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Heart rate is under the precise control of the autonomic nervous system. However, the wiring
of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a
clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and
employed a multi-technique approach to map parasympathetic and sympathetic neural cir-
cuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic
neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to
the sinoatrial node. We also report that the heart rate response to optogenetic versus
electrical stimulation of the vagus nerve displays different temporal characteristics and that
vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via
central mechanisms. Our findings provide new insights into neural regulation of heart rate,
and our methodology to study cardiac circuits can be readily used to interrogate neural
control of other visceral organs.
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ituation-dependent changes in heart rate are essential for

survival and are under the precise control of the autonomic

nervous system (ANS)!. Heart rate reduction during sleep?
and elevation during exercise’ result from changes in para-
sympathetic and sympathetic tone. In fact, heart rate variability
has been utilized extensively as an index of ANS function*-°.
Although it is well known that the parasympathetic and sympa-
thetic nervous systems innervate the sinoatrial (SA) node’:8 and
regulate heart rate?~13, the wiring of these neural circuits in the
periphery is not well characterized. Anatomical and functional
maps of these fundamental cardiac circuits are needed to
understand physiology, characterize remodeling in disease (e.g.,
sick sinus syndrome!#), and develop novel therapeutics. However,
these efforts have been hindered by a shortage of tools that target
the peripheral nervous system (PNS) with specificity and
precision.

Cardiac circuit anatomy has traditionally been studied using thin
sections!®> and whole-mount preparations!®. However, these
methods do not preserve the structure of intact circuits and only
provide 2D information. In contrast, tissue clearing methods render
tissues optically transparent while preserving their molecular and
cellular architecture and can be combined with a variety of labeling
strategies to enable 3D visualization of intact circuits!”>18. To trace
cardiac circuits, dyes and proteins have historically been used.
However, achieving cell type-specificity and/or sparse labeling
needed for singe-cell tracing and delineating circuit connectivity is
difficult or not possible with these methods!'®. Additionally, many
peripheral neuronal populations such as intrinsic cardiac ganglia are
challenging to access surgically for tracer delivery. Adeno-associated
viruses (AAVs) can address these limitations since they can be used
to express genes of interest (e.g., fluorescent proteins) in defined cell
populations in wild-type and transgenic animals?9-22. In addition,
intersectional strategies can be used to titrate gene expression to
achieve sparse labeling?!. AAVs can also be delivered systemically
to target difficult-to-reach populations?9-22.

Functional mapping of cardiac circuits has relied on electrical
or pharmacological manipulation of the ANS with simultaneous
physiological measurements?324, However, each of these methods
has disadvantages. Electrical techniques lack spatial precision and
specificity. Autonomic nerves such as the vagus contain motor
and sensory fibers?®, and electrical stimulation typically activates
both fiber types2027 as well as surrounding tissues?®. Pharma-
cological techniques exhibit improved selectivity but lack
temporal resolution. In contrast, optogenetics, which uses
light-sensitive ion channels (e.g., channelrhodopsin-2 (ChR2),
halorhodopsin), enables precise spatiotemporal control of defined
cell populations.

Here, we develop a clearing-imaging-analysis pipeline to
visualize innervation of whole hearts in 3D and employ a multi-
technique approach, which includes AAV-based sparse labeling
and tracing, retrograde neuronal tracing with cholera toxin sub-
unit B (CTB), and optogenetics with simultaneous physiological
measurements, to map peripheral parasympathetic and sympa-
thetic neural circuits that regulate heart rate in mice.

Results

Tissue clearing and computational pipeline to assess cardiac
innervation. To characterize global innervation of the mouse
heart in 3D, we developed a clearing-imaging-analysis pipeline
(Fig. 1a). We stained whole hearts with an antibody against the
pan-neuronal marker protein gene product 9.5 (PGP9.5) and
rendered them optically transparent using an immunolabeling-
enabled three-Dimensional Imaging of Solvent-Cleared Organs
(iDISCO) protocol (Fig. 1b)%%. We used confocal microscopy to
image large tissue volumes (Fig. 1c and Supplementary Movie 1)

and both confocal and lightsheet microscopy to image entire
hearts (Supplementary Movie 2)3031. We observed cardiac
ganglia surrounding the pulmonary veins and a dense network of
nerve fibers coursing through the atrial and ventricular
myocardium (Fig. 1c). In contrast to whole-mount stained hearts,
innervation was seen throughout the entire thickness of the
myocardium in iDISCO-cleared hearts, with large-diameter nerve
fiber bundles located near the epicardium and smaller fiber
bundles in the mid-myocardium and endocardium (Fig. 1c,
Supplementary Fig. 1, and Supplementary Movie 3). To analyze
these data, we created a semiautomated computational pipeline to
detect nerve fibers over large tiled volumes and to measure
microanatomical features of fibers such as diameter and orien-
tation (Fig. 1d and e). Large-diameter nerve fiber bundles typi-
cally entered near the base of the dorsal heart. These bundles
coursed perpendicular to the atrioventricular (AV) groove and
branched into smaller fiber bundles as they progressed towards
the apex. These data from healthy hearts will be important for
future characterization of neural remodeling in cardiovascular
diseases such as myocardial infarction (MI) in which innervation
patterns are disrupted and nerve sprouting occurs32-33,

While the iDISCO protocol was specifically developed for
immunostaining applications, other clearing techniques such as
the PAssive Clarity Technique (PACT) are better suited for
visualizing endogenous fluorescence in large tissue volumes or
whole organs%3% We demonstrate that PACT preserves the
fluorescence of virally labeled cholinergic and endogenously labeled
noradrenergic neurons and nerve fibers in the heart (Supplementary
Fig. 2 and Supplementary Movies 4-6). Therefore, the application
should dictate the choice of clearing technique.

