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Abstract: With the advent of cancer immunotherapies, significant advances have been made in the
treatment of many tumor types including melanoma, lung cancer, squamous cell carcinoma of the head
and neck, renal cell carcinoma, bladder cancer, etc. However, similar success has not been observed
with the treatment of pancreatic cancer and all other immunogenic “cold” tumors. This prompts the
need for a better understanding of the complexity of the cold tumor microenvironment (TME) of
pancreatic cancer and what are truly the “defects” in the TME making the cancer unresponsive to
immune checkpoint inhibitors. Here we discuss four major immune defects that can be recognized in
pancreatic cancer, including lack of high-quality effector intratumoral T cells, heterogeneous dense
stroma as a barrier to effector immune cells infiltrating into the tumor, immunosuppressive tumor
microenvironment, and failure of the T cells to accomplish tumor elimination. We also discuss
potential strategies for pancreatic cancer treatment that work by correcting these immune defects.

Keywords: pancreatic ductal adenocarcinoma; immune defect; immune checkpoint; myeloid cells;
tumor microenvironment; stroma

1. Introduction

Despite recent breakthroughs in cancer therapy, pancreatic ductal adenocarcinoma (PDAC),
the primary cancer of the pancreas, continues to have a dismal outlook. In 2019 an estimated 56,770
new cases of pancreatic cancer were diagnosed in the USA (29,940 in males and 26,830 in females),
of which 45,750 people died of the disease (23,800 deaths in males and 21,950 deaths in females),
representing the third most common cause of cancer death [1]. The poor outcome in PDACs have
been attributed to late diagnosis, early metastatic dissemination, and ineffective systemic therapies [2].
While immunotherapy, particularly immune checkpoint inhibitors, has become a breakthrough
treatment modality for many different types of solid tumors, one wonders what accounts for the
resistance of PDAC to immunotherapy. Accumulated evidence has suggested that PDAC is impaired
with multiple “immune defects” including a lack of high-quality effector cells, barriers to effector cell
infiltration due to heterogeneous dense stroma, an immunosuppressive tumor microenvironment
(TME), and immune checkpoint signaling (Figure 1). Such “defects” are not immunodeficiencies that
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result in a lack of defense against infectious agents, but are the reasons for the failure to eliminate
tumor cells by immune mechanisms. Malignant diseases that are sensitive to immune checkpoint
inhibitors usually have only a single immune defect in the elimination step. Malignant diseases such
as PDACs that are resistant to immune checkpoint inhibitors often have multiple immune defects.
Thus, combination immunotherapies may not be successful unless they aim at correcting all these
immune defects. Current immunotherapy combination strategies target one or two immune defects,
but do not aim to correct all the immune defects (Table 1) [3].
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2. Lack of High-Quality Effector T Cells in PDAC Tumors

PDAC is known for its low immunogenicity, which is now assumed to be related to its low
mutation burden. As mutated proteins are the main source of neoantigens, low mutation burden,
as demonstrated in the vast majority of microsatellite stable PDACs, would result in a low neoantigen
burden and subsequently explains the lack of tumor-infiltrating effector T cells [4]. The number of
CD8+ cells, which are correlated with good clinical response to immunotherapy, is significantly lower
in the TME of “nonimmunogenic” cancers such as PDAC compared to “immunogenic” cancers such
as melanoma [5]. Our study [6] found that vaccine therapy was able to induce the infiltration of
CD8+ T cells in patients who received cancer vaccine treatment as a neo-adjuvant therapy. However,
the number of CD8+ T cells in PDAC following the vaccine therapy was no longer predictive of
longer survival. Instead, the number of granzyme B+ CD8+ cells was correlated with longer survival.
This suggested that the quality of T cells may be more important than the number of T cells for the
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antitumor immune response. Nevertheless, it was noted that granzyme B+ cells were not adequately
present in the vicinity of tumor cells [6]. The study by Balachnadran et al. [7] further demonstrated that
granzyme B+ T cells, representing a group of T cells with high quality, are associated with long-term
survivors, who comprise a very small subgroup among PDAC patients. This study also showed the
presence of neoantigens in PDAC of patients with long-term survival. Although the total neoantigen
burden is not correlated with survival, the presence of high-quality neoantigens that differ markedly
from self-peptides does correlate with survival, further highlighting the importance of tumor-specific
CD8 T cells in the long-term control of PDAC. Nevertheless, the majority of PDACs lack high-quality
T cells.

