
Vol.:(0123456789)

SN Computer Science (2021) 2:391
https://doi.org/10.1007/s42979-021-00772-9

SN Computer Science

ORIGINAL RESEARCH

Two Class Pruned Log Message Anomaly Detection

Amir Farzad1 · T. Aaron Gulliver1

Received: 14 September 2020 / Accepted: 11 July 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Log messages are widely used in cloud servers and other systems. Millions of logs are generated each day which makes them
important for anomaly detection. However, they are complex unstructured text messages which makes this task difficult. In
this paper, a hybrid log message anomaly detection technique is proposed which employs pruning of positive and negative
logs. Reliable positive log messages are first selected using a Gaussian mixture model algorithm. Then reliable negative
logs are selected using the K-means, Gaussian mixture model and Dirichlet process Gaussian mixture model methods itera-
tively. It is shown that the precision for positive and negative logs with pruning is high. Anomaly detection is done using a
deep learning long short-term memory network. The proposed model is evaluated using the well-known BGL, Openstack,
and Thunderbird data sets. The results obtained indicate that the proposed model performs better than several well-known
algorithms.

Keywords Anomaly detection · Deep learning · Log messages · Hybrid learning

Introduction

Companies and customers expect 24/7 connectivity to their
cloud and software systems and loss of access can have seri-
ous consequences. Thus, significant investments have been
made to preserve the quality and availability of these ser-
vices. This is achieved by generating log messages which
indicate the status of the system. Logging is the process of
storing records for audit or security [46]. Log messages are
unstructured text data that consist of time stamps, verbos-
ity, and raw content concerning the system status. Logs are
unstructured because developers typically use free text to
record events for ease and flexibility [46]. Thus, the structure
of these logs can vary considerably, making it hard to iden-
tify abnormalities [42]. Log messages are used for several
purposes including anomaly detection [17] and performance
monitoring [43]. Most techniques employ rules to identify
anomalies in logs but this requires specialized knowledge

of the area [41]. Some only consider one feature such as
verbosity which limits the ability to detect abnormalities.
Anomaly detection can be carried out manually, but for large
systems this is not practical due to the amount of data and
the complexity [25]. As a result, automated log analysis
methods are required to identify anomalies.

Deep learning (DL) is a subclass of machine learning
(ML) which employs a network with several layers. DL can
identify similarities in data [14] which makes it desirable
for big data applications. DL has been shown to provide
excellent results for speech recognition, image processing
and text classification [22, 44]. DL methods have good rec-
ognition capabilities for large amounts of data and are bet-
ter than other ML methods for feature representation [5].
ML methods can be discriminative, generative, or hybrid.
Discriminative methods are typically used for supervised
classification while generative methods are employed for
unsupervised classification. Hybrid methods combine gen-
erative and discriminative methods. One of the main issues
in anomaly detection is handling unlabeled data. Millions of
log messages are produced daily in cloud and other systems
so it is typically not possible to label even a small portion of
the data. Thus, unsupervised approaches should be consid-
ered to deal with this unlabeled data.

ML algorithms have been used to develop a range of
anomaly detection methods. Elliptical envelope (EEnvelope)

 * Amir Farzad
 amirfarzad@uvic.ca

 T. Aaron Gulliver
 agullive@ece.uvic.ca

1 Department of Electrical and Computer Engineering,
University of Victoria, PO Box 1700, STN CSC, Victoria,
BC V8W 2Y2, Canada

http://orcid.org/0000-0003-2499-7696
http://orcid.org/0000-0001-9919-0323
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00772-9&domain=pdf

 SN Computer Science (2021) 2:391 391 Page 2 of 18

SN Computer Science

creates an elliptical area around the data mass center which
is used in redshift estimation to detect anomalies [20]. Local
outlier factor (LOF) uses local data deviation to detect net-
work flow anomalies to reduce the risk of internet attacks
[31]. Support vector machine (SVM) and one-class support
vector machine (OC-SVM) have been employed to detect
unknown computer activity [30] and anomalies in networks
[28]. A convolutional neural network (CNN) combined with
a graph convolutional network was used for abnormal breast
detection in mammograms [45] and COVID-19 detection in
CT images [38]. A decision tree model was considered in
[32] to detect faults using log messages. An improved super-
vised K-nearest neighbors (IKNN) method was employed in
[36] to detect anomalies in log messages. However, using
supervised methods is not always possible because of the
lack of labeled data. A method to detect anomalies in log
messages using isolation forest with two autoencoder net-
works for feature extraction was presented in [11]. However,
a detection threshold is required for each data set which is
difficult to determine in practice.

Deeplog [7] uses a long short-term memory (LSTM) net-
work [19] for anomaly detection. First, each log is mapped
to its print statement (in the source code) using a log parser.
Thus, each log is represented by a number (feature) and a
session of logs is parsed to a sequence of numbers. Then, an
LSTM network is trained as a multi-class classifier using a
window with normal sequences (corresponding to normal
system operation) [7]. The trained LSTM network is then
used to predict the probabilities of numbers occurring at
a given time step. If the actual number is unlikely to occur
based on the LSTM prediction, then it is considered to be
an anomaly. While this approach may be effective, it can be
difficult to obtain labeled logs for normal system operation.
The proposed model uses both normal (positive) and abnor-
mal (negative) log messages for training and unsupervised
algorithms are used to prune positive and negative logs.
Once the reliable positive and negative logs are selected, an
LSTM network is used for anomaly detection. Further, while
log parsing is used by most ML/DL log message anomaly

detection models such as Deeplog, only simple text log pre-
processing is used in the proposed model.

Since the log messages are unstructured, they are usually
parsed before being input to an ML model. There are several
different log parsing methods including LogSig and IPLoM
[18]. An example of a log message is given in Fig. 1. The
purpose of log parsing is to differentiate between constant
and variable parts of the message so that the constant ele-
ments are mapped to a list of log events. However, systems
are continually changing, so it is difficult to develop effec-
tive automated log parsing methods [18]. Figure 2 shows
examples of positive and negative logs from Openstack1.
Although the verbosity level for both logs is INFO, the posi-
tive log is a declaration which may show a claim was suc-
cessful on a node and the negative log may show the system
has been terminated due to failing to start. This indicates
that considering just one log message component may be
insufficient for detecting anomalies.

K-means is a well-known clustering method which has
been widely used in tasks such as detecting network intru-
sions [34]. Gaussian mixture model (GMM) is a clustering
method that assumes the data was created from a combi-
nation of Gaussian distributions. It has been used to solve
problems such as detecting anomalies in flight operation data
[24]. The Dirichlet process Gaussian mixture model with
variational inference (BGM) is a Bayesian mixture model
(an extension of finite mixture models), which has been used
for tasks such as anomaly detection in hyperspectral data
[35]. An LSTM network [19] is a recurrent neural network
(RNN) which uses a cell to preserve sequence information
and recall long-term dependencies. LSTM networks have
been used for various tasks such as text classification [37]
and texture classification in images [4]. An LSTM network
is suitable for sequential data such as log messages [10] and
is effective with big data [8]. Another advantage of an LSTM
network is robustness so it can be used with complex data.

Fig. 1 An example of a log
message consisting of time
stamp, verbosity level and raw
content

Fig. 2 Examples of positive
and negative log messages from
Openstack

1 https:// github. com/ logpai/ loghub/ tree/ master/ OpenS tack.

https://github.com/logpai/loghub/tree/master/OpenStack

SN Computer Science (2021) 2:391 Page 3 of 18 391

SN Computer Science

However, training an LSTM network can be time-consuming
[16].

In this paper, a hybrid model is proposed which employs
unsupervised K-means, GMM and BGM methods for data
pruning and a supervised LSTM network for anomaly
detection using reliable data. First, reliable positive logs
are obtained using a GMM. Although GMMs are widely
used for anomaly detection, we use a GMM to prune only
positive logs in the first step. Then, reliable negative logs
are obtained using pruning with the unsupervised K-means,
GMM and BGM methods. Finally, a portion of the reliable
positive and negative logs are used for anomaly detection
using an LSTM network. The amount of data used for LSTM
training is very small even though convergence with deep
networks typically requires a significant amount of training
data. The proposed model is evaluated using the accuracy,
precision, recall and F-measure criteria [12], and three log
message data sets, namely BlueGene/L (BGL)2, Openstack
and Thunderbird3, are considered. The parameters of the
proposed model are the same for all data sets to illustrate
the robustness of this approach.

The main contributions of this paper are as follows.

1. An unsupervised algorithm is presented which uses a
GMM method to select reliable positive logs.

2. An unsupervised algorithm is presented which employs
K-means, GMM, and BGM methods iteratively to select
reliable negative logs.

3. An LSTM network is used with the pruned logs for
anomaly detection.

The rest of this paper is organized as follows. In the next
section, the K-means, GMM, BGM, and LSTM architec-
tures are presented and the proposed model is described.
Experimental results for the three data sets are given in the
third section along with a discussion of the model perfor-
mance. Finally, the fourth section provides some concluding
remarks.

System Model

In this section, the K-means, GMM, BGM, and LSTM archi-
tectures are given and the proposed model is described.

K‑Means

K-means is an iterative clustering method. Given k classes,
each cluster has a center which is the average of the samples

in the cluster. The set of clusters is S = {S1, S2,… , Sk} and
a sample is assigned to the cluster whose center it is closest
to. First, the cluster centers are initialized randomly. Next,
the Euclidean distances between each sample and the clus-
ter centers, ci , are calculated. Then, each sample is reas-
signed to the closest cluster and new centers are calculated
for each cluster. This process continues until the clusters do
not change or the maximum number of iterations is attained.
This corresponds to minimizing the objective function given
by

where k is the number of clusters, ci is the center of cluster
Si , x is a data sample, and ||x − ci||2 is the Euclidean distance
from x to ci.