AAV-based labeling and tracing of cholinergic neurons on the
heart. After visualizing global cardiac innervation, we assessed
whether we could identify a subset of cholinergic neurons that form
an anatomical circuit with the SA node to potentially regulate heart
rate. We used an AAV-based system to trace fibers, presumably
from cholinergic neurons in intrinsic cardiac ganglia. Multicolor
labeling strategies allow individual cells to be distinguished from
one another (Fig. 2a) and sparse labeling reduces the fraction of
labeled cells to allow individual fibers to be visualized (Fig. 2b)2!. To
demonstrate this, we systemically co-administered Cre-dependent
vectors expressing fluorescent proteins (XFPs) from the
tetracycline-responsive element (TRE)-containing promoter at a
high dose and the tetracycline transactivator (tTA) from the human
synapsin I promoter (hSynl) at a lower dose in ChAT-IRES-Cre
transgenic mice (Fig. 2b)*!. Compared to dense multicolor labeling
(Fig. 2a), sparse multicolor labeling resulted in a labeling density in
intrinsic cardiac ganglia that was lower and that would more easily
allow for tracing (Fig. 2b)2L. To trace cholinergic fiber, we utilized
sparse single-color labeling with tdTomato. Three weeks after viral
delivery, hearts were collected and stained with an antibody for
hyperpolarization-activated ~ cyclic nucleotide-gated potassium
channel 4 (HCN4). HCN4 staining along with anatomical land-
marks were used to identify the SA node, the AV node, and the
conduction system3>36, We observed cholinergic fibers, presumably
from cardiac ganglia, coursing along the SA node, AV node, and
ventricles (Fig. 2c), identifying cholinergic neurons that are poten-
tially involved in chronotropic, dromotropic, and ventricular con-
trol, respectively.

Optogenetic stimulation of cholinergic neurons in the inferior
pulmonary vein-ganglionated plexus. Next, to functionally assess
whether cholinergic neurons in the inferior pulmonary vein-
ganglionated plexus (IPV-GP) regulate heart rate and AV con-
duction, we used an optogenetic approach. We expressed ChR2 in
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Fig. 1 Tissue clearing and computational pipeline to assess cardiac innervation. a Schematic of the clearing-imaging-analysis pipeline for assessing cardiac
innervation. b A whole heart (top) was rendered transparent (bottom) using the iDISCO protocol. € 3D confocal projections of the ventral (1500 um z-
stack) and dorsal side of a cleared heart (1200 um z-stack) with PGP9.5 staining (gray). Inset 1 shows a maximum intensity projection (MIP) confocal
image of a cardiac ganglion. Inset 2 shows 785 um-thick 3D projections of the entire left ventricular wall. d, @ A semiautomated computational pipeline was
used to detect nerve fibers in the dorsal heart image from (c) and derive their diameter (d) and orientation (e). Insets show higher magnification images.
Scale bars are 2 mm (b), 1mm (¢ (top), d (left), e (left)), and 100 um (e (bottom), d (right), e (right))

cholinergic neurons by crossing transgenic ChAT-IRES-Cre mice
with reporter mice containing a Cre-dependent ChR2-enhanced
yellow fluorescent protein allele (ChR2-eYFP; offspring from this
cross are subsequently referred to as ChAT-ChR2-eYFP mice).
ChR2-eYFP expression in intrinsic cardiac neurons was confirmed
by staining hearts for GFP (to amplify ChR2-eYFP detection) and
PGP9.5 (Fig. 3a). All GFP+ neurons were PGP9.5+ (100.0 £ 0.0%)
and the majority of PGP9.5+ neurons were GFP+- (96.4 £ 1.2%)
(Fig. 3b). GFP staining was also present in PGP9.5+ nerve fibers in
the atria and ventricles (Fig. 3a). These data are consistent with
previous studies reporting that the majority of intrinsic cardiac
neurons are cholinergic3’ and that the ventricles as well as atria
receive cholinergic innervation37-39.

After verifying ChR2 expression, we next assessed whether
selective stimulation of cholinergic neurons in the IPV-GP
modulated heart rate and AV nodal conduction using optoge-
netics in ex vivo Langendorff-perfused hearts. A blue laser-
coupled optical fiber was positioned for focal illumination of the
IPV-GP while cardiac electrical activity was simultaneously
recorded (Fig. 3c, d). Optogenetic stimulation resulted in a
decrease in heart rate that was dependent on light pulse power,
frequency, and pulse width (Fig. 3e-g and Supplementary Table 1)

but did not change the AV interval (35.7+1.2ms before
stimulation versus 35.9 1.0 ms during stimulation) (Fig. 3h).
The lack of change in AV nodal conduction suggests that fibers
from this ganglion may pass through the AV node without
synapsing. In addition, stimulation prolonged the P wave
duration (9.3+1.0ms before stimulation versus 12.3 +2.4ms
during stimulation) and caused P wave fractionation (Fig. 3i, j). P
wave fractionation has been reported in humans following
administration of adenosine?’, which mimics the effects of
acetylcholine released from cholinergic nerve terminals*!42,
During stimulations at higher frequencies, we occasionally
observed ectopic atrial rhythms (#n = 3/6 mice) and even asystole
(n=1/6 mice) (Fig. 3d), demonstrating the profound effect of the
IPV-GP on the SA node and atrial function. The response to
stimulation was abolished by administration of the muscarinic
receptor antagonist atropine (—33.5+11.0% with stimulation
before atropine versus —0.3+0.2% with stimulation after
atropine) (Fig. 3k and Supplementary Table 1), indicating that
the bradycardic response was indeed mediated by selective
stimulation of cholinergic neurons.