3. Heterogeneous Dense Stroma

The stroma of PDAC is heterogeneous and composed of various cellular and extracellular
components including fibroblasts, myofibroblasts, pancreatic stellate cells, immune cells, blood vessels,
the extracellular matrix, and soluble proteins such as cytokines and growth factors [8]. These cellular
components have the propensity to promote tumor progression and metastasis [9]. The dense stroma
of PDAC also results in a high hydrostatic pressure within the vessels of the tumor and limits the
trafficking of lymphocytes in mouse models of PDAC. It is intriguing to test whether targeting the
stroma may facilitate the recruitment of lymphocytes in human PDACs [10]. Multiple mechanisms
have been studied to target the dense stroma components such as hyaluronan. Hyaluronan (HA) is a
large linear polysaccharide and one of the major components of the extracellular matrix in many solid
tumors [11]. It has the physical property of binding to water avidly, thus creating an immobile gel-fluid
phase that can cause vascular collapse [11]. Accumulation of HA in PDAC is associated with increased
disease aggressiveness and decreased overall survival (OS) [12]. A number of preclinical studies in
mouse models of PDAC have demonstrated the effectiveness of pegvorhyaluronidase alfa (PEGPH20),
a pegylated recombinant human hyaluronidase, in improving vascular perfusion and reducing the
barrier so small molecule anticancer therapeutics can access cancer cells [11]. For example, the addition
of PEGPH20 to gemcitabine resulted in enhanced delivery of gemcitabine to the tumor and an 83%
increase in survival, as well as a decrease in metastatic burden in mouse PDAC models [13]. Both phase
Ib and phase II clinical trial trials of testing PEGPH20 with either gemcitabine or the combination
of gemcitabine and nab-paclitaxel have led to significantly improved progression-free survival (PFS)
in patients with HA-high metastatic PDAC [14,15]. However, another phase 2 study showed that
the FOLFIRINOX chemotherapy in combination with PEGPH20 was inferior to FOLFIRINOX alone
for metastatic PDAC patients [16]. The difference in the results of two PEGPH20-based clinical trials
may be attributed to the different schedules of PEGPH20 used in different clinical trials. Nevertheless,
the potential role of PEGPH20 in overcoming the barrier to intratumoral trafficking of immune cells is
still intriguing.

The hedgehog (Hh) signaling pathway was implicated as playing a role in regulating the dense
stroma of PDAC [17]. The Hh signaling cascade, along with its ligand sonic hedgehog (Shh) produced
by tumor cells, leads to the activation of the Gli family of receptors, which, in turn, releases the
repression on Smoothened1 (Smo) in stromal fibroblasts and leads to the proliferation of stroma
fibroblasts [18]. Inhibiting the Hh pathway by small molecule inhibitors of Smo resulted in a less
dense stroma, with a better penetration of chemotherapy into the stroma, leading to tumor shrinkage
in mouse models with PDAC [19]. However, clinical trials failed to demonstrate the benefit of
combining Hh inhibitors with chemotherapy in treating metastatic PDAC [20]. Subsequent studies
in mouse PDAC models further demonstrated that genetically targeting the Hh signaling would
lead to more rapid development of metastases and worsening survival of the mice [21,22]. These
results suggest that the stroma functions by restricting cancer initiation and metastasis formation
in the pancreas and the distant organs, respectively. However, it remains a puzzle how and when
the stroma acquires the function of cancer promotion. It is possible that the function of the stroma
is reprogrammed from a cancer-restrictive one to a cancer-permissive one during the course of the
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cancer development. Our group’s published study also suggested that there is a spatial heterogeneity
of the stroma function. We observed that there is a heterogeneous distribution of Hh signaling
intratumorally and intertumorally in PDACs [23]. Hh inhibition would lead to compensation by the
hepatic growth factor (HGF) signaling that distributes in a stroma region different from where the
Hh signaling distributes. As anticipated, the combination therapies that inhibit both Hh and HGF
signaling demonstrated significantly stronger anti-PDAC activity [24].

Cancer-associated fibroblasts (CAFs) are the cellular component of the PDAC stroma. They are
known to selectively secrete a serine protease, fibroblast activation protein (FAP) [25]. Several studies
have implicated FAP in tumor growth and progression [26,27]. Lee et al. [28] tested the hypothesis that
FAP enzymatic activity modifies the extracellular matrix and thus promotes the formation of permissive
TME and tumor invasion in PDAC. The study reported that FAP-associated tumor invasiveness is
mediated by β1-integrin and focal adhesion kinase (FAK), and that blocking FAP activity can lead to
reduced invasiveness of PDAC. Feig et al. [29] linked the high expression of FAP by CAF in the tumor
stroma to the resistance to anti-PD-1/PD-L1 immune checkpoint inhibitor therapy. FAK inhibition has
also been evaluated as a synergistic modality along with immunotherapy and traditional chemotherapy.
Transgenic PDAC mice treated with FAK inhibition in combination with gemcitabine or anti-PD1
antibody had a 2.5-fold increase in median survival time compared to gemcitabine or anti-PD1 antibody
alone [30]. Chemokine receptor 4 (CXCR4) has been implicated in mediating local immunosuppressive
activity of these FAP+ CAFs that express CXCL12, the ligand of CXCR4 [10,31]. Thus, inhibition of
CXCR4 in combination with anti-PD-1/PD-L1 therapy could possibly improve the immune response in
PDAC. Accumulated evidence has demonstrated that CAFs are educated by neoplastic cells at the
epigenetic/transcriptional level and phenotypically reprogrammed. This phenotypic reprogramming
of CAFs may further protect tumors from immune surveillance [32–34].

4. Immunosuppressive Tumor Microenvironment

Another mechanism underlying the poor responsiveness of PDAC to immune checkpoint inhibitor
is apparently the dominance of immunosuppressive cells in the TME. Clark et al. [35] demonstrated in a
genetically engineered mouse model of PDAC that immunosuppressive cells such as tumor-associated
macrophages (TAMs) tumor-associated fibroblasts, myeloid-derived suppressive cells (MDSCs), and T
regulatory cells (Tregs) form a major component of the TME even at early stages of premalignant lesions,
namely PanINs, and are increased during the course of tumor progression from premalignant lesions to
invasive and metastatic PDAC. Although the M1 type of TAMs is anticipated to be tumor-suppressive,
due to tumor-derived factors such as hypoxia in the TME, TAMs in the PDACs are skewed toward
M2 macrophages, which are procancerous [36]. Studies of the TME in human PDACs revealed that
effector T cells in a subset of advanced PDACs showed no evidence of activation and were associated
with the presence of intratumoral MDSCs [37,38]. Targeted depletion of a single myeloid subset, the
granulocytic MDSC, showed an improved T cell response [39]. Treg cells are present at higher numbers
both in the peripheral blood and in the TME of patients with invasive PDAC compared to healthy
controls [40]. Owing to their immunosuppressive nature, Tregs likely contribute to the poor immune
response of PDAC. Thus, MDSC, TAM, and Treg are important targets for cancer immunotherapy
for PDACs.