Gaussian Mixture Model (GMM)

Gaussian mixture model (GMM) is a clustering method. It
is assumed that each cluster consists of data with a normal
(Gaussian) distribution. The goal is to estimate the distri-
bution parameters of each cluster and determine the labels
for the samples, i.e., which cluster each sample belongs to.
The expectation maximization (EM) algorithm [6] is used to
obtain estimates for these parameters. The GMM probability
density function (PDF) of sample xj is given by

where �i , �i and �i are the weight, mean, and covariance
matrices of the ith distribution, respectively, m is the number
of distributions (clusters), and � = {�i,�i,�i} is the param-
eter set of the mixture model. For d features, the Gaussian
distribution of xj is

The EM algorithm iterates two steps, expectation (E-step)
and maximization (M-step). First, the model parameters �
are randomly initialized and the expectation and maximiza-
tion steps are performed. The E-step is given by

where t is the iteration number. Then the parameters are
estimated in the M-step as

(1)argmin
S

k∑

i=1

∑

x∈Si

||x − ci||2,

(2)p(xj|�) =
m∑

i=1

�iN(xj|�i,�i),

(3)

N(xj��i,�i) =
1

(2�)d∕2
√
��i�

exp
�
−

1

2
(xj − �i)

T�−1
i
(xj − �i)

�
.

(4)� t
i
(xj) =

�t
i
N(xj��t

i
,� t

i
)

∑m

i=1
�t
i
N(xj��t

i
,� t

i
)
,

2 https:// github. com/ logpai/ loghub/ tree/ master/ BGL.
3 https:// github. com/ logpai/ loghub/ tree/ master/ Thund erbird.

https://github.com/logpai/loghub/tree/master/BGL
https://github.com/logpai/loghub/tree/master/Thunderbird

 SN Computer Science (2021) 2:391 391 Page 4 of 18

SN Computer Science

where N is the number of samples. These steps are repeated
until the criteria are satisfied or a maximum number of itera-
tions is reached.

Dirichlet Process Gaussian Mixture Model (BGM)

The Dirichlet process Gaussian mixture model (BGM) is a
non-parametric Bayesian mixture model that is an extension
of finite mixture models. The number of clusters (classes)
does not need to be explicitly predefined because it is a non-
parametric model. BGM uses the Dirichlet process (DP)
which is a generalized form of a Dirichlet distribution [13].
A DP is composed of a base distribution G0 and a positive
concentration scaler � . Since this model is not a finite mix-
ture model, variational inference is employed [3]. The model
parameters are

(5)�t+1
i

=

∑N

j=1
� t
i
(xj)xj

∑N

j=1
� t
i
(xj)

,

(6)� t+1
i

=

∑N

j=1
� t
i
(xj)(xj − �t+1

i
)(xj − �t+1

i
)T

∑N

j=1
� t
i
(xj)

,

(7)�t+1
i

=
1

N

N∑

j=1

� t
i
(xj).

where �0 and �i are the mean and covariance of the Gauss-
ian distribution, s is the scale matrix, and v is the number of
degrees of freedom for the Inverse-Wishart distribution [39].

LSTM Architecture

An LSTM is a recurrent neural network [19] which has been
used to solve sequential data problems [15]. Cells are used
to store information and they are connected recurrently. The
use of cells solves the vanishing gradient problem. Each
LSTM block includes input, forget, and output gates. These
gates can store information longer than feed-forward neural
networks which improves performance [15]. A block of an
LSTM network is shown in Fig. 3. The cell input at time t is
xt and the input, forget, and output gate outputs are

(8)�i ∼ DP(G0, �),

(9)�i ∼ W
−1(v, s),

(10)�i ∼ N(�0,�i),

(11)it = �(Wixt + Uiht−1 + bi),

(12)ft = �(Wf xt + Uf ht−1 + bf),

(13)ot = �(Woxt + Uoht−1 + bo),

Fig. 3 A block of an LSTM net-
work with input, input, output
and forget gates [19]

SN Computer Science (2021) 2:391 Page 5 of 18 391

SN Computer Science

respectively, where ht−1 is the previous block output, b is
the bias vector, W and U are weight matrices, and � is the
activation function (usually the sigmoid function). The block
input at time t is given by

where bC is the bias vector, WC and UC are the weight matri-
ces, and tanh denotes the hyperbolic tangent activation func-
tion. The cell state at time t is

where ⊙ denotes point-wise multiplication. The block output
at time t is

Proposed Model

The proposed model architecture has three steps. First, posi-
tive logs are pruned using an unsupervised GMM method.
Second, negative logs are pruned through multiple rounds
of the unsupervised GMM, BGM, and K-means methods.
Finally, anomalies are detected using an LSTM network with
the selected (reliable) positive and negative logs.

First, simple text pre-processing including changing let-
ters to lowercase, removing hyphens and tokenization are
applied to the data set D. Next, the sentences are padded to
40 tokens, and sentences including less than five tokens are
removed. Then, the number of appearances of each token
in the data set is computed and the tokens are ordered from
most frequent to least frequent. Each token is given an index
starting from zero and the indices are used as the data set
features. Next, the features are normalized using a min-max
scaler so all values are between 0 and 1 and the entries in the
data set are shuffled. Then D is divided into two sets, t1 with
2% of the data for training and r1 with the remaining 98% of
the data. The set t1 is small to keep the computational com-
plexity low and have more data for the rest of the algorithm.
The proportion of negative and positive logs in these sets is
the same as in D.

Select Reliable Positive Logs

A GMM is used to prune the positive logs. It is trained with
t1 and tested with r1 . The negative predicted logs (predicted
output y = 0) and positive predicted logs (predicted output
y = 1) are counted and labeled c0 and c1 , respectively. If the
number of logs predicted as positive is less than the number
predicted as negative, then c0 and c1 are swapped. This is
because it is known that the number of anomalies (negative

(14)Ĉt = tanh(WCxt + UCht−1 + bC),

(15)Ct = ft ⊙ Ct−1 + it ⊙ Ĉt,

(16)ht = ot ⊙ tanh(Ct).

logs) is much less than the number of positive logs (around
10%). The variance is given by

where xi is the ith feature, x̂ is the average of the features and
F is the total number of features in the data set. Let a =

c1

c0

and the variances of the negative and positive predicted logs
be zvar and ovar , respectively. If a > 3 and ovar × c < zvar (c is
a constant), then the positive and negative predicted logs are
added to the sets o0 (reliable positive logs) and z0 (rest of the
data), respectively. The threshold for a was chosen consider-
ing that the majority of the logs are positive. A high value
of c increases the probability of getting only positive logs
but if it is too high the algorithm criterion may not be satis-
fied. It was set to c = 1.6 for all data sets based on the experi-
mental results obtained.

The variance measures the spread of a data set. If the
model predicted most of the positive logs correctly (small
number of false positives), then the variance of the positive
logs should be lower than that of the negative logs. A high
variance may indicate that there is a mix of positive and
negative logs whereas a small variance indicates that there
are mostly positive logs predicted correctly. If the criteria are
met, the results are kept, otherwise the process is repeated.

Select Reliable Negative Logs

The GMM, K-means and BGM methods are now used to
select negative logs. These models were chosen because they
are efficient unsupervised models for text data [1]. There are
n rounds and in each round, GMM, K-means and BGM are
run m times. In the first round, the models are trained with
z0 from the previous step. In subsequent rounds, the results
from the previous round z are used for this purpose. The
entropy of sample xj is given by

where ni is the ith feature of the sample, d is the length of the
sample and M is the sum of the sample features.

For a model run, denote the average entropy of the logs
predicted as negative and positive as sh0 and sh1 , respec-
tively. If sh0 < sh1 , then the predicted negative logs are
appended to z1 and the predicted positive logs are appended
to o1 . This is because small features appear frequently in pos-
itive logs so they are more uniform and thus have a higher
entropy. At the end of a round, z1 is assigned to z for use in
the next round. The logs in z are counted and ordered from
most frequent to least frequent and the repetitions discarded.

(17)
var =

F∑
i=1

(xi − x̂)2

F
,

(18)H = −

d∑

i=1

ni

M
ln(

ni

M
),

 SN Computer Science (2021) 2:391 391 Page 6 of 18

SN Computer Science

This is done so that each log appears at most once in z and
the logs that appear more often are used earlier so the mod-
els in the next round can predict better. The logs in z1 are
discarded at the start of each round.

In each round, the prediction of positive and negative logs
is done using z. Thus, the number of positive logs is reduced
and only reliable negative logs are kept. The final z1 contains
the predicted negative logs from the last round and these are
used in the next step.

Anomaly Detection

In this step, an LSTM network is used with the reliable nega-
tive (z1) and positive (o0) logs from the previous two steps
for anomaly detection. Each log in z1 and o1 is counted and
ordered from most frequent to least frequent and the repeti-
tions are discarded. The first L logs in z1 are selected and
assigned to z2 (most reliable predicted negative logs), and
the remaining logs are assigned to o2 . Logs which appear in
o1 but not in z1 are placed in o3 . The reliable positive logs o0
obtained in the first step are shuffled, and 10% are randomly
assigned to o4 and the remainder to o5 . The logs in z2 are
repeated four times and assigned to xn . A portion of o4 which
is the same size as the number of elements in xn is randomly
chosen and assigned to xp . Thus, the reliable negative logs
are oversampled so the number of reliable positive logs and
negative logs is the same. This is because LSTM networks
work better with balanced data and should be trained with a
sufficient number of positive and negative logs. The logs in
xn and xp are labeled with y = 0 and y = 1 indicating negative
and positive logs, respectively, and xn and xp are assigned
to t2 . The remaining logs in o4 are assigned to o6 , and o2 , o3 ,
o5 and o6 are assigned to t3 . The data set was initially scaled
so all values are between 0 and 1, but this is reversed for t2

and t3 to provide training and testing sets, respectively, for
the LSTM network.