Since ChR2 is expressed in both preganglionic cholinergic
inputs to and postganglionic cholinergic neurons in the IPV-GP
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Fig. 2 AAV-based labeling and tracing of cholinergic neurons on the heart. a Schematic of the one-component expression system for cell type-specific,
dense multicolor labeling (top). To densely label cholinergic neurons in cardiac ganglia, ChAT-IRES-Cre mice were systemically co-administered 3 Cre-
dependent vectors expressing either mRuby2, mNeonGreen, or mTurquoise2 from the ubiquitous CAG promoter (ssAAV-PHP.S:CAG-DIO-XFPs) (1 x 1012
vector genomes (vg) each; 3 x 1012 vg total). A MIP image of a densely labeled cardiac ganglion (bottom left). Inset shows a higher magnification image
(bottom right). b Schematic of the two-component expression system for cell type-specific, sparse multicolor labeling (top). Expression of XFPs is
dependent on cotransduction of an inducer in Cre-expressing cells. The dose of the inducer vector can be titrated to control extent of XFP labeling. To
sparsely label cholinergic neurons in cardiac ganglia, ChAT-IRES-Cre mice were systemically co-administered 3 Cre-dependent vectors expressing XFPs
from the TRE-containing promoter (ssAAV-PHP.S:TRE-DIO-XFPs) (1x 1012 vg each; 3 x 1012 vg total) and a Cre-dependent inducer vector expressing the
tTA from the ihSyn1 promoter (ssAAV-PHP.S:ihSyn1-tTA) (1x10'0 vg). A MIP image of a sparsely labeled cardiac ganglion (bottom left). Inset shows a
higher magnification image (bottom right). € To trace cholinergic fibers, presumably from cardiac ganglia, sparse labeling was performed by systemically
co-administering ssAAV-PHP.S:TRE-DIO-tdTomato at a high dose (1x 102 vg) and ssAAV-PHP.S:ihSyn1-DIO-tTA at a lower dose (1 x 1010 vg). Cartoon of
the dorsal heart depicting the orientation of images (left). A MIP image of the dorsal atrium with native tdTomato fluorescence (red) and HCN4 staining
(green) (middle). Fibers were traced with neuTube and overlaid on a grayscale MIP image (right). Orange fibers coursed along the right atrium (RA)
including the sinoatrial (SA) and atrioventricular (AV) nodes and blue fibers along the ventricles. Scale bars are 50 um (a, b) and 200 um (¢). All images
were acquired on tissue collected 3 weeks after intravenous injection. IPV-GP inferior pulmonary vein-ganglionated plexus, IVC inferior vena cava, LA left

atrium, LV left ventricle, PV pulmonary vein, RV right ventricle, SVC superior vena cava

in ChAT-ChR2-eYFP mice, we assessed whether we could
stimulate only postganglionic cholinergic neurons in the IPV-
GP using optogenetics and still modulate heart rate. We first
evaluated whether we could preferentially deliver transgenes to
peripheral cholinergic neurons in intrinsic cardiac ganglia rather
than central cholinergic neurons in the medulla using systemic
AAVs. We used AAV-PHP.SS, a capsid variant that more
efficiently transduces the PNS and many visceral organs including
the heart, as compared to AAV92l. We packaged a Cre-
dependent genome that expresses eYFP from the ubiquitous
CAG promoter into AAV-PHP.S and systemically administered
the virus to ChAT-IRES-Cre transgenic mice. Three weeks later,
we evaluated eYFP expression in the medulla, vagus nerve, and
cardiac ganglia with GFP staining. Central cholinergic neurons in
the dorsal motor nucleus of the vagus nerve (DMV) (1.5 +0.9%

expressed GFP) and fibers in the vagus nerve were weakly
transduced (Supplementary Fig. 3a—c). In contrast, we observed
robust transduction of peripheral cholinergic neurons in cardiac
ganglia (91.0 £ 1.5%) (Supplementary Fig. 3d and e), likely due to
the strong tropism AAV-PHP.S displays for the PNS over the
CNS. Further, GFP expression was highly specific for ChAT+
neurons in cardiac ganglia (100.0 £ 0.0%) (Supplementary Fig. 3e).
For functional studies, we packaged a Cre-dependent genome that
expresses ChR2-eYFP from the ubiquitous CAG promoter in
AAV-PHP.S, systemically administered the virus to ChAT-IRES-
Cre transgenic mice, and evaluated expression 5 weeks later. In
Langendorff-perfused hearts, we were able to optogenetically
stimulate postganglionic cholinergic neurons in the IPV-GP and
decrease heart rate (Supplementary Fig. 4). Taken together, our
anatomical and functional data establish an IPV-GP-SA node
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circuit involved in heart rate regulation (Fig. 31). Furthermore, the
engineered AAV, AAV-PHP.S?!, can be a powerful tool to dissect
out the roles of peripheral versus central circuits on organ
control.