Saung et al. [41] examined the effect of the therapeutic blockade of CSF-1R, the receptor of
CSF-1, which plays an important role in myeloid cell differentiation. The study demonstrated that
anti-CSF-1R blockade antibody, in combination with anti-PD-1 antibody, can enhance the expression
of costimulatory molecules including OX40 and CD137 on otherwise exhausted PD-1+ T cells,
suggesting that targeting myeloid cells through the anti-CSF-1R antibody can enhance the activation
and proliferation of reinvigorated T cells. Beatty et al. [42] examined the CD40-mediated tumor
regression in a genetically engineered KPC mouse model of PDAC. The CD40 agonist antibody was
shown to activate macrophages, which lead to tumor regression and effector T cell infiltration. CSF-1R,
CD40, and CXCL12/CXCR4 have become therapeutic targets on myeloid cells and their targeted
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therapies and have been tested in clinical trials. In a recent clinical trial of gemcitabine/abraxane plus
anti-CD40 agonist antibody, with or without anti-PD-1 blockade antibody, it achieved an objective
response rate of more than 50% in patients with untreated, metastatic PDACs (2019 AACR Abstract
CT004; NCT02482168). Mechanistically, the anti-CD40 agonist antibody may facilitate T cell activation;
the combination of chemotherapy and anti-CD40 agonist antibody may activate the macrophages to
destruct the stroma barrier for effector T cell infiltration and serve as a vaccine therapy, as described
above, to convert cold TMEs into hot ones [42].

In addition to those immune cells that harbor the immunosuppressive function, as discussed
above, stromal fibroblasts are also immunosuppressive cells. The depletion of FAP-expressing cells,
predominantly stromal fibroblasts, has been shown to allow immunological control of growth in
mouse models of PDAC [31]. In addition, PDAC cells produce immunosuppressive cytokines such as
TGF-β [43] and express surface molecules or circulating molecules such as FasL, PD-L1, and BTLA that
mediate immune suppression [44–46].

5. Immune Checkpoint

An immune defect in tumor elimination exists universally in all types of solid tumors, including
PDACs. Attempts to correct the above immune “defects” to improve antitumor immunity would
induce immune checkpoint signaling. PD-L1, the ligand of PD-1, is upregulated in tumor cells in
response to pro-inflammatory cytokines such as IFNγ [47,48]. PDACs that have been treated with
vaccine therapy, chemotherapy, and/or radiation therapy showed an increased expression of PD-L1 on
tumor epithelia [49]. However, enhanced PD-L1 expression does not necessarily sensitize PDAC to
anti-PD-1/PD-L1 antibody therapies. Vaccine therapy induced the expression of PD-L1 on tumor cells
and myeloid cells in PDAC and also induced the infiltration of PD-1+ effector T cells in the TME of
PDAC [6]. By contrast, chemotherapy and radiation therapy do not induce the infiltration of effector
T cells into PDACs in association with the induction of the expression of PD-L1 (unpublished results).
Therefore, a T cell-generating agent may be necessary for the combination of chemotherapy or radiation
therapy and immune checkpoint inhibitor to demonstrate the effectiveness in PDAC patients.

Vaccine therapy also upregulates the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme
that disrupts the tryptophan metabolism in T cells and thus impairs T cell functions. Higher IDO
expression in PDAC correlates with poorer survival in patients. Similar to PD-L1 expression, vaccine
therapy induced IDO expression in both tumor cells and myeloid cells in PDACs, also as a result of
the effector T cell infiltration. On the other hand, although chemotherapy and radiation therapy also
induce the expression of IDO, these therapeutic modalities do not lead to increased effector T cell
infiltration in PDAC [23]. Inhibition of IDO can be a potentially effective strategy to enhance the
antitumor immune response in PDAC patients [23], if combined with an agent that also induces effector
T cell infiltration. However, after PDAC is converted from a noninflamed tumor to an inflamed one
like melanoma as the result of an agent that induces effector T cell infiltration, further combining the
anti-PD-1/PD-L1 antibody treatment with IDO inhibitor with the anti-PD-1/PD-L1 antibody treatment
would not result in additional antitumor activity in the preclinical model of PDAC. It would be
intriguing to combine IDO inhibitors with immunotherapeutics such as vaccine therapy (NCT03006302)
and myeloid cell-targeting agents that are aimed at correcting other immune defects.