The LSTM network is trained with 90% of t2 , validated
with the remaining 10% of t2 , and tested with t3 . The parame-
ters used are k = 20 , n = m = 5 , and L = 10000 for the BGL
and Thunderbird data sets and L = 3000 for the Openstack
data set. A different value of L is used because the Openstack
data set is much smaller than the BGL and Thunderbird data
sets. For training the BGL and Thunderbird data sets, an
LSTM network with three hidden layers of size 256, batch
size 128 and a maximum of 10 training epochs is used. To
prevent overfitting, dropout with probability 0.5 and early
stopping are used. The softmax activation function is applied
in the last dense layer. The cross-entropy loss function and
Adam optimizer are used for training. The Adam optimizer
is used because it has been shown to provide good perfor-
mance and fast convergence in DL algorithms [33]. For the
Openstack data set, an LSTM network with a single hidden
layer of size 512 and embedding dimension of size 512 is
used. A single-layer network is used for this data set because
it is smaller than the other data sets. The rest of the archi-
tecture for the Openstack data set is the same as above. All
network parameters were chosen based on the experimental
results obtained. An LSTM network is used for anomaly
detection because it has been shown to provide good results
in classifying sequential data [15]. However, other DL dis-
criminative networks such as a CNN can be employed. The
proposed model algorithms are given in Algorithms 1–3 and
shown in Fig. 4. The data preparation for Algorithm 3 is
shown in Fig. 5.

Fig. 4 The proposed model
architecture

SN Computer Science (2021) 2:391 Page 7 of 18 391

SN Computer Science

Fig. 5 The data preparation for Algorithm 3

 SN Computer Science (2021) 2:391 391 Page 8 of 18

SN Computer Science

Results

In this section, the proposed model is evaluated using the
BGL, Openstack and Thunderbird data sets. Four perfor-
mance criteria are considered, namely accuracy, precision,
recall and F-measure [12]. The percentage of data correctly
predicted is called the accuracy and is given by

where Tp is the number of positive samples predicted by the
model to be positive, Fp is the number of negative samples
predicted to be positive, Tn is the number of negative sam-
ples predicted to be negative, and Fn is the number of posi-
tive samples predicted to be negative. Then, the precision is

(19)A =
Tp + Tn

Tp + Tn + Fp + Fn

,

SN Computer Science (2021) 2:391 Page 9 of 18 391

SN Computer Science

the recall is

and the F-measure is

(20)P =
Tp

Tp + Fp

,

(21)R =
Tp

Tp + Fn

,

(22)F =
2 × P × R

P + R
.

All experiments were run on the Compute Canada Graham
cluster with 32 CPU cores, two P100 GPUs and 124 GB of
memory. The algorithms were implemented using Python,
Keras4 and Scikit-learn5.

The hyperparameters of the proposed model were not
tuned so the default values were used in all experiments.
Each experiment was repeated 10 times and the minimum,
maximum and average testing accuracy, precision, recall,
F-measure and computation time were obtained. Table 1a
gives the proposed model results for the BGL, Openstack
and Thunderbird data sets using GMM for positive pruning.
For comparison, the proposed model results using BGM for
positive pruning are given in Table 1b with the order for
negative pruning changed to K-means, GMM, and BGM.
The results for negative logs with the Auto-LSTM [10],
IKNN, nLSALog [40] and Deeplog algorithms for the (a)
BGL, (b) Openstack, and (c) Thunderbird data sets are given
in Table 2. Table 3 gives the average testing accuracy, preci-
sion, recall, F-measure and computation time with the BGM,
EEnvelope, GMM, K-means, LOF and OC-SVM methods
for the (a) BGL, (b) Openstack, and (c) Thunderbird data
sets. Table 4 presents the positive log pruning results for the
BGL, Openstack and Thunderbird data sets with (a) GMM
and (b) BGM. Tables 5, 6, 7 give the negative log pruning
results for the BGL, Openstack and Thunderbird data sets,
respectively, with (a) GMM, (b) K-means, and (c) BGM for
n = 5 rounds.

Table 1 The proposed model testing accuracy, precision, recall, F-measure, and average time with (a) GMM for positive log pruning and (b)
BGM for positive log pruning

The minimum, maximum and average (in parenthesis) values are given for 10 runs with the BGL, Openstack and Thunderbird data sets. Positive
labels are denoted by 1 and negative labels by 0

Data set Testing accuracy Label Precision Recall F-measure Time (s)

(a)
 BGL 99.3%-(99.5%)-99.6% 0 93.2%-(95.6%)-97.7% 97.1%-(97.8%)-98.7% 95.6%-(96.7%)-97.6% 3725

1 99.8%-(99.8%)-99.9% 99.4%-(99.6%)-99.8% 99.6%-(99.7%)-99.8%
 Openstack 99.8%-(99.9%)-100% 0 99.3%-(99.9%)-100% 97.9%-(99.7%)-100% 99.0%-(99.8%)-100% 177

1 99.7%-(99.9%)-100% 99.9%-(99.9%)-100% 99.9%-(99.9%)-100%
 Thunderbird 99.6%-(99.8%)-99.9% 0 97.1%-(98.9%)-99.9% 99.6%-(99.6%)-99.7% 98.3%-(99.3%)-99.8% 3550

1 99.9%-(99.9%)-99.9% 99.5%-(99.8%)-99.9% 99.7%-(99.9%)-99.9%
(b)
 BGL 99.4%-(99.5%)-99.7% 0 94.0%-(95.4%)-97.4% 97.2%-(98.5%)-99.4% 96.0%-(96.9%)-98.2% 3649

1 99.8%-(99.9%)-99.9% 99.5%-(99.6%)-99.8% 99.7%-(99.7%)-99.8%
 Openstack 99.6%-(99.9%)-100% 0 96.7%-(99.7%)-100% 99.6%-(99.9%)-100% 98.3%-(99.8%)-100% 134

1 99.9%-(99.9%)-100% 99.6%-(99.9%)-100% 99.8%-(99.9%)-100%
 Thunderbird 99.7%-(99.8%)-99.9% 0 97.5%-(99.0%)-99.9% 99.6%-(99.6%)-99.7% 98.6%-(99.3%)-99.8% 3136

1 99.9%-(99.9%)-99.9% 99.7%-(99.8%)-99.9% 99.8%-(99.9%)-99.9%

Table 2 The precision, recall and F-measure for negative logs for (a)
BGL, (b) Openstack and (c) Thunderbird data sets with the Auto-
LSTM, IKNN, nLSALog and Deeplog algorithms

Algorithm Precision (%) Recall (%) F-measure (%)

(a)
 Auto-LSTM 98.0 91.3 94.5
 IKNN 92.0 91.0 92.0
 nLSALog 82.5 94.7 88.2

(b)
 Auto-LSTM 99.4 92.8 96.0
 Deeplog 94.0 99.0 97.0

(c)
 Auto-LSTM 98.4 99.8 99.1
 IKNN 96.0 96.0 96.0

4 https:// github. com/ keras- team/ keras.
5 https:// github. com/ scikit- learn/ scikit- learn.

https://github.com/keras-team/keras
https://github.com/scikit-learn/scikit-learn

 SN Computer Science (2021) 2:391 391 Page 10 of 18

SN Computer Science

Ta
bl

e
3

 A
ve

ra
ge

 te
sti

ng
 a

cc
ur

ac
y,

 p
re

ci
si

on
, r

ec
al

l,
F-

m
ea

su
re

, a
nd

 ti
m

e
fo

r (
a)

 B
G

L,
 (b

) O
pe

ns
ta

ck
 a

nd
 (c

) T
hu

nd
er

bi
rd

 d
at

a
se

ts
 w

ith
 th

e
B

G
M

, E
En

ve
lo

pe
, G

M
M

, K
-m

ea
ns

, L
O

F
an

d
O

C
-

SV
M

 m
et

ho
ds

 u
si

ng
 1

0-
fo

ld
 c

ro
ss

-v
al

id
at

io
n

A
lg

or
ith

m
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re
Ti

m
e

(s
)

(a
) B
G

M
50

.3
%

0
37

.8
%

50
.0

%
43

.0
%

26
32

1
63

.9
%

50
.3

%
52

.2
%

 E
En

ve
lo

pe
86

.2
%

0
17

.6
%

23
.9

%
20

.3
%

52
87

1
93

.8
%

91
.1

%
92

.4
%

 G
M

M
50

.3
%

0
38

.2
%

50
.0

%
43

.3
%

18
94

1
63

.9
%

50
.4

%
52

.2
%

 K
-m

ea
ns

50
.0

%
0

6.
6%

50
.0

%
11

.7
%

77
59

1
93

.4
%

50
.0

%
64

.9
%

 L
O

F
83

.6
%

0
7.

1%
10

.3
%

8.
4%

60
5

1
92

.6
%

89
.4

%
91

.0
%

 O
C

-S
V

M
84

.3
%

0
8.

5%
11

.4
%

9.
7%

28
46

9
1

92
.8

%
90

.1
%

91
.4

%
(b

) B
G

M
50

.3
%

0
17

.0
%

50
.0

%
21

.9
%

90
1

82
.9

%
50

.3
%

59
.8

%
 E

En
ve

lo
pe

88

.8
%

0
53

.4
%

44
.9

%
48

.8
%

24
4

1
92

.7
%

94
.7

%
93

.7
%

 G
M

M
48

.7
%

0
35

.2
%

60
.0

%
38

.9
%

77
1

68
.2

%
47

.1
%

53
.0

%
 K

-m
ea

ns
30

.0
%

0
30

.0
%

30
.0

%
30

.0
%

20
8

1
30

.0
%

30
.0

%
30

.0
%

 L
O

F
80

.3
%

0
14

.1
%

13
.1

%
13

.6
%

98
5

1
88

.4
%

89
.3

%
88

.9
%

 O
C

-S
V

M
38

.5
%

0
0.

3%
1.

3%
0.

5%
13

50
2

1
76

.6
%

43
.5

%
55

.5
%

(c
) B
G

M
57

.9
%

0
25

.9
%

60
.0

%
35

.2
%

19
01

1
83

.6
%

57
.6

%
63

.4
%

 E
En

ve
lo

pe

82
.1

%
0

43
.8

%
26

.2
%

32
.8

%
38

72
1

86
.3

%
93

.3
%

89
.6

%
 G

M
M

66
.2

%
0

27
.1

%
70

.0
%

37
.2

%
76

0
1

92
.8

%
65

.8
%

71
.5

%

SN Computer Science (2021) 2:391 Page 11 of 18 391

SN Computer Science

Po
si

tiv
e

la
be

ls
 a

re
 d

en
ot

ed
 b

y
1

an
d

ne
ga

tiv
e

la
be

ls
 b

y
0

Ta
bl

e
3

 (c
on

tin
ue

d)

A
lg

or
ith

m
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re
Ti

m
e

(s
)

 K
-m

ea
ns

50
.0

%
0

5.
9%

50
.0

%
10

.6
%

47
87

1
94

.1
%

50
.0

%
58

.3
%

 L
O

F
75

.4
%

0
17

.5
%

10
.3

%
12

.9
%

11
41

1
82

.2
%

89
.5

%
85

.7
%

 O
C

-S
V

M
40

.6
%

0
8.