Optogenetic versus electrical stimulation of the vagus nerve.
Electrical vagus nerve stimulation (VNS) has been used in
numerous preclinical and clinical studies for the treatment of
cardiovascular diseases*3 and other conditions (e.g., rheumatoid

arthritis*4). However, the relative contributions of vagal efferent
and afferent fibers on cardiac function are not well understood
because conventional techniques do not allow for fiber type-
specific stimulation. To address this limitation, we examined
whether we could selectively stimulate efferent fibers in the vagus
nerve using optogenetics. We also assessed whether there was a
difference between optogenetic and electrical VNS on heart rate
(Fig. 4a), as a previous study showed that electrical stimulation of
motor nerves results in a non-orderly, non-physiological
recruitment of fibers, with larger fibers activated first*>. The
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Fig. 3 Ex vivo optogenetic stimulation of cholinergic neurons in the IPV-GP. a A 3D projection (1200 um z-stack) of the dorsal side of a heart from a ChAT-
ChR2-eYFP mouse whole-mount stained with PGP9.5 (red) and GFP (green). Insets 1 and 2 show MIP images of a cardiac ganglion and the ventricle,
respectively. Blue dashed boxes indicate location of higher magnification images in blue boxes. b Percentage of cardiac ganglion neurons expressing GFP
and PGP9.5 over those expressing GFP or PGP9.5. ¢ Langendorff-perfused hearts were used for optogenetic stimulation of cholinergic neurons in a cardiac
ganglion. A blue laser-coupled optical fiber was positioned for focal illumination of the IPV-GP (circle). A surface electrocardiogram (ECG) was recorded
with bath electrodes and intracardiac electrograms with an electrophysiology (EP) catheter. d Representative ECGs during stimulation (blue shading) at
10 Hz, 10 ms, and 221 mW (top) and 20 Hz, 10 ms, and 221 mW (bottom). Insets show the ECGs before and during stimulation. e-g Dose response
curves summarizing the effects of altering light pulse power (e), frequency (f), and pulse width (g) on heart rate. h Summary of the AV interval before and
during stimulation at 10 Hz and 10 ms (t; = 0.1656, P = 0.8765). i Representative ECG during stimulation (blue shading) at 10 Hz, 10 ms, and 221 mW.
Insets show a single beat before and during stimulation, with gray boxes showing a higher magnification of the P wave. j The P wave duration before versus
during stimulation (ts =2.920, *P = 0.0330). k Summary of the heart rate response to stimulation before versus after atropine administration (t; =2.993,
*P=0.0402). I Cartoon of the dorsal heart depicting the IPV-GP-SA node circuit. n = 6 mice (b, e-g, j) and 5 mice (h, k); mean £ s.e.m.; paired, two-tailed
t-test. Scale bars are Tmm (a (left), €) and 100 um (a (right))
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Fig. 4 In vivo optogenetic versus electrical stimulation of the vagus nerve. a Cartoon depicting optogenetic and electrical vagus nerve stimulation strategy
in ChAT-ChR2-eYFP mice. The right vagus nerve was surgically exposed in anesthetized mice and either light or electricity was used for stimulation. b MIP
images of the right nodose/jugular ganglion complex and vagus nerve whole-mount stained with PGP9.5 (red) and GFP (green). ¢ Representative heart
rate responses during optogenetic versus electrical right vagus nerve stimulation (RVNS; magenta shading) at identical frequencies (20 Hz) and pulse
widths (10 ms) in the intact state. The light pulse power for optogenetic stimulation was 57 mW and the current for electrical stimulation was 5pA. d
Frequency response curves summarizing the effects of optogenetic versus electrical RVNS on heart rate in the intact state. e, f Frequency response curves
summarizing the effects of optogenetic versus electrical RVNS of the caudal end on heart rate following right vagotomy (RVNx) (e) and bilateral vagotomy
(BVNx) (F). g, h Frequency response curves summarizing the effects of optogenetic versus electrical RVNS of the cranial end on heart rate following RVNx
(t4,=3.576, *P=0.0232 at 10 Hz; t; = 5.229, **P = 0.0064 at 20 Hz) (g) and BVNx (t,=8.588, **P =0.0010 at 20 Hz) (h). In d-h insets show a
schematic of the stimulation protocol. i The time to peak heart rate response during electrical RVNS in the intact state versus of the cranial end following
BVNx (t4 = 6.335, **P = 0.0032). n =8 mice (d), three mice (e, f), and five mice (g, h, i); mean +s.e.m,; paired, two-tailed t-test. Scale bar is 200 um (b)