6. Strategies for Developing Immunotherapy for Pancreatic Cancer

It is important to recognize that patients with pancreatic cancer may demonstrate a combination
of more than one of the immune defects discussed above. More challenging is that immune defects
are subject to change through the treatment course. Often, a new immune defect is unmasked after
treating the immune defect that was initially recognized. Therefore, a combinational immunotherapy
strategy that can correct all four immune defects is needed for essentially all pancreatic cancer patients
(Figure 2). To correct for the lack of high-quality effector T cells, a “primer” treatment would need to
be developed. Such a treatment could be a cancer vaccine or a T cell therapy. Conventional therapies
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such as chemotherapy and radiation may not be an appropriate primer as they by themselves do
not generate T cells in the TME. Chemotherapy and/or radiation therapy may need to be combined
with cytokines, TLR ligands, NLRP ligands, and STING agonists [50,51] to achieve the effect of in
situ vaccination. By contrast, a cancer vaccine generates T cells peripherally, which may not infiltrate
efficiently into the tumors. Direct T cell therapy may encounter the same challenge. Moreover, T cells
generated by a primer would be quickly exhausted if a checkpoint inhibitor treatment such as anti-PD-1
antibodies is not combined. Therefore, treatment with immune checkpoint inhibitors is still essential
for the immune-based tumor elimination step. Immune checkpoint inhibitors permit the effector T cells
to eliminate tumor cells and thus function as an “eliminator.” However, even if the treatments with
primer and eliminator are given, the antitumor function of T cells is still suppressed by nonpermissive
and immunosuppressive TME. Thus, “expanders” would need to be developed to make the TME more
permissive for T cell infiltration, to modulate the immunosuppressive components in the TME, and to
maintain a highly proliferative, active, memory, and cytotoxic status of effector cells. To these ends,
more effective and specific agents that modulate the immunosuppressive components are in demand.
Alternatively, T cell activation agents would be needed to proactively expand antitumor effector T cells.
Agents that target the stroma components not only can remove the barrier to T cell infiltration, but may
also reverse the immunosuppressive functions of the stroma [52]. A stroma targeting agent may be
an indispensable component of an expander treatment for tumors with dense stroma. The above
combination therapy in the clinical trial with chemotherapy, anti-CD40 agonist antibody, and anti-PD-1
blockade antibody is an example of targeting multiple immune defects in PDACs; such a combination
therapy strategy may be potentially superior to those listed in Table 1.

Table 1. Selected examples of completed and ongoing combination immunotherapy clinical trials/studies.

Target Resistance
Mechanism Combination Agents Tumor Type Study/Results

Priming tumor
microenvironment

Vaccine and
Checkpoint inhibitor

Ipiliimumab+/− GVAX Metastatic
PDAC

Objective responses were observed in
20% in combination arm, none of the

patients responded to single agent
anti-CTLA4 therapy.

NCT00836407

Cyclophosamide/
GVAX+/−

Nivolumab+/−
Urelumab

Resectable
PDAC

Ongoing
NCT02451982

Checkpoint Inhibitor
(CTLA-4, PD-1) +

Radiation

SBRT, Tremelimumab,
Durvalumab

Metastatic
PDAC

Ongoing
NCT02311361

Radiation Therapy +
Checkpoint inhibitor +

Vaccine

GVAX
SBRT

Cyclophosamide,
pembrolizumab

Locally
Advanced

PDAC

Ongoing
NCT02648282

Modulating Tumor
Microenvironment

CSF-1R Inhibitor
Checkpoint Inhibitor

(PD-1)

Nivolumab
Cabiralizumab
Chemotherapy

Metastatic
PDAC

Ongoing
NCT03336216

FAK inhibitor +
Chemotherapy +

checkpoint Inhibitor

Neoadjuvant and
Adjuvant

Chemotherapy
Pembrolizumab+/−

Defactinib (FAK
inhibitor)

Resectable
PDAC

Ongoing
NCT03727880

CXCR2+
Checkpoint Inhibitor+

Chemotherapy

AZD5069
Duvalumab

Chemotherapy

Metastatic
PDAC

Completed
NCT02583477

Recombinant
hyaluronidase +

Checkpoint inhibitor
(Anti-PD-L1)+
Chemotherapy

PEGPH20
Atezolizumab
Chemotherapy

Metastatic
PDAC NCT03267940



J. Clin. Med. 2019, 8, 1472 7 of 10
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 7 of 10 

 

 
Figure 2. Strategies for developing combination immunotherapy to correct the immune “defects” in 
pancreatic cancer. 

It is important to note that each pancreatic cancer patient is different and hence patient 
characteristics such as genetic variability, age, and indications for treatment should be taken into 
consideration when choosing the proper combinational immunotherapy for each individual patient. 
Tumor genetics and the patients’ genetic variability may hold the key to choosing the right 
immunotherapy combination for a patient at the right time [52]. 

Author Contributions: L.Z. developed the concept. Both authors collected and analyzed the data (literature 
review) and wrote the manuscript. 

Funding: NIH grant R01 CA169702 (L.Z.), NIH grant R01 CA197296 (L.Z.), The Viragh Foundation and the Skip 
Viragh Pancreatic Cancer Center at Johns Hopkins (L.Z.), National Cancer Institute Specialized Programs of 
Research Excellence in Gastrointestinal Cancers grant P50 CA062924 (L.Z.), Sidney Kimmel Comprehensive 
Cancer Center grant P30 CA006973 (L.Z.). 