5%
23

.7
%

12
.5

%
20

35
3

1
72

.8
%

44
.3

%
55

.1
%

Ta
bl

e
4

 P
os

iti
ve

 p
ru

ni
ng

 te
sti

ng
 a

cc
ur

ac
y,

 p
re

ci
si

on
, r

ec
al

l,
an

d
F-

m
ea

su
re

 w
ith

 (a
) G

M
M

 a
nd

 (b
) B

G
M

 fo
r t

he
 B

G
L,

 O
pe

ns
ta

ck
 a

nd
 T

hu
nd

er
bi

rd
 d

at
a

se
ts

Th
e

m
in

im
um

, m
ax

im
um

, a
nd

 av
er

ag
e

(in
 p

ar
en

th
es

is
) v

al
ue

s a
re

 g
iv

en
 fo

r 1
0

ru
ns

. P
os

iti
ve

 la
be

ls
 a

re
 d

en
ot

ed
 b

y
1

an
d

ne
ga

tiv
e

la
be

ls
 b

y
0

D
at

a
se

t
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re

(a
) B
G

L
97

.1
%

-(
97

.8
%

)-
98

.4
%

0
71

.6
%

-(
76

.8
%

)-
81

.9
%

99
.9

%
-(

99
.9

%
)-

10
0%

83
.4

%
-(

86
.9

%
)-

90
.0

%
1

99
.9

%
-(
99
.9
%

)-
10

0%
96

.8
%

-(
97

.6
%

)-
98

.2
%

98
.4

%
-(

98
.8

%
)-

99
.1

%
 O

pe
ns

ta
ck

99
.8

%
-(

99
.9

%
)-

10
0%

0
98

.8
%

-(
99

.8
%

)-
10

0%
99

.3
%

-(
99

.8
%

)-
10

0%
99

.1
%

-(
99

.8
%

)-
10

0%
1

99
.9

%
-(
99
.9
%

)-
10

0%
99

.8
%

-(
99

.9
%

)-
10

0%
99

.9
%

-(
99

.9
%

)-
10

0%
 T

hu
nd

er
bi

rd
89

.9
%

-(
90

.0
%

)-
90

.5
%

0
49

.3
%

-(
50

.4
%

)-
59

.6
%

99
.9

%
-(

99
.9

%
)-

10
0%

66
.0

%
-(

67
.0

%
)-

74
.7

%
1

99
.9

%
-(
99
.9
%

)-
10

0%
88

.8
%

-(
88

.9
%

)-
89

.0
%

94
.1

%
-(

94
.1

%
)-

94
.2

%
(b

) B
G

L
97

.3
%

-(
97

.6
%

)-
98

.2
%

0
73

.1
%

-(
75

.3
%

)-
80

.6
%

99
.9

%
-(

99
.9

%
)-

10
0%

84
.5

%
-(

85
.9

%
)-

89
.2

%
1

99
.9

%
-(
99
.9
%

)-
10

0%
97

.1
%

-(
97

.4
%

)-
98

.1
%

98
.5

%
-(

98
.7

%
)-

99
.0

%
 O

pe
ns

ta
ck

99
.8

%
-(

99
.9

%
)-

99
.9

%
0

98
.5

%
-(

99
.4

%
)-

99
.9

%
99

.6
%

-(
99

.8
%

)-
99

.9
%

99
.1

%
-(

99
.6

%
)-

99
.9

%
1

99
.9

%
-(
99
.9
%

)-
99

.9
%

99
.8

%
-(

99
.9

%
)-

99
.9

%
99

.9
%

-(
99

.9
%

)-
99

.9
%

 T
hu

nd
er

bi
rd

89
.9

%
-(

90
.0

%
)-

90
.1

%
0

49
.3

%
-(

49
.5

%
)-

49
.8

%
99

.9
%

-(
99

.9
%

)-
10

0%
66

.0
%

-(
66

.2
%

)-
66

.5
%

1
99

.9
%

-(
99
.9
%

)-
10

0%
88

.9
%

-(
88

.9
%

)-
89

.1
%

94
.1

%
-(

94
.1

%
)-

94
.2

%

 SN Computer Science (2021) 2:391 391 Page 12 of 18

SN Computer Science

Ta
bl

e
5

 N
eg

at
iv

e
pr

un
in

g
te

sti
ng

 a
cc

ur
ac

y,
 p

re
ci

si
on

, r
ec

al
l,

an
d

F-
m

ea
su

re
 fo

r t
he

 B
G

L
da

ta
 s

et
 w

ith
 (a

) G
M

M
, (

b)
 K

-m
ea

ns
 a

nd
 (c

) B
G

M
 m

et
ho

ds
 fo

r fi
ve

 ro
un

ds
 (w

ith
 a

 G
M

M
 fo

r p
os

iti
ve

pr

un
in

g)