vagus and other autonomic nerves contain both motor and sen- To confirm that ChR2-eYFP expression was limited to vagal
sory fibers that vary in diameter and myelination?® and non- efferents in ChAT-ChR2-eYFP mice, we stained for GFP and
electrical techniques such as optogenetics are needed to study PGP9.5 in the nodose/jugular ganglion complex, which contains
their physiological role. the cell bodies of vagal sensory neurons, and the cervical vagus
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nerve (Fig. 4b). eYFP was not detected in PGP9.5+ cell bodies in
the nodose/jugular ganglion complex and was only present in a
subset of PGP9.5+ vagal fibers (n=5 mice). After verifying
expression, we next performed functional studies in anesthetized
mice in which we positioned a laser-coupled optical fiber for focal
illumination above and a hook electrode underneath the right
vagus nerve. In this context, optogenetic VNS activates only
efferent fibers (GFP+), whereas electrical VNS presumably
activates subsets of efferent and afferent fibers (PGP9.5+) in
the vagus nerve (Fig. 4b). With both vagi intact, optogenetic and
electrical right VNS resulted in a similar decrease in heart rate
(Fig. 4c and d); however, the slopes of the responses were
dramatically different (n =6/8 mice) (Fig. 4c), likely due to
differential fiber recruitment*>. The heart rate response to
optogenetic versus electrical stimulation of the caudal end of
the right vagus nerve was also similar following either right or
bilateral vagotomy (Fig. 4e, f and Supplementary Table 2). In
contrast, optogenetic stimulation of the cranial end of the right
vagus nerve following either right or bilateral vagotomy did not
affect heart rate, whereas electrical stimulation surprisingly
resulted in a decrease in heart rate at 10 Hz (—6.5 + 1.8% versus
—0.1+0.1% following right vagotomy for electrical versus
optogenetic stimulation) and 20 Hz (—9.9 + 1.8% versus —0.1
0.1% following right vagotomy and —3.2+0.4% versus —0.2 £
0.1% following bilateral vagotomy for electrical versus optoge-
netic stimulation) (Fig. 4g, h and Supplementary Table 2). The
decrease in heart rate to electrical stimulation of the cranial end of
the right vagus nerve following right vagotomy was also greater
than that following bilateral vagotomy at 20 Hz (f, = 3.123, P=
0.0354, paired, two-tailed t-test) (Fig. 4g, h, red line and
Supplementary Table 2), suggesting that the response following
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ipsilateral vagotomy was in part due to a vagal afferent-mediated
increase in parasympathetic efferent outflow through the intact
contralateral vagus nerve. Furthermore, the decrease in heart rate
to electrical stimulation of the cranial end of the right vagus nerve
following bilateral vagotomy (Fig. 4h, red line and Supplementary
Table 2) indicates that vagal-afferents mediate a decrease in
sympathetic efferent outflow, since both vagi were transected. In
addition, there was an increased latency to peak heart rate
response with electrical stimulation of the cranial end of the right
vagus nerve following bilateral vagotomy compared to that of the
intact right vagus nerve (8.7 + 0.4 ms versus 3.9 + 0.5 ms) (Fig. 4i),
which further supports that vagal afferents cause withdrawal of
sympathetic tone®. Taken together, our data suggest that
optogenetic stimulation selectively activates vagal efferents in
ChAT-ChR2-eYFP mice and that vagal afferents act centrally to
(1) increase parasympathetic efferent outflow and (2) decrease
sympathetic efferent outflow to the heart.

Location and optogenetic stimulation of cardiac-projecting
noradrenergic neurons in the stellate ganglia. The sympathetic
nervous system, along with the parasympathetic nervous system,
precisely regulates heart rate in normal physiology. To anato-
mically and functionally dissect noradrenergic neurons that form
a circuit with the SA node, we used a retrograde neuronal tracer
and an optogenetic approach. Noradrenergic nerve fibers densely
innervate the heart as shown by staining for tyrosine hydroxylase
(TH), the rate-limiting enzyme in norepinephrine synthesis
(Fig. 5a). To identify the location of cardiac-projecting sympa-
thetic neurons, we injected the retrograde neuronal tracer CTB
conjugated to Alexa Fluor 488 into the heart (Fig. 5b). The

C et paravertebral chain ganglia
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Fig. 5 Cardiac-projecting neurons in stellate ganglia (SG) are clustered craniomedially. a A 3D projection (1200 um z-stack) of the dorsal side of a C57BL/6J
mouse heart whole-mount stained with TH (green). b Cartoon depicting cholera toxin subunit B (CTB)-Alexa Fluor 488 (CTB-488) injections into the heart to
retrogradely trace neurons in the paravertebral chain ganglia that project to the heart. ¢ A MIP image of the left paravertebral chain from the middle cervical
ganglion (MCG) to the second thoracic ganglion (T2G) showing the location of CTB-488+ neurons that project to the heart. d Summary heat map of the right
stellate ganglion (RSG) and the left stellate ganglion (LSG). n =5 mice (d). Scale bars are Tmm (a, ¢). CTB injections were performed in C57BL/6J mice
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Fig. 6 In vivo optogenetic stimulation of noradrenergic neurons in the RSG. a Cartoon depicting optogenetic SG and T2G stimulation strategy in TH-ChR2-
eYFP mice. The right paravertebral chain was surgically exposed in anesthetized mice and light was used for stimulation. b A MIP image of the right
paravertebral chain whole-mounted stained with TH (red) and GFP (green) and showing the SG and the T2G. Inset shows single-plane images of the SG.
Blue dashed boxes indicate location of higher magnification images in blue boxes. ¢ Percentage of stellate ganglion neurons expressing GFP and TH over
those expressing GFP or TH. d Representative heart rate response during 10 Hz, 10 ms, and 126 mW craniomedial RSG stimulation (RSGS). e, f Dose
response curves summarizing the effects of altering craniomedial RSGS frequency (e) and pulse width (f) on heart rate. g Summary of the heart rate
response to craniomedial RSGS versus right T2G stimulation (RT2GS) (tg = 5.435, **P = 0.0016). h Summary of the heart rate response to craniomedial
RSGS before versus after propranolol administration (t3 =3.951, *P =0.0289). i Cartoon of the ventral heart depicting the craniomedial RSG-SA node
circuit. n = 6 mice (c), seven mice (e, g), five mice (f), and four mice (h); mean + s.e.m.; paired, two-tailed t-test. Scale bars are 200 um (b (left) and 50 um
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majority of CTB+ neurons were located in the stellate ganglia of
the paravertebral chain, with fewer labeled neurons in the middle
cervical and second thoracic (T2) ganglia (Fig. 5c¢ and Supple-
mentary Movie 7). On average, 236 + 39 neurons were labeled in
the right and 261 + 34 neurons labeled in the left stellate ganglion
(n =5 mice). Heat maps of the right stellate ganglion (RSG) and
left stellate ganglion show that cardiac-projecting sympathetic
neurons are clustered in the craniomedial aspect (Fig. 5d) and
suggest that these ganglia may have a viscerotopic organization.

