on their activity in comparison
to the respective controls. Within the TGF-β signaling pathway, mock-infected endodermal cells
show high cell cycle activity induced by CDKN2B and its downstream interaction partners, which
became deactivated during RV infection (Figure 6A and Supplement Figure S5). Additionally, RV
infection in endodermal cells was specifically accompanied by a strong activation of NODAL, an
essential component of the TGF-β signaling pathway (Figure 6A and Supplement Figure S5). During
RV infection, the transcriptional activity of Wnt signaling pathway was reduced in mesodermal cells
(Figure 6B), whereas for ectodermal and endodermal cells, almost no alteration in its activity was
detected (Supplement Figure S6).
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illustrated in the heatmap of the transcriptome of mock- and RV-infected iPSCs and iPSC-derived 
lineages. (D) For qRT-PCR expression analysis, the 2−∆∆Ct method based on normalization to HPRT1 
gene was used. Values are given as means ± SD (n = 4 for Wb-12-infected ectoderm, n = 2 for HPV77-
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Figure 6. RV exerts lineage-specific effects on developmental signaling pathways and alters expression
of transcription and growth factors. Pathway signal flow (PSF) activity plot of (A) the TGF-β signaling
pathway in endodermal cells (highlighted are genes with higher (NODAL, ACVR2A, Myc) and lower
(RBL1 and E2F4) activity after RV infection) and (B) of the Wnt signaling pathway in mesodermal
cells (highlighted are genes with lower (the CSNK1E/AXIN1E and the LEF1/CCND1 axis) activity
after RV infection). The calculation of the activity of the nodes was based on the PSF algorithm using
the respective gene expression values and the wirings between the nodes [21]. (C) Selected genes
within pathways that were specifically affected by RV infection are illustrated in the heatmap of the
transcriptome of mock- and RV-infected iPSCs and iPSC-derived lineages. (D) For qRT-PCR expression
analysis, the 2−∆∆Ct method based on normalization to HPRT1 gene was used. Values are given as
means ± SD (n = 4 for Wb-12-infected ectoderm, n = 2 for HPV77-infected ectoderm, otherwise n = 3).
See also Figures S5–S7.

As congenital rubella leads to defects in heart and eye development, we analyzed the impact of
RV infection on the underlying molecular pathways. For members of the gene annotation embryonic
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heart tube development and the gene set heart morphogenesis only a slight effect of RV infection
was noted (Supplement Figure S7), suggesting the involvement of other factors. In mesodermal
cells, expression of HAND1, which is involved in embryonic heart tube development, was reduced
after RV infection as compared to the mock controls (Figures 6C and 1E). The ectoderm gives rise to
components of the eye. At the molecular level, RV infection of ectodermal cells impaired the gene set
eye development (Figure 6C), (Supplement Figure S7). Specifically, SIX3 and SIX6, as key transcription
factors for mammalian eye development [39,40], were reduced in their expression level (Figure 6C).
Among others, SIX3, together with RAX, initiates transcription of genes required for lens placode
formation [39].

To further assess developmental pathways with relevance for the teratogenic outcome of RV
infection, we determined the mRNA expression of RAX and SIX3 (as important factors for eye
development) besides FGF17 (Fibroblast Growth Factor 17) and SOX17 (as contributing factors
for endodermal differentiation and cardiovascular development) by RT-qPCR in ectodermal and
endodermal cells, respectively (Figure 6D). Here, the vaccine strain HPV77 was used in addition
to Wb-12 strain. Attenuated vaccine strains such as HPV77 are not teratogenic as revealed after
immunization of unknowingly pregnant women [4]. Thus, any alteration at the molecular level that
is present during wild-type Wb-12, but not HPV77 infection, emphasizes its possible contribution to
congenital rubella. In comparison to the mock control, a similar reduction in the expression of RAX
and SIX3 was detected in ectodermal cells after infection with both RV strains. However, a different
picture emerged for FGF17 and SOX17. Figure 6D [i] highlights an increase in the expression of FGF17
and SOX17, which was significant for FGF17 compared to the mock control, but only for endodermal
cells derived from Wb-12-infected iPSCs, not for endodermal cells derived from HPV77-infected iPSCs.
Moreover, the increase in the expression of the definitive endoderm markers CER and GATA6 after
infection with Wb-12 as shown in Figure 2E was not detected after infection with HPV77 (Figure 6D
[ii]). However, both RV strains induced a significant increase of the IFN-signaling component IRF9
(Figure 6D [ii]). The endoderm plays an essential role in the crosstalk between the lineages and
contributes to the epithelial lining of many organs, including the vascular network. Accordingly, the
gene set vasculogenesis, but not angiogenesis, was affected by RV infection (Supplement Figure S7).
This emphasizes our notion on the correlation between the impact of RV infection on endodermal cells
and congenital rubella.