Th
e

m
in

im
um

, m
ax

im
um

 a
nd

 av
er

ag
e

(in
 p

ar
en

th
es

is
) v

al
ue

s a
re

 g
iv

en
 fo

r 1
0

ru
ns

. P
os

iti
ve

 la
be

ls
 a

re
 d

en
ot

ed
 b

y
1

an
d

ne
ga

tiv
e

la
be

ls
 b

y
0

Ro
un

d
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re

(a
) 1

76
.2

%
-(

82
.6

%
)-

88
.9

%
0

75
.0

%
-(

82
.4

%
)-

10
0%

81
.5

%
-(

99
.0

%
)-

10
0%

85
.7

%
-(

89
.7

%
)-

93
.1

%
1

55
.8

%
-(

97
.4

%
)-

10
0%

16
.1

%
-(

29
.1

%
)-

10
0%

27
.8

%
-(

40
.9

%
)-

71
.9

%
 2

85
.4

%
-(

96
.0

%
)-

99
.2

%
0

99
.9

%
-(

99
.9

%
)-

10
0%

81
.5

%
-(

94
.9

%
)-

99
.0

%
89

.8
%

-(
97

.3
%

)-
99

.5
%

1
58

.6
%

-(
86

.2
%

)-
97

.1
%

99
.9

%
-(

99
.9

%
)-

10
0%

73
.9

%
-(

91
.8

%
)-

98
.5

%
 3

81
.9

%
-(

90
.6

%
)-

99
.5

%
0

99
.3

%
-(

99
.9

%
)-

10
0%

81
.0

%
-(

90
.2

%
)-

99
.5

%
89

.5
%

-(
94

.6
%

)-
99

.7
%

1
19

.7
%

-(
47

.3
%

)-
89

.8
%

86
.6

%
-(

99
.3

%
)-

10
0%

32
.9

%
-(

59
.1

%
)-

94
.6

%
 4

81
.9

%
-(

91
.1

%
)-

99
.5

%
0

99
.9

%
-(

10
0%

)-
10

0%
81

.0
%

-(
90

.7
%

)-
99

.5
%

89
.5

%
-(

94
.9

%
)-

99
.7

%
1

19
.4

%
-(

50
.9

%
)-

90
.1

%
99

.9
%

-(
99

.9
%

)-
10

0%
32

.5
%

-(
62

.1
%

)-
94

.8
%

 5
81

.9
%

-(
88

.7
%

)-
99

.0
%

0
10

0%
-(
10
0%

)-
10

0%
81

.0
%

-(
88

.2
%

)-
98

.9
%

89
.5

%
-(

93
.5

%
)-

99
.5

%
1

19
.6

%
-(

43
.7

%
)-

82
.3

%
10

0%
-(

10
0%

)-
10

0%
32

.7
%

-(
55

.1
%

)-
90

.3
%

(b
) 1

76
.1

%
-(

81
.8

%
)-

87
.1

%
0

75
.0

%
-(

80
.8

%
)-

86
.4

%
99

.9
%

-(
99

.9
%

)-
10

0%
85

.7
%

-(
89

.4
%

)-
92

.7
%

1
99

.9
%

-(
99

.9
%

)-
10

0%
16

.0
%

-(
21

.7
%

)-
28

.9
%

27
.6

%
-(

35
.5

%
)-

44
.8

%
 2

96
.0

%
-(

96
.2

%
)-

96
.3

%
0

95
.3

%
-(

95
.5

%
)-

95
.7

%
99

.9
%

-(
99

.9
%

)-
10

0%
97

.6
%

-(
97

.7
%

)-
97

.8
%

1
99

.9
%

-(
99

.9
%

)-
10

0%
72

.6
%

-(
80

.8
%

)-
85

.3
%

84
.1

%
-(

89
.3

%
)-

92
.1

%
 3

86
.9

%
-(

87
.7

%
)-

91
.1

%
0

94
.9

%
-(

95
.8

%
)-

99
.9

%
91

.1
%

-(
91

.2
%

)-
91

.2
%

93
.0

%
-(

93
.4

%
)-

95
.3

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 4
86

.9
%

-(
87

.5
%

)-
90

.8
%

0
94

.9
%

-(
95

.6
%

)-
99

.9
%

90
.8

%
-(

91
.1

%
)-

91
.2

%
93

.0
%

-(
93

.3
%

)-
95

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
 5

87
.0

%
-(

87
.7

%
)-

90
.8

%
0

95
.0

%
-(
95
.9
%

)-
99

.9
%

90
.8

%
-(

91
.1

%
)-

91
.2

%
93

.0
%

-(
93

.4
%

)-
95

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
(c

) 1
76

.2
%

-(
88

.2
%

)-
96

.1
%

0
75

.0
%

-(
88

.1
%

)-
10

0%
81

.5
%

-(
98

.4
%

)-
10

0%
85

.7
%

-(
92

.7
%

)-
97

.6
%

1
55

.8
%

-(
94

.3
%

)-
10

0%
16

.1
%

-(
57

.5
%

)-
10

0%
27

.8
%

-(
67

.5
%

)-
89

.7
%

 2
85

.4
%

-(
96

.0
%

)-
99

.2
%

0
99

.9
%

-(
99

.9
%

)-
10

0%
81

.5
%

-(
94

.9
%

)-
99

.0
%

89
.8

%
-(

97
.3

%
)-

99
.5

%
1

58
.6

%
-(

86
.2

%
)-

97
.1

%
99

.9
%

-(
99

.9
%

)-
10

0%
73

.9
%

-(
91

.8
%

)-
98

.5
%

 3
81

.9
%

-(
90

.6
%

)-
99

.5
%

0
99

.3
%

-(
99

.9
%

)-
10

0%
81

.0
%

-(
90

.2
%

)-
99

.5
%

89
.5

%
-(

94
.6

%
)-

99
.7

%
1

19
.7

%
-(

47
.3

%
)-

89
.8

%
86

.6
%

-(
99

.3
%

)-
10

0%
32

.9
%

-(
59

.1
%

)-
94

.6
%

 4
67

.3
%

-(
89

.8
%

)-
99

.5
%

0
99

.3
%

-(
99

.9
%

)-
10

0%
67

.3
%

-(
89

.4
%

)-
99

.5
%

80
.4

%
-(

94
.1

%
)-

99
.7

%
1

0.
1%

-(
47

.2
%

)-
90

.1
%

86
.6

%
-(

99
.3

%
)-

10
0%

0.
1%

-(
57

.9
%

)-
94

.8
%

 5
81

.9
%

-(
88

.7
%

)-
99

.0
%

0
10

0%
-(
10
0%

)-
10

0%
81

.0
%

-(
88

.2
%

)-
98

.9
%

89
.5

%
-(

93
.5

%
)-

99
.5

%
1

19
.6

%
-(

43
.7

%
)-

82
.3

%
10

0%
-(

10
0%

)-
10

0%
32

.7
%

-(
55

.1
%

)-
90

.3
%

SN Computer Science (2021) 2:391 Page 13 of 18 391

SN Computer Science

Ta
bl

e
6

 N
eg

at
iv

e
pr

un
in

g
te

sti
ng

 a
cc

ur
ac

y,
 p

re
ci

si
on

, r
ec

al
l,

an
d

F-
m

ea
su

re
 fo

r t
he

 O
pe

ns
ta

ck
 d

at
a

se
t w

ith
 (a

) G
M

M
, (

b)
 K

-m
ea

ns
 a

nd
 (c

) B
G

M
 m

et
ho

ds
 fo

r fi
ve

 ro
un

ds
 (w

ith
 a

 G
M

M
 fo

r p
os

i-
tiv

e
pr

un
in

g)

Th
e

m
in

im
um

, m
ax

im
um

 a
nd

 av
er

ag
e

(in
 p

ar
en

th
es

is
) v

al
ue

s a
re

 g
iv

en
 fo

r 1
0

ru
ns

. P
os

iti
ve

 la
be

ls
 a

re
 d

en
ot

ed
 b

y
1

an
d

ne
ga

tiv
e

la
be

ls
 b

y
0

Ro
un

d
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re

(a
) 1

61
.5

%
-(

64
.3

%
)-

94
.0

%
0

99
.1

%
-(

99
.9

%
)-

10
0%

61
.5

%
-(

64
.3

%
)-

94
.0

%
76

.2
%

-(
78

.0
%

)-
96

.9
%

1
0.

0%
-(

0.
1%

)-
1.

6%
0.

0%
-(

4.
2%

)-
52

.8
%

0.
0%

-(
0.

2%
)-

3.
1%

 2
61

.5
%

-(
83

.9
%

)-
94

.0
%

0
10

0%
-(

10
0%

)-
10

0%
61

.5
%

-(
83

.8
%

)-
94

.0
%

76
.2

%
-(

90
.7

%
)-

96
.9

%
1

0.
0%

-(
0.

7%
)-

9.
3%

0.
0%

-(
7.

5%
)-

10
0%

0.
0%

-(
1.

3%
)-

17
.1

%
 3

64
.9

%
-(

88
.8

%
)-

98
.3

%
0

10
0%

-(
10

0%
)-

10
0%

64
.9

%
-(

88
.8

%
)-

98
.3

%
78

.7
%

-(
93

.8
%

)-
99

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
 4

71
.6

%
-(

92
.0

%
)-

98
.2

%
0

10
0%

-(
10

0%
)-

10
0%

71
.6

%
-(

92
.0

%
)-

98
.2

%
83

.4
%

-(
95

.7
%

)-
99

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
 5

58
.7

%
-(

88
.6

%
)-

98
.2

%
0

10
0%

-(
10
0%

)-
10

0%
58

.7
%

-(
88

.6
%

)-
98

.2
%

74
.0

%
-(

93
.6

%
)-

99
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

(b
) 1

62
.7

%
-(

62
.8

%
)-

62
.9

%
0

99
.0

%
-(

99
.9

%
)-

10
0%

62
.7

%
-(

62
.8

%
)-

62
.9

%
76

.9
%

-(
77

.1
%

)-
77

.3
%

1
0.

0%
-(

0.
1%

)-
1.

4%
0.

0%
-(

4.
5%

)-
46

.7
%

0.
0%

-(
0.

3%
)-

2.
8%

 2
62

.8
%

-(
84

.1
%

)-
90

.4
%

0
10

0%
-(

10
0%

)-
10

0%
62

.8
%

-(
84

.1
%

)-
90

.4
%

77
.1

%
-(

90
.9

%
)-

95
.0

%
1

0.
0%

-(
1.

0%
)-

9.
3%

0.
0%

-(
11

.4
%

)-
10

0%
0.

0%
-(

1.
9%

)-
17

.1
%

 3
90

.4
%

-(
91

.6
%

)-
94

.6
%

0
10

0%
-(

10
0%

)-
10

0%
90

.4
%

-(
91

.6
%

)-
94

.6
%

95
.0

%
-(

95
.6

%
)-

97
.2

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 4
91

.4
%

-(
93

.2
%

)-
94

.6
%

0
10

0%
-(

10
0%

)-
10

0%
91

.4
%

-(
93

.2
%

)-
94

.6
%

95
.5

%
-(

96
.5

%
)-

97
.2

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 5
78

.6
%

-(
91

.8
%

)-
94

.6
%

0
10

0%
-(
10
0%

)-
10

0%
78

.6
%

-(
91

.8
%

)-
94

.6
%

88
.0

%
-(

95
.7

%
)-

97
.2

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

(c
) 1

61
.5

%
-(

64
.3

%
)-

94
.0

%
0

99
.1

%
-(

99
.9

%
)-

10
0%

61
.5

%
-(

64
.3

%
)-

94
.0

%
76

.1
%

-(
78

.0
%

)-
96

.9
%

1
0.

0%
-(

0.
1%

)-
1.

6%
0.

0%
-(

4.
3%

)-
53

.8
%

0.
0%

-(
0.

2%
)-

3.
2%

 2
61

.5
%

-(
82

.0
%

)-
90

.4
%

0
10

0%
-(

10
0%

)-
10

0%
61

.5
%

-(
82

.0
%

)-
90

.4
%

76
.1

%
-(

89
.6

%
)-

95
.0

%
1

0.
0%

-(
0.

8%
)-

9.
3%

0.
0%

-(
8.

8%
)-

10
0%

0.
0%

-(
1.

5%
)-

17
.1

%
 3

53
.6

%
-(

83
.3

%
)-

98
.3

%
0

10
0%

-(
10

0%
)-

10
0%

53
.6

%
-(

83
.3

%
)-

98
.3

%
69

.8
%

-(
90

.1
%

)-
99

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
 4

71
.6

%
-(

89
.8

%
)-

98
.2

%
0

10
0%

-(
10

0%
)-

10
0%

71
.6

%
-(

89
.8

%
)-

98
.2

%
83

.4
%

-(
94

.5
%

)-
99

.1
%

1
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
0.

0%
-(

0.
0%

)-
0.

0%
 5

54
.4

%
-(

84
.8

%
)-

98
.2

%
0

10
0%

-(
10
0%

)-
10

0%
54

.4
%

-(
84

.8
%

)-
98

.2
%

70
.5

%
-(

91
.1

%
)-

99
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 SN Computer Science (2021) 2:391 391 Page 14 of 18

SN Computer Science

Ta
bl

e
7

 N
eg

at
iv

e
pr

un
in

g
te

sti
ng

 a
cc

ur
ac

y,
 p

re
ci

si
on

, r
ec

al
l,

an
d

F-
m

ea
su

re
 fo

r t
he

 T
hu

nd
er

bi
rd

 d
at

a
se

t w
ith

 (a
) G

M
M

, (
b)

 K
-m

ea
ns

 a
nd

 (c
) B

G
M

 m
et

ho
ds

 fo
r fi

ve
 ro

un
ds

 (w
ith

 a
 G

M
M

 fo
r

po
si

tiv
e

pr
un

in
g)

Th
e

m
in

im
um

, m
ax

im
um

 a
nd

 av
er

ag
e

(in
 p

ar
en

th
es

is
) v

al
ue

s a
re

 g
iv

en
 fo

r 1
0

ru
ns

. P
os

iti
ve

 la
be

ls
 a

re
 d

en
ot

ed
 b

y
1

an
d

ne
ga

tiv
e

la
be

ls
 b

y
0

Ro
un

d
Te

sti
ng

 a
cc

ur
ac

y
La

be
l

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re

(a
) 1

99
.7

%
-(

99
.8

%
)-

99
.8

%
0

99
.9

%
-(

99
.9

%
)-

10
0%

99
.6

%
-(

99
.6

%
)-

99
.6

%
99

.8
%

-(
99

.8
%

)-
99

.8
%

1
99

.4
%

-(
99

.6
%

)-
99

.6
%

99
.9

%
-(

99
.9

%
)-

10
0%

99
.7

%
-(

99
.8

%
)-

99
.8

%
 2

84
.6

%
-(

88
.1

%
)-

88
.4

%
0

99
.9

%
-(

99
.9

%
)-

10
0%

84
.6

%
-(

88
.1

%
)-

88
.4

%
91

.7
%

-(
93

.7
%

)-
93

.9
%

1
0.