Conflicts of Interest: L.Z. received grant support from Bristol-Meyer Squibb, Merck, iTeos, Amgen, NovaRock, 
Inxmed, and Halozyme, and received a royalty for licensing GVAX to Aduro Biotech. L.Z. is a paid 
consultant/Advisory Board Member at Biosion, Alphamab, NovaRock, Akrevia, Sound Biologics, Fusun 
Biopharmaceutical, Foundation Medicine, Datarevive, and Mingruzhiyao. L.Z. holds shares at Alphamab and 
Mingruzhiyao. We have no relevant conflict of interest to report. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 
publish the results. 

References 

1. American Cancer Society. Cancer Facts & Figures 2019; American Cancer Society: New York, NY, USA, 
2019. 

2. Wolfgang, C.L.; Herman, J.M.; Laheru, D.A.; Klein, A.P.; Erdek, M.A.; Fishman, E.K.; Hruban, R.H. 
Recent progress in pancreatic cancer. CA. Cancer J. Clin. 2013, 63, 318–348. 

3. Le, D.T.; Lutz, E.; Uram, J.N.; Sugar, E.A.; Onners, B.; Solt, S.; Zheng, L.; Diaz, L.A.J.; Donehower, R.C.; 
Jaffee, E.M.; et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells 
transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 2013, 36, 382–389. 

4. Yarchoan, M.; Johnson, B.A., 3rd; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment 

Figure 2. Strategies for developing combination immunotherapy to correct the immune “defects” in
pancreatic cancer.

It is important to note that each pancreatic cancer patient is different and hence patient characteristics
such as genetic variability, age, and indications for treatment should be taken into consideration when
choosing the proper combinational immunotherapy for each individual patient. Tumor genetics and
the patients’ genetic variability may hold the key to choosing the right immunotherapy combination
for a patient at the right time [52].

Author Contributions: L.Z. developed the concept. Both authors collected and analyzed the data (literature
review) and wrote the manuscript.

Funding: NIH grant R01 CA169702 (L.Z.), NIH grant R01 CA197296 (L.Z.), The Viragh Foundation and the
Skip Viragh Pancreatic Cancer Center at Johns Hopkins (L.Z.), National Cancer Institute Specialized Programs
of Research Excellence in Gastrointestinal Cancers grant P50 CA062924 (L.Z.), Sidney Kimmel Comprehensive
Cancer Center grant P30 CA006973 (L.Z.).

Conflicts of Interest: L.Z. received grant support from Bristol-Meyer Squibb, Merck, iTeos, Amgen, NovaRock,
Inxmed, and Halozyme, and received a royalty for licensing GVAX to Aduro Biotech. L.Z. is a paid consultant/
Advisory Board Member at Biosion, Alphamab, NovaRock, Akrevia, Sound Biologics, Fusun Biopharmaceutical,
Foundation Medicine, Datarevive, and Mingruzhiyao. L.Z. holds shares at Alphamab and Mingruzhiyao. We have
no relevant conflict of interest to report. The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. American Cancer Society. Cancer Facts & Figures 2019; American Cancer Society: New York, NY, USA, 2019.
2. Wolfgang, C.L.; Herman, J.M.; Laheru, D.A.; Klein, A.P.; Erdek, M.A.; Fishman, E.K.; Hruban, R.H. Recent

progress in pancreatic cancer. CA Cancer J. Clin. 2013, 63, 318–348. [CrossRef]
3. Le, D.T.; Lutz, E.; Uram, J.N.; Sugar, E.A.; Onners, B.; Solt, S.; Zheng, L.; Diaz, L.A.J.; Donehower, R.C.;

Jaffee, E.M.; et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected
with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 2013, 36, 382–389. [CrossRef]

4. Yarchoan, M.; Johnson, B.A., 3rd; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment
antitumour immunity. Nat. Rev. Cancer 2017, 17, 209–222. [CrossRef]

http://dx.doi.org/10.3322/caac.21190
http://dx.doi.org/10.1097/CJI.0b013e31829fb7a2
http://dx.doi.org/10.1038/nrc.2016.154


J. Clin. Med. 2019, 8, 1472 8 of 10

5. Blando, J.; Sharma, A.; Higa, M.G.; Zhao, H.; Vence, L.; Yadav, S.S.; Kim, J.; Sepulveda, A.M.; Sharp, M.;
Maitra, A.; et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as
a potential target in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 1692–1697. [CrossRef]

6. Lutz, E.R.; Wu, A.A.; Bigelow, E.; Sharma, R.; Mo, G.; Soares, K.; Solt, S.; Dorman, A.; Wamwea, A.;
Yager, A.; et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of
immune regulation. Cancer Immunol. Res. 2014, 2, 616–631. [CrossRef]

7. Balachandran, V.P.; Luksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.;
Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of
pancreatic cancer. Nature 2017, 551, 512–516. [CrossRef]

8. Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D.S.; Cook, N.; Tuveson, D.A. The pancreas cancer microenvironment.
Clin. Cancer Res. 2012, 18, 4266–4276. [CrossRef]

9. Farrow, B.; Albo, D.; Berger, D.H. The role of the tumor microenvironment in the progression of pancreatic
cancer. J. Surg. Res. 2008, 149, 319–328. [CrossRef]

10. Fearon, D.T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from
immune surveillance. Cancer Immunol. Res. 2014, 2, 187–193. [CrossRef]

11. Jacobetz, M.A.; Chan, D.S.; Neesse, A.; Bapiro, T.E.; Cook, N.; Frese, K.K.; Feig, C.; Nakagawa, T.;
Caldwell, M.E.; Zecchini, H.I.; et al. Hyaluronan impairs vascular function and drug delivery in a mouse
model of pancreatic cancer. Gut 2013, 62, 112–120. [CrossRef]