In summary, specific signatures including the TGF-β signaling pathway were affected by RV
infection, but in a lineage-specific manner. In ectodermal cells, RV infection significantly reduced
expression of SIX3 as key transcription factors for eye field development. Only for the clinical isolate
Wb-12, but not for the vaccine strain HPV77, was an impact on the growth factor FGF17 and the
endodermal transcription factor SOX17 noted.

Figure 7 summarizes the findings of this study in correlation to the main CRS symptoms.
The noncytolytic course of infection of RV during directed differentiation is in agreement with its
persistence in multiple organs and tissues during congenital rubella. We have not identified any
indication at the molecular level that could contribute to the defects in ear development during
congenital rubella. However, sensorineural deafness is often a late-onset symptom and could be
associated with pathological alterations in the brain of the infected infants [3].
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Figure 7. Graphical summary of the identified molecular alterations induced by RV during directed
differentiation of iPSCs into the three embryonic germ layer cells. The data was set in a possible relation
to the prevailing symptoms of congenital rubella embryopathy. Especially endodermal cells were
characterized by profound alterations in their gene expression landscape, including the expression
of markers for definitive endoderm and epigenetic factors. This could impair the crosstalk between
endodermal and mesodermal cells during differentiation.

4. Discussion

Knowledge on developmental signaling networks is an essential prerequisite to understand
congenital abnormalities, either caused by pathogenic, hereditary or environmental risk factors.
Models for developmental toxicity testing range from iPSCs to iPSC-derived EBs and three-dimensional
organoids. They have different properties regarding high-throughput screening capacity and relevance
for in vivo developmental processes [41]. Their proper assessment requires compounds or pathogens
with well-known symptoms arising from embryotoxic or teratogenic alterations during embryonal
development. Here, we used RV to correlate clinical observations for congenital rubella syndrome with
its impact on the differentiation capacity of iPSCs. Although iPSC-based cell culture models reflect only
transient stages during human embryogenesis, they allow us to recapitulate essential developmental
pathways that are otherwise inaccessible [42].