0%
-(

0.
1%

)-
0.

1%
0.

0%
-(

10
.0

%
)-

10
0%

0.
0%

-(
0.

1%
)-

0.
1%

 3
90

.0
%

-(
90

.6
%

)-
90

.7
%

0
99

.9
%

-(
99

.9
%

)-
10

0%
90

.0
%

-(
90

.6
%

)-
90

.7
%

94
.7

%
-(

95
.1

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 4
45

.2
%

-(
82

.2
%

)-
90

.7
%

0
99

.9
%

-(
99

.9
%

)-
10

0%
45

.2
%

-(
82

.2
%

)-
90

.7
%

62
.3

%
-(

89
.0

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 5
45

.2
%

-(
83

.0
%

)-
90

.7
%

0
99

.9
%

-(
99
.9
%

)-
10

0%
45

.2
%

-(
83

.0
%

)-
90

.7
%

62
.3

%
-(

89
.9

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

(b
) 1

70
.9

%
-(

78
.0

%
)-

99
.8

%
0

10
0%

-(
10

0%
)-

10
0%

51
.2

%
-(

57
.0

%
)-

99
.6

%
67

.7
%

-(
72

.1
%

)-
99

.8
%

1
58

.1
%

-(
69

.4
%

)-
99

.6
%

10
0%

-(
10

0%
)-

10
0%

73
.5

%
-(

81
.7

%
)-

99
.8

%
 2

35
.0

%
-(

35
.3

%
)-

35
.8

%
0

10
0%

-(
10

0%
)-

10
0%

35
.0

%
-(

35
.3

%
)-

35
.8

%
51

.8
%

-(
52

.2
%

)-
52

.7
%

1
0.

0%
-(

0.
1%

)-
0.

1%
0.

0%
-(

17
.4

%
)-

10
0%

0.
0%

-(
0.

1%
)-

0.
1%

 3
36

.1
%

-(
36

.5
%

)-
37

.9
%

0
10

0%
-(

10
0%

)-
10

0%
36

.1
%

-(
36

.5
%

)-
37

.9
%

53
.0

%
-(

53
.4

%
)-

55
.0

%
1

0.
0%

-(
0.

1%
)-

0.
1%

0.
0%

-(
5.

9%
)-

10
0%

0.
0%

-(
0.

1%
)-

0.
1%

 4
36

.1
%

-(
36

.6
%

)-
38

.0
%

0
10

0%
-(

10
0%

)-
10

0%
36

.1
%

-(
36

.6
%

)-
38

.0
%

53
.0

%
-(

53
.6

%
)-

55
.0

%
1

0.
0%

-(
0.

1%
)-

0.
1%

0.
0%

-(
5.

5%
)-

10
0%

0.
0%

-(
0.

1%
)-

0.
1%

 5
29

.7
%

-(
38

.2
%

)-
61

.2
%

0
10

0%
-(
10
0%

)-
10

0%
29

.7
%

-(
38

.2
%

)-
61

.2
%

45
.8

%
-(

54
.9

%
)-

76
.0

%
1

0.
0%

-(
0.

1%
)-

0.
1%

0.
0%

-(
4.

5%
)-

10
0%

0.
0%

-(
0.

1%
)-

0.
1%

(c
) 1

99
.7

%
-(

99
.8

%
)-

99
.8

%
0

99
.9

%
-(

99
.9

%
)-

10
0%

99
.6

%
-(

99
.6

%
)-

99
.6

%
99

.8
%

-(
99

.8
%

)-
99

.8
%

1
99

.4
%

-(
99

.6
%

)-
99

.6
%

99
.9

%
-(

99
.9

%
)-

10
0%

99
.7

%
-(

99
.8

%
)-

99
.8

%
 2

84
.6

%
-(

88
.1

%
)-

88
.4

%
0

99
.9

%
-(

99
.9

%
)-

10
0%

84
.6

%
-(

88
.1

%
)-

88
.4

%
91

.7
%

-(
93

.7
%

)-
93

.9
%

1
0.

0%
-(

0.
1%

)-
0.

1%
0.

0%
-(

4.
7%

)-
40

.0
%

0.
0%

-(
0.

1%
)-

0.
1%

 3
90

.0
%

-(
90

.6
%

)-
90

.7
%

0
99

.9
%

-(
99

.9
%

)-
10

0%
90

.0
%

-(
90

.6
%

)-
90

.7
%

94
.7

%
-(

95
.1

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 4
45

.2
%

-(
83

.0
%

)-
90

.7
%

0
99

.9
%

-(
99

.9
%

)-
10

0%
45

.2
%

-(
83

.0
%

)-
90

.7
%

62
.3

%
-(

89
.6

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

 5
45

.2
%

-(
83

.7
%

)-
90

.7
%

0
99

.9
%

-(
99
.9
%

)-
10

0%
45

.2
%

-(
83

.7
%

)-
90

.7
%

62
.3

%
-(

90
.4

%
)-

95
.1

%
1

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

0.
0%

-(
0.

0%
)-

0.
0%

SN Computer Science (2021) 2:391 Page 15 of 18 391

SN Computer Science

BGL

The BlueGene/L (BGL) data set has 4,399,502 positive logs
and 348,460 negative logs. From these, 94,960 logs are used
for the training set t1 and 4,653,002 for the remaining set
r1 . Using GMM for positive pruning, the final average test-
ing accuracy is 99.5% with average precision, recall and
F-measure of 95.6%, 97.8% and 96.7% for negative logs,
and 99.8%, 99.6% and 99.7% for positive logs, respectively.
Using BGM for positive pruning, the final average testing
accuracy is 99.5% with average precision, recall and F-meas-
ure of 95.4%, 98.5% and 96.9% for negative logs, and 99.9%,
99.6% and 99.7% for positive logs, respectively.

The results with Auto-LSTM, IKNN and nLSALog
for the BGL data set are given in Table 2a. The preci-
sion, recall and F-measure results for negative logs are
better than the 92%, 91% and 92%, respectively, with the
improved K-nearest neighbors (IKNN) supervised algorithm
[36]. The precision, recall and F-measure results for nega-
tive logs are also better than the 82.5%, 94.7% and 88.2%,
respectively, with the nLSALog algorithm [40]. The preci-
sion, recall and F-measure results for negative logs are also
better than the 98%, 91.3% and 94.5%, respectively, with
the Auto-LSTM algorithm [10] (however, the precision with
Auto-LSTM is higher). Several well-known models were
also evaluated for anomaly detection. The average testing
accuracy, precision, recall, F-measure and time with the
BGM, EEnvelope, GMM, K-means, LOF, and OC-SVM
methods for the BGL data set using 10-fold cross-validation
are given in Table 3a. Among existing methods, the GMM
results for negative logs are the highest with precision, recall
and F-measure of 38.2%, 50% and 43.3%, but these values
are lower than those for the proposed model. The proposed
model results are better because of pruning positive and
negative logs and using DL. Because of the high complex-
ity of the LOF and OC-SVM methods [2, 9, 29], only 5% of
the data set was used for these models.

Openstack

The Openstack data set has 137,074 positive log messages
and 18,434 negative log messages. From these, 3111 logs
are used for the training set t1 and 152,397 for the remaining
set r1 . Using GMM for positive pruning, the final average
testing accuracy is 99.9% with average precision, recall and
F-measure of 99.9%, 99.7% and 99.8% for negative logs,
and 99.9%, 99.9% and 99.9% for positive logs, respectively.
Using BGM for positive pruning, the final average testing
accuracy is 99.9% with average precision, recall and F-meas-
ure of 99.7%, 99.9% and 99.8% for negative logs, and 99.9%,
99.9% and 99.9% for positive logs, respectively.

The results with Auto-LSTM and Deeplog for the Open-
stack data set are given in Table 2b. The precision, recall

and F-measure results for negative logs are better than the
94%, 99% and 97% obtained with the Deeplog network [7].
The precision, recall and F-measure results for negative logs
are also better than the 99.4%, 92.8% and 96%, respectively,
with the Auto-LSTM algorithm [10]. Several well-known
models were also evaluated for anomaly detection. The
average testing accuracy, precision, recall, F-measure and
time with the BGM, EEnvelope, GMM, K-means, LOF,
and OC-SVM methods for the Openstack data set using
10-fold cross-validation are given in Table 3b. Among exist-
ing methods, the EEnvelope results for negative logs are
the highest with precision, recall and F-measure of 53.4%,
44.9% and 48.8%, but these values are lower than those for
the proposed model. The proposed model results are better
because of pruning positive and negative logs and using DL.

Thunderbird

From the Thunderbird data set, 3,000,000 positive log
messages and 324,824 negative log messages are used. Of
these, 66,497 messages are used for the training set t1 and
3,258,327 for the remaining set r1 . Using GMM for positive
pruning, the final average testing accuracy is 99.8% with
average precision, recall and F-measure of 98.9%, 99.6%
and 99.3% for negative logs, and 99.9%, 99.8% and 99.9%
for positive logs, respectively. Using BGM for positive prun-
ing, the final average testing accuracy is 99.8% with average
precision, recall and F-measure of 99%, 99.6% and 99.3%
for negative logs, and 99.9%, 99.8% and 99.9% for positive
logs, respectively.