Next, we assessed whether we could selectively stimulate
noradrenergic neurons in the paravertebral chain using optoge-
netics and modulate heart rate (Fig. 6a). We expressed ChR2 in
noradrenergic neurons by crossing transgenic TH-IRES-Cre mice
with reporter mice containing a Cre-dependent ChR2-eYFP allele
(offspring from this cross are subsequently referred to as TH-
ChR2-eYFP mice). ChR2-eYFP expression in stellate ganglion
neurons was confirmed by staining for GFP and TH (Fig. 6b). The
majority of GFP+ neurons were TH+ (98.7 + 0.4%) and all TH+

neurons were GFP+ (100.0+0.0%) (Fig. 6c). After verifying
expression, we performed functional studies in open-chest
anesthetized mice in which we positioned a laser-coupled optical
fiber for focal illumination above the craniomedial RSG or right
T2 ganglion (Fig. 6a). Optogenetic stimulation of the craniomedial
RSG resulted in a frequency- and pulse width-dependent increase
in heart rate (Fig. 6d-f and Supplementary Table 3). Although a
small number of cardiac-projecting neurons were located in the
T2 ganglion (Fig. 5c), there was no heart rate response to
stimulation of this ganglion and/or preganglionic sympathetic
fibers coursing through this region (0.1 £0.1% with right T2
ganglion stimulation versus 9.5+ 1.8% with RSG stimulation)
(Fig. 6g and Supplementary Table 3). The response to craniome-
dial RSG stimulation was abolished by administration of the B-
adrenergic receptor antagonist propranolol (5.6+1.4% with
stimulation before propranolol versus 0.1 +0.1% with stimulation
after propranolol) (Fig. 6h and Supplementary Table 3), indicating
that the tachycardic response was indeed mediated by selective
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stimulation of noradrenergic neurons. Taken together, our
anatomical and functional data establish a craniomedial RSG-SA
node circuit involved in heart rate regulation (Fig. 6i).

Discussion

We developed a clearing-imaging-analysis pipeline to visualize
innervation of whole hearts and employed a multi-technique
approach to dissect fundamental parasympathetic and sympa-
thetic neural circuits involved in heart rate regulation. We report
several novel findings: (1) cholinergic neurons in the IPV-GP and
noradrenergic neurons in the craniomedial RSG project to the SA
node and modulate its function; (2) the evoked cardiac response
to optogenetic versus electrical stimulation of the vagus nerve
displays different temporal characteristics; and (3) vagal afferents
enhance parasympathetic and reduce sympathetic efferent out-
flow to the heart via central mechanisms.

Despite advances in tissue clearing and imaging
techniques3%-31, high-resolution, 3D datasets of global cardiac
innervation do not exist. We show, for the first time, innervation
of entire cleared mouse hearts with cardiac ganglia located
around the pulmonary veins and a dense network of nerve fibers
throughout the myocardium. To analyze these data, we developed
a semiautomated computational pipeline to detect nerve fibers
and to measure microanatomical features such as diameter and
orientation. These analytical tools and resulting measurements
are needed to build a reference atlas of cardiac innervation and
for quantitative descriptions of innervation in healthy versus
diseased states such as MI. Following MI, innervation around the
infarct scar and of remote regions of the heart is altered32-3348,
and this neural remodeling can modulate the arrhythmia sub-
strate?®. Understanding changes in innervation post-MI can
provide new insights into arrhythmia mechanisms. Furthermore,
our clearing-imaging-analysis pipeline can be readily applied to
assess innervation of other visceral organs including endogen-
ously and virally labeled tissues.

It is well known that the parasympathetic and sympathetic
nervous systems are critical for heart rate regulation. The SA node
and conduction system are densely innervated”:8, and stimulation
of the vagus nerve®, stellate gangliall, and noradrenergic
fibers' 12 modulates heart rate. However, the precise wiring of
the underlying neural circuits has not been delineated. We used a
novel sparse AAV labeling system?! and an optogenetic approach
to anatomically and functionally characterize cholinergic neurons
that regulate heart rate. Although we were unable to directly
visualize synapses, we identified cholinergic fibers, presumably
from cardiac ganglia, that coursed along the SA node, the AV
node, and the ventricles. Selective optogenetic stimulation of
cholinergic neurons in the IPV-GP modulated heart rate, con-
sistent with a recent study that stimulated cholinergic fibers in the
right atrium also using optogenetics!3. Previous studies showed
that electrical stimulation of pulmonary vein ganglia results in
biphasic heart rate responses (initial bradycardia followed by
tachycardia)?324. However, since electrical stimulation is non-
specific, it is difficult to interpret whether the biphasic response
was due to activation of a mixed population of neurons contained
in cardiac ganglia (i.e., parasympathetic, sympathetic, and sen-
sory)!®> and/or pass through fibers. Our findings demonstrate an
IPV-GP-SA node circuit and highlight the importance of using
techniques such as optogenetics, which confer cell type-specifi-
city, to dissect cardiac neural circuity. Furthermore, electrical and
optogenetic techniques (using traditional transgenic and AAV-
based approaches for ChR2 delivery) stimulate both central
preganglionic inputs to and postganglionic neurons in cardiac
ganglia. Therefore, we used a novel engineered AAV, AAV-PHP.