12. DuFort, C.C.; DelGiorno, K.E.; Hingorani, S.R. Mounting Pressure in the Microenvironment: Fluids, Solids,
and Cells in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2016, 150, 1545–1557. [CrossRef] [PubMed]

13. Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of
the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21,
418–429. [CrossRef] [PubMed]

14. Hingorani, S.R.; Harris, W.P.; Beck, J.T.; Berdov, B.A.; Wagner, S.A.; Pshevlotsky, E.M.; Tjulandin, S.A.;
Gladkov, O.A.; Holcombe, R.F.; Korn, R.; et al. Phase Ib Study of PEGylated Recombinant Human
Hyaluronidase and Gemcitabine in Patients with Advanced Pancreatic Cancer. Clin. Cancer Res. 2016, 22,
2848–2854. [CrossRef]

15. Hingorani, S.R.; Zheng, L.; Bullock, A.J.; Seery, T.E.; Harris, W.P.; Sigal, D.S.; Braiteh, F.; Ritch, P.S.;
Zalupski, M.M.; Bahary, N.; et al. HALO 202: Randomized Phase II Study of PEGPH20 Plus
Nab-Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic
Pancreatic Ductal Adenocarcinoma. J. Clin. Oncol. 2018, 36, 359–366. [CrossRef] [PubMed]

16. Tian, H.; Callahan, C.A.; DuPree, K.J.; Darbonne, W.C.; Ahn, C.P.; Scales, S.J.; de Sauvage, F.J. Hedgehog
signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl. Acad.
Sci. USA 2009, 106, 4254–4259. [CrossRef] [PubMed]

17. Li, X.; Ma, Q.; Duan, W.; Liu, H.; Xu, H.; Wu, E. Paracrine sonic hedgehog signaling derived from tumor
epithelial cells: A key regulator in the pancreatic tumor microenvironment. Crit. Rev. Eukaryot. Gene Expr.
2012, 22, 97–108. [CrossRef] [PubMed]

18. Bailey, J.M.; Swanson, B.J.; Hamada, T.; Eggers, J.P.; Singh, P.K.; Caffery, T.; Ouellette, M.M.;
Hollingsworth, M.A. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res.
2008, 14, 5995–6004. [CrossRef] [PubMed]

19. Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.;
Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; et al. Inhibition of Hedgehog signaling enhances delivery of
chemotherapy in a mouse model of pancreatic cancer. Science 2009, 324, 1457–1461. [CrossRef]

20. Catenacci, D.V.T.; Junttila, M.R.; Karrison, T.; Bahary, N.; Horiba, M.N.; Nattam, S.R.; Marsh, R.; Wallace, J.;
Kozloff, M.; Rajdev, L.; et al. Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib,
a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer. J. Clin. Oncol. 2015, 33,
4284–4292. [CrossRef]

21. Ozdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C.-C.; Simpson, T.R.; Laklai, H.;
Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; et al. Depletion of carcinoma-associated fibroblasts and fibrosis
induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014, 25,
719–734. [CrossRef]

http://dx.doi.org/10.1073/pnas.1811067116
http://dx.doi.org/10.1158/2326-6066.CIR-14-0027
http://dx.doi.org/10.1038/nature24462
http://dx.doi.org/10.1158/1078-0432.CCR-11-3114
http://dx.doi.org/10.1016/j.jss.2007.12.757
http://dx.doi.org/10.1158/2326-6066.CIR-14-0002
http://dx.doi.org/10.1136/gutjnl-2012-302529
http://dx.doi.org/10.1053/j.gastro.2016.03.040
http://www.ncbi.nlm.nih.gov/pubmed/27072672
http://dx.doi.org/10.1016/j.ccr.2012.01.007
http://www.ncbi.nlm.nih.gov/pubmed/22439937
http://dx.doi.org/10.1158/1078-0432.CCR-15-2010
http://dx.doi.org/10.1200/JCO.2017.74.9564
http://www.ncbi.nlm.nih.gov/pubmed/29232172
http://dx.doi.org/10.1073/pnas.0813203106
http://www.ncbi.nlm.nih.gov/pubmed/19246386
http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v22.i2.20
http://www.ncbi.nlm.nih.gov/pubmed/22856428
http://dx.doi.org/10.1158/1078-0432.CCR-08-0291
http://www.ncbi.nlm.nih.gov/pubmed/18829478
http://dx.doi.org/10.1126/science.1171362
http://dx.doi.org/10.1200/JCO.2015.62.8719
http://dx.doi.org/10.1016/j.ccr.2014.04.005


J. Clin. Med. 2019, 8, 1472 9 of 10

22. Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.;
Becerra, C.P.; Tattersall, I.W.; et al. Stromal elements act to restrain, rather than support, pancreatic ductal
adenocarcinoma. Cancer Cell 2014, 25, 735–747. [CrossRef] [PubMed]

23. Blair, A.B.; Kleponis, J.; Thomas, D.L., 2nd; Muth, S.T.; Murphy, A.G.; Kim, V.; Zheng, L. IDO1 inhibition
potentiates vaccine-induced immunity against pancreatic adenocarcinoma. J. Clin. Invest. 2019, 129,
1742–1755. [CrossRef] [PubMed]