The results with Auto-LSTM and IKNN for the Thunder-
bird data set are given in Table 2c. The precision, recall and
F-measure results for negative logs are better than the 96%
for all criteria with the IKNN supervised algorithm [36].
The precision, recall and F-measure results for negative logs
are about the same as the 98.4%, 99.8% and 99.1%, respec-
tively, with the Auto-LSTM algorithm [10]. Several well-
known models were also evaluated for anomaly detection.
The average testing accuracy, precision, recall, F-measure
and time with the BGM, EEnvelope, GMM, K-means, LOF,
and OC-SVM methods for the Thunderbird data set using
10-fold cross-validation are given in Table 3c. Among exist-
ing methods, the GMM results for negative logs are the high-
est with precision, recall and F-measure of 27.1%, 70% and
37.2%, but these values are lower than those for the proposed
model. The proposed model results are better because of
pruning positive and negative logs and using DL. Because
of the high complexity of the LOF and OC-SVM methods,
only 5% of the data set was used for these models.

 SN Computer Science (2021) 2:391 391 Page 16 of 18

SN Computer Science

Discussion

Gaussian mixture model (GMM), Dirichlet process Gauss-
ian mixture model (BGM), and K-means are well-known
clustering algorithms. Clustering algorithms have been
shown to provide good results with text data [1] and logs
are mostly text. In addition, clustering algorithms are faster
to train than DL algorithms [26]. However, an unsupervised
GMM is used here for pruning positive logs and the unsu-
pervised GMM, BGM, and K-means methods are used for
pruning negative logs. This eliminates the need to label log
messages to detect anomalies. The positive and negative
logs are selected unsupervised using Algorithms 1 and 2,
respectively. If the conditions in these algorithms are satis-
fied, then the logs predicted to be positive and negative are
added to o0 and z0 , respectively, for Algorithm 1, and o1
and z1 , respectively, for Algorithm 2. Then reliable positive
and negative logs are selected using o0 and z1 , respectively,
in Algorithm 3. The amount of positive data is far greater
than the amount of negative data, so the positive data can be
accurately predicted using clustering algorithms. However,
the negative cluster contains a lot of positive data and this
is a disadvantage of using clustering methods with imbal-
anced data [23]. We take advantage of this data imbalance as
GMM can easily predict positive data. Another disadvantage
of unsupervised clustering is that clusters may be labeled
incorrectly [27]. Thus, not only do negative clusters include
positive logs but clusters may be incorrectly labeled in dif-
ferent runs. As a consequence, the average results shown in
Table 3 for the BGM, GMM and K-means methods are poor.
Comparing the results in Tables 1 and 3, it is evident that
BGM, GMM and K-means alone do not provide good log
message anomaly detection results. This is also due to the
complexity of the unstructured log messages. For negative
pruning, our experimental results indicate that using just one
model can limit the pruning process so that many unreliable
logs are retained. Thus, multiple models are employed.

The precision for positive logs is the percentage of true
positive logs predicted of all logs predicted to be positive.
Table 4 shows that with GMM and BGM for positive prun-
ing, the average precision of positive logs is 99.9% for the
BGL, Openstack and Thunderbird data sets, which is very
high. Thus, most logs that are predicted to be positive are
correct, and the number of negative log messages predicted
to be positive (FP) is low. This indicates that pruning posi-
tive logs using Algorithm 1 is effective. However, the aver-
age precision for negative logs for the BGL and Thunderbird
data sets is around 76% and 50%, respectively, which is quite
low.

In separate experiments, the value of the constant c and
the threshold for a were varied to determine their effect
on Algorithm 1. The first set of experiments considered
c = 1.4, 1.5, 1.6, 1.7 , and 1.8 with a > 3 and the second set

of experiments considered a > 3 , 4, 6, and 10 with c = 1.6 .
The criterion for this algorithm is that the set z0 is not empty.
This is because Algorithm 2 requires this data for training.
In the first set of experiments, the criterion was satisfied for
all values of c with the Openstack and Thunderbird data sets
and for all values except c = 1.8 with the BGL data set. In
the second set of experiments, the criterion was satisfied for
a = 3 , 4, and 6 with the BGL and Openstack data sets and
for a = 3 and 4 with the Thunderbird data set.

The effect of the negative log pruning algorithm is
shown in Tables 5, 6 and 7 for the BGL, Openstack and
Thunderbird data sets (with a GMM for positive pruning),
respectively. Here, precision for the negative logs is the most
important criterion. For the BGL data set, the average pre-
cision of the negative logs with the GMM, K-means and
BGM methods increased from 82.4 to 100%, 80.8–95.9%
and 88.1– 100%, respectively, over the five rounds. For the
Openstack data set, the average precision of the negative
logs with the GMM, K-means and BGM methods increased
from 99.9 to 100% for all models over the five rounds. For
the Thunderbird data set, the average precision of the nega-
tive logs with the GMM, K-means and BGM methods was
approximately the same, 99.9–100%, over the five rounds.
These results indicate that Algorithm 2 is very effective in
pruning negative logs. Further, the BGL data set required
five rounds to obtain good results but only two rounds were
sufficient for the Openstack and Thunderbird data sets.
The GMM, K-means and BGM methods were used here to
prune negative logs, but other unsupervised models can be
employed.

The adjusted Rand index [21] is a measure of the similar-
ity of results and has a value between 0 and 1. A high index
value means the results are very similar. For negative log
pruning with the BGL data set, the average adjusted Rand
index of all rounds for GMM and BGM was 0.94, for GMM
and K-means was 0.33 and for BGM and K-means was 0.28.
For negative log pruning with the Openstack data set, the
average adjusted Rand index of all rounds for GMM and
BGM was 0.74, for GMM and K-means was 0.49, and for
BGM and K-means was 0.37. For negative log pruning with
the Thunderbird data set, the average adjusted Rand index
of all rounds for GMM and BGM was 0.93, for GMM and
K-means was 0.19, and for BGM and K-means was 0.17.
These values show that the GMM and BGM results are more
similar than the GMM and K-means results and the BGM
and K-means results.

The anomaly detection results with the LSTM network
using the reliable positive and negative logs are shown in
Table 1. The final results with GMM and BGM positive log
pruning were similar. The proposed model results are better
than with Auto-LSTM because the data was balanced before
it was input to the LSTM network for anomaly detection
whereas in [10], imbalanced data was used in the network.

SN Computer Science (2021) 2:391 Page 17 of 18 391

SN Computer Science

The amount of data used for LSTM training was very small
(less than 2% for BGL, 3% for Thunderbird, and 18% for
Openstack) whereas deep networks typically require a sig-
nificant amount of training data for convergence. For the
Openstack data set, a greater percentage of training data was
required for convergence because it is small (more than 20
times smaller than Thunderbird and BGL).

The proposed hybrid model (with unsupervised selection
of reliable logs), has three advantages over supervised meth-
ods. First, it is suitable for many practical applications as
there is no need to label data. Second, labeling data is a time-
consuming task and in many cases is not feasible. Third,
using an unsupervised method eliminates the human error
inherent in labeling. The default hyperparameters were used
with the proposed model so better results may be obtained
with hyperparameter tuning.

Conclusion

Many millions of log messages are generated each day in
cloud and other systems. These messages are important for
system maintenance which includes anomaly detection. Log
messages consist of unstructured data which is mostly text.
Thus, machine learning (ML) is a good choice for anomaly
detection. In this paper, a hybrid log message anomaly detec-
tion technique using deep learning (DL) was proposed with
pruning of positive and negative log messages. An unsuper-
vised algorithm with a Gaussian mixture model (GMM) was
used to prune positive logs. Then, an unsupervised algorithm
was used to prune negative logs using the K-means, GMM,
and Dirichlet Process Gaussian mixture model (BGM) meth-
ods iteratively. The precision with the pruning algorithms
for positive and negative logs was high, i.e., there were few
false positives (FP). The proposed model was tested on three
different log message data sets, namely BGL, Openstack and
Thunderbird. The results obtained show that this model is
better than other well-known approaches. Future research
can consider the effect of adding other unsupervised meth-
ods such as isolation forest to the proposed model. Further,
a CNN network can be used for anomaly detection instead
of an LSTM network and hyperparameter tuning can be
investigated.

Funding This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of Interest The authors declare no conflict of interest with re-
gards to this paper.

References

 1. Aggarwal CC, Zhai C. A survey of text clustering algorithms. In:
Mining text data. Berlin: Springer; 2012. p. 77–128. https:// doi.
org/ 10. 1007/ 978-1- 4614- 3223-4_4.

 2. Baoyi W, Xiangyu L, Shaomin Z. An improved outlier detection
algorithm K-LOF based on density. Comput Perform Commun
Syst. 2017;2(1):1–7. https:// doi. org/ 10. 23977/ cpcs. 2017. 21001.

 3. Blei DM, Jordan MI. Variational inference for Dirichlet process
mixtures. Bayesian Anal. 2006;1(1):121–43. https:// doi. org/ 10.
1214/ 06- BA104.

 4. Byeon W, Liwicki M, Breuel TM. Texture classification using 2D
LSTM networks. In: International Conference on Pattern Recogni-
tion, pp. 1144–1149. 2014.

 5. Dargan S, Kumar M, Ayyagari MR, Kumar G. A survey of deep
learning and its applications: a new paradigm to machine learning.
Arch Comput Methods Eng. 2020;27(4):1071–92. https:// doi. org/
10. 1007/ s11831- 019- 09344-w.

 6. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc Ser B Meth-
odol. 1977;39(1):1–22. https:// doi. org/ 10. 1111/j. 2517- 6161. 1977.
tb016 00.x.

 7. Du M, Li F, Zheng G, Srikumar V. DeepLog: anomaly detec-
tion and diagnosis from system logs through deep learning. In:
ACM Conference on Computer and Communications Security,
pp. 1285–1298. 2017. https:// doi. org/ 10. 1145/ 31339 56. 31340 15.

 8. Du W, Zhu Z, Wang C, Yue Z. The real-time big data processing
method based on LSTM for the intelligent workshop production
process. In: IEEE International Conference on Big Data Analyt-
ics, pp. 63–67. 2020. https:// doi. org/ 10. 1109/ ICBDA 49040. 2020.
91013 45.

 9. Erfani SM, Rajasegarar S, Karunasekera S, Leckie C. High-
dimensional and large-scale anomaly detection using a linear one-
class SVM with deep learning. Pattern Recogn. 2016;58:121–34.
https:// doi. org/ 10. 1016/j. patcog. 2016. 03. 028.