33,47

§$21, that has a strong tropism for the PNS to preferentially deliver
ChR2 to postganglionic cholinergic neurons on the heart rather
than preganglionic cholinergic neurons in the medulla. Future
studies of peripheral neural circuits should use AAV-PHP.S and
other engineered AAVs2%:22 to dissect the role of central versus
peripheral neuronal populations on organ function.

To map noradrenergic neurons that regulate heart rate, we
used a retrograde neuronal tracer and optogenetic approach. A
previous study in canines using horseradish peroxidase showed
that sympathetic postganglionic neurons that innervate the heart
are primarily located in the middle cervical ganglia of the para-
vertebral chain®?. However, we report, using CTB and confirm
with optogenetic stimulation, that the stellate ganglia have a
viscerotopic organization with cardiac-projecting neurons clus-
tered in the craniomedial aspect, consistent with a study in cats®!.
In addition to the heart, the stellate ganglia project to many other
thoracic structures, including the sweat glands in the forepaw?2,
the lung and trachea®3, the esophagus®!, and brown fat>. Char-
acterizing stellate ganglia target innervation and cell-type speci-
fication is an area of ongoing investigation®>>° that is of interest
from a developmental, physiological, and therapeutic perspective.

Current understanding of the role of vagal efferent and afferent
fibers on cardiac function is largely based on studies using elec-
trical stimulation, which is non-specific and results in non-
orderly, non-physiological recruitment of fibers?>. Electrical sti-
mulation of the vagus nerve typically activates large-diameter
myelinated A fibers, followed by medium-diameter myelinated B
fibers and then small-diameter unmyelinated C fibers?$. In vivo
we report that optogenetic stimulation of motor fibers in the
vagus nerve results in a heart rate response that has a slower onset
than electrical stimulation of motor and sensory fibers, likely due
to differential fiber recruitment#>. Our findings suggest that non-
electrical techniques such as optogenetics are needed to char-
acterize neural control of cardiac physiology. Although there was
robust expression of ChR2-eYFP as confirmed by immunohis-
tochemistry, we cannot rule out that incomplete expression or
optical capture affected our results. We also show that activation
of vagal afferents decreases heart rate by enhancing para-
sympathetic efferent outflow and reducing sympathetic efferent
outflow centrally, consistent with a prior study showing that
global activation of vagal afferents in Vglut2-ChR2 mice and
selective activation of Npy2r-ChR2 vagal afferents causes a pro-
found bradycardia®’. In support of our functional data, anato-
mical tracing studies have previously shown that cardiac vagal
afferent neurons in the nodose/jugular ganglion complex project
to neurons in the nucleus tractus solitarii of the medulla®®. These
neurons then project to the nucleus ambiguus and the DMV in
the medulla to modulate parasympathetic efferent outflow®® and
to the paraventricular nucleus of the hypothalamus to modulate
sympathetic efferent outflow®. Future studies aimed at identify-
ing cardiac-specific vagal efferent and afferent fibers, similar to
those performed in the lungs®” and the gastrointestinal system®0,
are needed to better understand vagal control of cardiac phy-
siology and to design next-generation VNS therapies.

Overall, our data highlight the complexity of cardiac neural
circuitry and demonstrate that a multi-technique approach is
needed to delineate circuit wiring. Understanding the neural
control of organ function in greater detail is critical as neuro-
modulation therapies are emerging as promising approaches to
treat a wide range of diseases. Tools such as optogenetics and
AAVs are already providing new scientific insights into the
structure and function of peripheral neural circuits®/°0. A com-
bination of these approaches will help disentangle neural control
of autonomic physiology and enable a new era of targeted neu-
romodulation approaches.
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Methods

Animals. Animal experiments complied with all relevant ethical regulations and
were approved by the UCLA and California Institute of Technology Institutional
Animal Care and Use Committee. ChAT-IRES-Cre (028861)¢!, Ai32 (024109)62,
C57BL/6] (000664), and Ail4 (007914) mice®® were purchased from the Jackson
Laboratory. TH-IRES-Cre mice (254)% were purchased from the European Mutant
Mouse Archive. ChAT-ChR2-eYFP and TH-ChR2-eYFP mice were created by
crossing Ai32 mice with ChAT-IRES-Cre or TH-IRES-Cre mice, respectively. TH-
tdTomato mice were created by crossing Ail4 mice with TH-IRES-Cre mice. All
animals were kept on a 12 h light/dark cycle with ad libitum access to food and
water. Data for all experiments were collected from male and female adult mice
(>8 weeks old).

Plasmids. Plasmids used for AAV production include pUCmini-iCAP-PHP.S
(Addgene, 103006), pAAV-CAG-DIO-mRuby2 (Addgene, 104058), pAAV-CAG-
DIO-mNeonGreen?!, pAAV-CAG-DIO-mTurquoise2 (Addgene, 104059), pAAV-
ihSyn1-DIO-tTA (Addgene, 99121), pAAV-TRE-DIO-mRuby2 (Addgene, 99117),
pAAV-TRE-DIO-mNeonGreen?!, pAAV-TRE-DIO-mTurquoise2 (Addgene,
99115), pAAV-TRE-DIO-tdTomato (Addgene, 99116), and pAAV-CAG-DIO-
eYFP (Addgene, 104052). pAAV-CAG-DIO-ChR2(H134R)-eYFP was generated
by replacing the Efla promoter in pAAV-Efla-DIO-ChR2(H134R)-eYFP (a gift
from Karl Deisseroth, Addgene, 20298) with the CAG promoter from pAAV-
CAG-mNeonGreen?!. pAAV-CAG-DIO-tTA was generated by replacing the
ihSyn1 promoter in pAAV-ihSyn1-DIO-tTA with the CAG promoter from pAAV-
CAG-mNeonGreen. pAAV-TRE-DIO-tdTomato-f has a farnesylation sequence
attached by overhang PCR®>. The pHelper plasmid was obtained from Agilent’s
AAV helper-free kit (Agilent, 240071). CAG, Cytomegalovirus early enhancer
element chicken B-actin promoter; DIO = double-floxed inverted open reading
frame.