24. Rucki, A.A.; Xiao, Q.; Muth, S.; Chen, J.; Che, X.; Kleponis, J.; Sharma, R.; Anders, R.A.; Jaffee, E.M.; Zheng, L.
Dual Inhibition of Hedgehog and c-Met Pathways for Pancreatic Cancer Treatment. Mol. Cancer Ther. 2017,
16, 2399–2409. [CrossRef] [PubMed]

25. Park, J.E.; Lenter, M.C.; Zimmermann, R.N.; Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Fibroblast activation
protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem.
1999, 274, 36505–36512. [CrossRef]

26. Cheng, J.D.; Valianou, M.; Canutescu, A.A.; Jaffe, E.K.; Lee, H.-O.; Wang, H.; Lai, J.H.; Bachovchin, W.W.;
Weiner, L.M. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.
Mol. Cancer Ther. 2005, 4, 351–360. [PubMed]

27. Cheng, J.D.; Dunbrack, R.L.J.; Valianou, M.; Rogatko, A.; Alpaugh, R.K.; Weiner, L.M. Promotion of tumor
growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 2002, 62,
4767–4772. [PubMed]

28. Lee, H.-O.; Mullins, S.R.; Franco-Barraza, J.; Valianou, M.; Cukierman, E.; Cheng, J.D. FAP-overexpressing
fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic
cancer cells. BMC Cancer 2011, 11, 245. [CrossRef]

29. Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.;
Zhao, Q.; Caballero, O.L.; et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts
synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110,
20212–20217. [CrossRef]

30. Jiang, H.; Hegde, S.; Knolhoff, B.L.; Zhu, Y.; Herndon, J.M.; Meyer, M.A.; Nywening, T.M.; Hawkins, W.G.;
Shapiro, I.M.; Weaver, D.T.; et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to
checkpoint immunotherapy. Nat. Med. 2016, 22, 851–860. [CrossRef]

31. Kraman, M.; Bambrough, P.J.; Arnold, J.N.; Roberts, E.W.; Magiera, L.; Jones, J.O.; Gopinathan, A.;
Tuveson, D.A.; Fearon, D.T. Suppression of antitumor immunity by stromal cells expressing fibroblast
activation protein-alpha. Science 2010, 330, 827–830. [CrossRef]

32. Sato, N.; Maehara, N.; Goggins, M. Gene expression profiling of tumor-stromal interactions between
pancreatic cancer cells and stromal fibroblasts. Cancer Res. 2004, 64, 6950–6956. [CrossRef]

33. Xiao, Q.; Zhou, D.; Rucki, A.A.; Williams, J.; Zhou, J.; Mo, G.; Murphy, A.; Fujiwara, K.; Kleponis, J.;
Salman, B.; et al. Cancer-Associated Fibroblasts in Pancreatic Cancer Are Reprogrammed by Tumor-Induced
Alterations in Genomic DNA Methylation. Cancer Res. 2016, 76, 5395–5404. [CrossRef]

34. Ohlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.;
Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic
cancer. J. Exp. Med. 2017, 214, 579–596.

35. Clark, C.E.; Hingorani, S.R.; Mick, R.; Combs, C.; Tuveson, D.A.; Vonderheide, R.H. Dynamics of the immune
reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007, 67, 9518–9527. [CrossRef]

36. Wang, X.; Luo, G.; Zhang, K.; Cao, J.; Huang, C.; Jiang, T.; Liu, B.; Su, L.; Qiu, Z. Hypoxic Tumor-Derived
Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic
Cancer Metastasis. Cancer Res. 2018, 78, 4586–4598. [CrossRef]

37. Goedegebuure, P.; Mitchem, J.B.; Porembka, M.R.; Tan, M.C.B.; Belt, B.A.; Wang-Gillam, A.; Gillanders, W.E.;
Hawkins, W.G.; Linehan, D.C. Myeloid-derived suppressor cells: General characteristics and relevance to
clinical management of pancreatic cancer. Curr. Cancer Drug Targets 2011, 11, 734–751. [CrossRef]

38. Zhao, F.; Obermann, S.; von Wasielewski, R.; Haile, L.; Manns, M.P.; Korangy, F.; Greten, T.F. Increase in
frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology
2009, 128, 141–149. [CrossRef]

39. Stromnes, I.M.; Brockenbrough, J.S.; Izeradjene, K.; Carlson, M.A.; Cuevas, C.; Simmons, R.M.; Greenberg, P.D.;
Hingorani, S.R. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive
immunity. Gut 2014, 63, 1769–1781. [CrossRef]

http://dx.doi.org/10.1016/j.ccr.2014.04.021
http://www.ncbi.nlm.nih.gov/pubmed/24856585
http://dx.doi.org/10.1172/JCI124077
http://www.ncbi.nlm.nih.gov/pubmed/30747725
http://dx.doi.org/10.1158/1535-7163.MCT-16-0452
http://www.ncbi.nlm.nih.gov/pubmed/28864680
http://dx.doi.org/10.1074/jbc.274.51.36505
http://www.ncbi.nlm.nih.gov/pubmed/15767544
http://www.ncbi.nlm.nih.gov/pubmed/12183436
http://dx.doi.org/10.1186/1471-2407-11-245
http://dx.doi.org/10.1073/pnas.1320318110
http://dx.doi.org/10.1038/nm.4123
http://dx.doi.org/10.1126/science.1195300
http://dx.doi.org/10.1158/0008-5472.CAN-04-0677
http://dx.doi.org/10.1158/0008-5472.CAN-15-3264
http://dx.doi.org/10.1158/0008-5472.CAN-07-0175
http://dx.doi.org/10.1158/0008-5472.CAN-17-3841
http://dx.doi.org/10.2174/156800911796191024
http://dx.doi.org/10.1111/j.1365-2567.2009.03105.x
http://dx.doi.org/10.1136/gutjnl-2013-306271