 10. Farzad A, Gulliver TA. Log message anomaly detection and clas-
sification using auto-B/LSTM and auto-GRU. 2019. arXiv: 1911.
08744 [Preprint].

 11. Farzad A, Gulliver TA. Unsupervised log message anomaly detec-
tion. ICT Exp. 2020;6(3):229–37. https:// doi. org/ 10. 1016/j. icte.
2020. 06. 003.

 12. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett.
2006;27(8):861–74. https:// doi. org/ 10. 1016/j. patrec. 2005. 10. 010.

 13. Ferguson TS. A Bayesian analysis of some nonparametric prob-
lems. Ann Stat. 1973;1(2):209–30.

 14. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge:
MIT Press; 2016.

 15. Graves A. Supervised sequence labelling with recurrent neu-
ral networks. In: Studies in computational intelligence. Berlin:
Springer; 2012. https:// doi. org/ 10. 1007/ 978-3- 642- 24797-2.

 16. Guo W, Che L, Shahidehpour M, Wan X. Machine-learn-
ing based methods in short-term load forecasting. Electr J.
2021;34(1):106884. https:// doi. org/ 10. 1016/j. tej. 2020. 106884.

 17. Harada Y, Yamagata Y, Mizuno O, Choi E. Log-based anomaly
detection of CPS using a statistical method. In: International
Workshop on Empirical Software Engineering in Practice, pp.
1–6. 2017. https:// doi. org/ 10. 1109/ IWESEP. 2017. 12.

 18. He P, Zhu J, He S, Li J, Lyu MR. An evaluation study on log
parsing and its use in log mining. In: IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 654–661.
2016. https:// doi. org/ 10. 1109/ DSN. 2016. 66.

 19. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80. https:// doi. org/ 10. 1162/ neco. 1997.9.
8. 1735.

https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.23977/cpcs.2017.21001
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1007/s11831-019-09344-w
https://doi.org/10.1007/s11831-019-09344-w
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICBDA49040.2020.9101345
https://doi.org/10.1109/ICBDA49040.2020.9101345
https://doi.org/10.1016/j.patcog.2016.03.028
http://arxiv.org/abs/1911.08744
http://arxiv.org/abs/1911.08744
https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1016/j.tej.2020.106884
https://doi.org/10.1109/IWESEP.2017.12
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

 SN Computer Science (2021) 2:391 391 Page 18 of 18

SN Computer Science

 20. Hoyle B, Rau MM, Paech K, Bonnett C, Seitz S, Weller J. Anom-
aly detection for machine learning redshifts applied to SDSS gal-
axies. Mon Not R Astron Soc. 2015;452(4):4183–94. https:// doi.
org/ 10. 1093/ mnras/ stv15 51.

 21. Hubert L, Arabie P. Comparing partitions. J Classif.
1985;2(1):193–218. https:// doi. org/ 10. 1007/ BF019 08075.

 22. Kaur H, Kumar M. A comprehensive survey on word rec-
ognition for non-Indic and Indic scripts. Pattern Anal Appl.
2018;21(4):897–929. https:// doi. org/ 10. 1007/ s10044- 018- 0731-2.

 23. Kumar C, Rao K, Govardhan A, Reddy K. Imbalanced K-means:
an algorithm to cluster imbalanced-distributed data. Int J Eng
Tech Res. 2014;2(2):114–22.

 24. Li L, Hansman RJ, Palacios R, Welsch R. Anomaly detection via
a Gaussian mixture model for flight operation and safety monitor-
ing. Transp Res Part C: Emerg Technol. 2016;64:45–57. https://
doi. org/ 10. 1016/j. trc. 2016. 01. 007.

 25. Lin Q, Zhan, H, Lou J, Zhang Y, Chen X. Log clustering based
problem identification for online service systems. In: IEEE/ACM
International Conference on Software Engineering, pp. 102–111.
2016.

 26. Majumder S, Balaji N, Brey K, Fu W, Menzies T. 500+ times
faster than deep learning (a case study exploring faster methods
for text mining StackOverflow). arXiv:1802.05319 [Preprint]
2018. http:// arxiv. org/ abs/ 1802. 05319

 27. Maligo A, Lacroix S. Classification of outdoor 3D lidar data based
on unsupervised Gaussian mixture models. IEEE Trans Autom Sci
Eng. 2017;14(1):5–16. https:// doi. org/ 10. 1109/ TASE. 2016. 26149
23.

 28. Miao X, Liu Y, Zhao H, Li C. Distributed online one-class support
vector machine for anomaly detection over networks. IEEE Trans
Cybern. 2019;49(4):1475–88.

 29. Nalepa J, Kawulok M. Selecting training sets for support vector
machines: a review. Artif Intell Rev. 2019;52(2):857–900. https://
doi. org/ 10. 1007/ s10462- 017- 9611-1.

 30. Nissim N, Moskovitch R, Rokach L, Elovici Y. Detecting
unknown computer worm activity via support vector machines
and active learning. Pattern Anal Appl. 2012;15(4):459–75.
https:// doi. org/ 10. 1007/ s10044- 012- 0296-4.

 31. Paulauskas N, Bagdonas AF. Local outlier factor use for
the network flow anomaly detection. Secur Commun Netw.
2015;8(18):4203–12. https:// doi. org/ 10. 1002/ sec. 1335.

 32. Reidemeister T, Jiang M, Ward PAS. Mining unstructured log files
for recurrent fault diagnosis. In: IFIP/IEEE International Sympo-
sium on Integrated Network Management and Workshops, pp.
377–384. 2011.

 33. Sun Y, Xu W, Zhang J, Xiong J, Gui G. Super-resolution imaging
using convolutional neural networks. In: Communications, signal
processing, and systems. Berlin: Springer Nature; 2020. p. 59–66.

 34. Syarif I, Prugel-Bennett A, Wills G. Unsupervised clustering
approach for network anomaly detection. In: Networked digital
technologies. Berlin: Springer; 2012. p. 135–45.

 35. Veracini T, Matteoli S, Diani M, Corsini G. Fully unsuper-
vised learning of Gaussian mixtures for anomaly detection in

hyperspectral imagery. In: International Conference on Intelligent
Systems Design and Applications; 2009. pp. 596–601.

 36. Wang B, Ying S, Cheng G, Wang R, Yang Z, Dong B. Log-based
anomaly detection with the improved K-nearest neighbor. Int J
Softw Eng Knowl Eng. 2020;30(2):239–62. https:// doi. org/ 10.
1142/ S0218 19402 05001 14.

 37. Wang J, Cao Z. Chinese text sentiment analysis using LSTM net-
work based on L2 and Nadam. In: IEEE International Conference
on Communication Technology, pp. 1891–1895. 2017.

 38. Wang SH, Govindaraj VV, Górriz JM, Zhang X, Zhang YD.
COVID-19 classification by FGCNet with deep feature fusion
from graph convolutional network and convolutional neural net-
work. Inform Fusion. 2021;67:208–29. https:// doi. org/ 10. 1016/j.
inffus. 2020. 10. 004.

 39. West M, Harrison J. Bayesian forecasting and dynamic models,
chap 16: multivariate modelling and forecasting. Berlin: Springer;
1997. p. 581–630.

 40. Yang R, Qu D, Gao Y, Qian Y, Tang Y. nLSALog: an anomaly
detection framework for log sequence in security management.
IEEE Access. 2019;7:181152–64.

 41. Yen TF, Oprea A, Onarlioglu K, Leetham T, Robertson W, Juels
A, Kirda E. Beehive: large-scale log analysis for detecting suspi-
cious activity in enterprise networks. In: Annual Computer Secu-
rity Applications Conference, pp. 199–208. 2013. https:// doi. org/
10. 1145/ 25236 49. 25236 70.

 42. Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S. Sher-
Log: error diagnosis by connecting clues from run-time logs. In:
Architectural support for programming languages and operating
systems, pp. 143–154. 2010. https:// doi. org/ 10. 1145/ 17360 20.
17360 38.

 43. Zhang L. The research of log-based network monitoring system.
In: Advances in intelligent systems. Berlin: Springer; 2012. p.
315–20.

 44. Zhang Q, Yang LT, Chen Z, Li P. A survey on deep learning
for big data. Inform Fusion. 2018;42:146–57. https:// doi. org/ 10.
1016/j. inffus. 2017. 10. 006.

 45. Zhang YD, Satapathy SC, Guttery DS, Górriz JM, Wang SH.
Improved breast cancer classification through combining graph
convolutional network and convolutional neural network. Inform
Process Manag. 2021;58(2):102439. https:// doi. org/ 10. 1016/j.
ipm. 2020. 102439.

 46. Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR. Tools and
benchmarks for automated log parsing. In: International Confer-
ence on Software Engineering: Software Engineering in Prac-
tice, pp. 121–130. 2019. https:// doi. org/ 10. 1109/ ICSE- SEIP. 2019.
00021.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/mnras/stv1551
https://doi.org/10.1093/mnras/stv1551
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/s10044-018-0731-2
https://doi.org/10.1016/j.trc.2016.01.007
https://doi.org/10.1016/j.trc.2016.01.007
http://arxiv.org/abs/1802.05319
https://doi.org/10.1109/TASE.2016.2614923
https://doi.org/10.1109/TASE.2016.2614923
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1007/s10044-012-0296-4
https://doi.org/10.1002/sec.1335
https://doi.org/10.1142/S0218194020500114
https://doi.org/10.1142/S0218194020500114
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1145/2523649.2523670
https://doi.org/10.1145/2523649.2523670
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1016/j.ipm.2020.102439
https://doi.org/10.1016/j.ipm.2020.102439
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	Two Class Pruned Log Message Anomaly Detection
	Abstract
	Introduction
	System Model
	K-Means
	Gaussian Mixture Model (GMM)
	Dirichlet Process Gaussian Mixture Model (BGM)
	LSTM Architecture
	Proposed Model
	Select Reliable Positive Logs
	Select Reliable Negative Logs
	Anomaly Detection

	Results
	BGL
	Openstack
	Thunderbird
	Discussion

	Conclusion
	References