Among human pathogens, RV is rather exceptional in its ability to replicate noncytopathically in
iPSCs, which in general represent a rather restrictive environment to most viral infections [43]. The
protection of human development from a pathogenic insult involves several mechanisms, including
transcriptional silencing of viruses in pluripotent stem cells [44] and an intrinsic high expression level
of IFN-induced genes [14]. This includes interferon-induced transmembrane protein 1 (IFITM1) and
its capacity to restrict the potentially harmful reactivation of human endogenous retroviruses [43].
Otherwise, the antiviral innate immune response in iPSCs is rather refractive [15]. The constitutive
overexpression of an active IRF7 as a master regulator of the type I IFN system revealed the harmful
effects an activated type I IFN response would have on the expression of pluripotency and lineage
specific genes, especially of endodermal cells [45]. In contrast to the engineered type I IFN response in
iPSCs through overexpression of IRF7, no morphological changes were noted after infection of iPSCs
with RV [13]. However, in agreement with the study on the effect of type I IFNS on differentiation
capacity of iPSCs [45], the impact of RV on directed differentiation was most profound during
endodermal differentiation. The differences in the signaling cascades of type I and III IFNs [46] might
explain the milder effects noted after RV-associated type III IFN activation as compared to the severe
effects of an engineered type I IFN response [45]. Our data complements a recent study on the impact
of Influenza A virus (IAV) on the pluripotency and proteome of hiPSCs [47]. Whereas, in contrast to RV,
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IAV reduces the pluripotency of iPSCs, both virus infections induce ISG15 and IFN λ1 [47], highlighting
this observation as an innate immune mechanism that is already developed in iPSCs. Further studies
need to address whether the impact of RV infection on endodermal differentiation is correlated with
the activation of the type III IFN signaling pathway and how this affects the course of infection of
RV in iPSCs. In ectodermal cells, RV infection was associated with the downregulation of SIX3, an
essential transcription factor for early eye development [48]. Together with SIX6, SIX3 suppresses Wnt
signaling, which could contribute to the slight activation of this essential developmental signaling
pathway in ectodermal cells derived from RV-infected iPSCs [40]. Their functional importance during
retinal development and eye field specification was recently shown by the use of iPSC-derived retinal
organoids [39]. Our study complements a previous study on the gene expression profile of fetal
(HUVEC originating from umbilical cord veins) and adult (HSaVEC derived from the saphenous vein)
endothelial cells which revealed a specific enrichment of 18 downregulated genes within the GO terms
“sensory organ development”, “eye development”, and “ear development” [49].

Among the embryonic germ layers, especially differentiation to definite endoderm appeared to
be affected by RV infection. In addition to its role in formation of organs of the digestive tract, the
interaction of endodermal cells with precardiac mesoderm drives specification and differentiation
of cardiac myocytes and cells of endocardial endothelium [50]. This is supported by studies on the
contribution of signals from endodermal cells and the interactive crosstalk between the endoderm
and mesoderm to differentiation of ESCs to a cardiomyogenic lineage [9]. RV infection does not only
target the endoderm, but also signals that facilitate this interactive crosstalk. This includes Cerberus
as a bone morphogenetic protein (BMP) antagonist [51]. The secretion of Cerberus from endodermal
cells initiates differentiation of the neighboring tissue, namely the overlying cardiac mesoderm [51,52].
Furthermore, the analysis of endoderm-depleted frog and avian embryos revealed that the endoderm
contributes to vasculogenesis and vascular tube formation [53]. Thus, as summarized in Figure 7, the
molecular events identified in RV-infected endodermal cells could contribute to cardiovascular defects
during congenital rubella [2].

Besides the mere expression level of essential components of developmental pathways,
post-translational histone modifications are involved in the regulation of gene expression during
development. The balance between H3K4me as an active and H3K27 as an inactive state histone
modification directs the switch between active and inactive pathways during differentiation [54]. The
activity of the KDM6A (UTX) demethylase was especially upregulated in endodermal cells during RV
infection. KDM6A demethylase activity was reported to counteract DNA damage response and cell
death induction in differentiating ESCs [55], which could also apply to RV-infected endodermal cells.

RV infection was associated with an upregulation of definitive endoderm-enriched transcription
factors, including GATA4, EOMES, and SOX17 [56]. In a context- and dose-dependent
manner, the transcription factor EOMES directs cardiac development as well as endoderm
specification [57]. Whereas SOX17-null mice revealed a downregulation of several genes involved in
heart development [58], the ectopic overexpression of SOX17 during hematopoiesis impaired survival
of early hematopoietic precursors due to induction of apoptosis [59]. This indicates that normal
embryonal development, especially cardiac specification, requires fine-tuned expression of several
factors [60], which appears to be affected by RV infection.

The characterization of teratogens such as RV on iPSC-based models is an essential requirement to
emphasize their suitability for the assessment of embryotoxicants and to identify relevant parameters
to increase their predictive power. Congenital heart malformations are not only caused by pathogens
such as RV, they are the most common among human developmental defects identified for human
births. iPSC-based models enable valuable insights into human development and processes that might
disturb its normal progression, which will broaden our diagnostic and treatment options for congenital
defects. Further studies are needed to correlate the identified transcriptional changes with functional
consequences for pathways directing embryonal development.
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