J. Clin. Med. 2019, 8, 1472 10 of 10

40. Liyanage, U.K.; Moore, T.T.; Joo, H.-G.; Tanaka, Y.; Herrmann, V.; Doherty, G.; Drebin, J.A.; Strasberg, S.M.;
Eberlein, T.J.; Goedegebuure, P.S.; et al. Prevalence of regulatory T cells is increased in peripheral blood
and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 2002, 169,
2756–2761. [CrossRef]

41. Saung, M.T.; Muth, S.; Ding, D.; Thomas, D.L., 2nd; Blair, A.B.; Tsujikawa, T.; Coussens, L.; Jaffee, E.M.;
Zheng, L. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in
the murine model of pancreatic cancer. J. Immunother. Cancer 2018, 6, 118. [CrossRef]

42. Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.;
Li, D.; Sharp, L.L.; et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in
mice and humans. Science 2011, 331, 1612–1616. [CrossRef] [PubMed]

43. Shen, W.; Tao, G.-Q.; Zhang, Y.; Cai, B.; Sun, J.; Tian, Z.-Q. TGF-beta in pancreatic cancer initiation and
progression: Two sides of the same coin. Cell Biosci. 2017, 7, 39. [CrossRef]

44. Nomi, T.; Sho, M.; Akahori, T.; Hamada, K.; Kubo, A.; Kanehiro, H.; Nakamura, S.; Enomoto, K.;
Yagita, H.; Azuma, M.; et al. Clinical significance and therapeutic potential of the programmed death-1
ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 2007, 13, 2151–2157.
[CrossRef] [PubMed]

45. Von Bernstorff, W.; Spanjaard, R.A.; Chan, A.K.; Lockhart, D.C.; Sadanaga, N.; Wood, I.; Peiper, M.;
Goedegebuure, P.S.; Eberlein, T.J. Pancreatic cancer cells can evade immune surveillance via nonfunctional
Fas (APO-1/CD95) receptors and aberrant expression of functional Fas ligand. Surgery 1999, 125, 73–84.
[CrossRef]

46. Bian, B.; Fanale, D.; Dusetti, N.; Roque, J.; Pastor, S.; Chretien, A.-S.; Incorvaia, L.; Russo, A.; Olive, D.;
Iovanna, J. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients
with pancreatic adenocarcinoma. Oncoimmunology 2019, 8, e1561120. [CrossRef]

47. Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.;
Sun, L.; Hugo, W.; Wang, X.; et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2
Expression. Cell Rep. 2017, 19, 1189–1201. [CrossRef] [PubMed]

48. Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.;
Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment
with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [CrossRef]

49. Zheng, L. PD-L1 Expression in Pancreatic Cancer. J. Natl. Cancer Inst. 2017, 109. [CrossRef]
50. Zambirinis, C.P.; Levie, E.; Nguy, S.; Avanzi, A.; Barilla, R.; Xu, Y.; Seifert, L.; Daley, D.; Greco, S.H.;

Deutsch, M.; et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 2015, 212,
2077–2094. [CrossRef]

51. Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Pandian, G.S.D.B.; Savadkar, S.; Lee, K.B.; Torres-Hernandez, A.;
Aykut, B.; Diskin, B.; et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in
pancreatic carcinoma. J. Exp. Med. 2017, 214, 1711–1724. [CrossRef]

52. Blair, A.B.; Kim, V.; Muth, S.; Saung, M.T.; Lokker, N.; Blouw, B.; Armstrong, T.D.; Jaffee, E.M.; Tsujikawa, T.;
Coussens, L.M.; et al. Dissecting the stromal signaling and regulation of myeloid cells and memory effector
T cells in pancreatic cancer. Clin. Cancer Res. 2019, 25, 5351–5363. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4049/jimmunol.169.5.2756
http://dx.doi.org/10.1186/s40425-018-0435-6
http://dx.doi.org/10.1126/science.1198443
http://www.ncbi.nlm.nih.gov/pubmed/21436454
http://dx.doi.org/10.1186/s13578-017-0168-0
http://dx.doi.org/10.1158/1078-0432.CCR-06-2746
http://www.ncbi.nlm.nih.gov/pubmed/17404099
http://dx.doi.org/10.1016/S0039-6060(99)70291-6
http://dx.doi.org/10.1080/2162402X.2018.1561120
http://dx.doi.org/10.1016/j.celrep.2017.04.031
http://www.ncbi.nlm.nih.gov/pubmed/28494868
http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/10.1093/jnci/djw304
http://dx.doi.org/10.1084/jem.20142162
http://dx.doi.org/10.1084/jem.20161707
http://dx.doi.org/10.1158/1078-0432.CCR-18-4192
http://www.ncbi.nlm.nih.gov/pubmed/31186314
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Lack of High-Quality Effector T Cells in PDAC Tumors 
	Heterogeneous Dense Stroma 
	Immunosuppressive Tumor Microenvironment 
	Immune Checkpoint 
	Strategies for Developing Immunotherapy for Pancreatic Cancer 
	References