Virus production and purification. AAVs were generated by triple transient
transfection of HEK293T cells (ATTC, CRL-3216) using polyethylenimine (Poly-
sciences, 23966-2)%7. Viral particles were harvested from the media at 72 h post-
transfection and from the cells and media at 120 h post-transfection. Virus from
the media was precipitated at 4 °C with 40% polyethylene glycol (Sigma-Aldrich,
89510)%8 in 2.5 M NaCl and combined with cell pellets suspended at 37 °C in 500
mM NaCl, 40 mM Tris, 10 mM MgCl,, and 100 U ml~! of salt-active nuclease
(ArcticZymes, 70910-202). Clarified lysates were purified over iodixanol (Cosmo
Bio USA, OptiPrep, AXS-1114542) step gradients (15, 25, 40, and 60%)%°. Purified
viruses were concentrated, washed in sterile phosphate buffered saline (PBS), sterile
filtered, and titered using quantitative PCR70. A detailed protocol for AAV pro-
duction and purification is available®®.

Systemic delivery of viruses. Intravenous administration of AAV vectors was
performed by retro-orbital injection with a 31-gauge needle in 6-8 week old
mice®. Following injection, 1-2 drops of proparacaine (Akorn Pharmaceuticals,
17478-263-12) were applied to the cornea to provide local analgesia.

Langendorff-perfusion of heart and cardiac ganglion stimulation. Mice were
given heparin (100U, i.p.) to prevent blood clotting and euthanized with sodium
pentobarbital (150 mgkg~!, i.p.). Once all reflexes subsided and following a
midsternal incision, hearts were rapidly excised and Langendorff-perfused at 37 °C
modified Tyrode’s solution containing the following (in mM): 112 NaCl, 1.8 CaCl,,
5 KCl, 1.2 MgSO,, 1 KH,PO,, 25 NaHCO;, and 50 D-glucose at pH 7.4. The
solution was continuously bubbled with 95% O, and 5% CO,. Flow rate was
adjusted to maintain a perfusion pressure of 60-80 mmHg. An optical fiber (400
pm core, Doric Lens) coupled to a diode-pumped solid-state laser light source (473
nm, 400 mW, Optic Engine) was positioned for focal illumination of the IPV-GP
under the guidance of a fluorescent stereomicroscope (Leica, M205 FA) fitted with
a 1x Plan-Apochromat. An octapolar electrophysiology catheter (1.1F, Transonic)
was inserted into the left atrium and ventricle via a small incision in the left atrium
and 2 platinum electrodes were positioned in the bath to obtain intracardiac
electrograms and a bath electrocardiogram, respectively. Intracardiac electrograms
and electrocardiogram were amplified with a differential alternating current
amplifier (A-M Systems, Model 1700 and Grass, P511, respectively) and con-
tinuously acquired (AD Instruments, PowerLab 8/35). Dose response curves were
performed to evaluate the effects of altering light pulse power (at 10 Hz and 10 ms),
frequency (at 10 ms and 221 mW), and pulse width (at 10 Hz and 221 mW) on
heart rate and AV interval. At the end of the experiment, atropine (10 uM) was
administered into the perfusate and stimulation (10 Hz, 10 ms, and 221 mW) was
repeated. All stimulations were performed for 10 s with 5 min between stimulations
for heart rate to return to baseline values.

In vivo vagus nerve and paravertebral ganglia stimulation. Mice were anes-
thetized with isoflurane (induction at 3-5%, maintenance at 1-3% vol/vol, inha-
lation), intubated, and mechanically ventilated (CWE, SAR-830). Core body
temperature was measured and maintained at 37 °C. For VNS, a midline neck
incision was performed and the left and right cervical vagus nerves were exposed. A
laser-coupled optical fiber was positioned above and bipolar platinum hook

electrodes coupled to a constant current stimulator (Grass, PSIU6 and Model S88)
below the right vagus nerve for focal optical or electrical stimulation, respectively.
Irradiance and current were titrated to achieve a 10% decrease in heart rate with
both vagi intact at 10 Hz and 10 ms, which was defined as threshold intensity.
Threshold intensity for optogenetic stimulation was 77 + 6 mW and for electrical
stimulation was 33 + 13 pA. Frequency response curves were performed at
threshold intensity and 10 ms. All stimulations were performed for 5 s with 5 min
between stimulations for heart rate to return to baseline values. For paravertebral
ganglia stimulation, a right lateral thoracotomy was performed at the second
intercostal space and the paravertebral chain from the stellate to T2 ganglion was
exposed. A laser-coupled optical fiber was positioned for focal illumination above
the craniomedial RSG or right T2 ganglion. Dose response curves were performed
to evaluate the effect of altering RSG stimulation frequency (at 10 ms and 126 mW)
and pulse width (at 10 Hz and 126 mW) on heart rate. The effect of RSG versus
right T2 ganglion stimulation (10 Hz, 10 ms, and 126 mW) on heart rate was also
evaluated. At the end of the experiment, propranolol (2 mgkg~!, i.v.) was admi-
nistered via a femoral vein and craniomedial RSG stimulation (10 Hz, 10 ms, and
126 mW) was repeated. All stimulations were performed for 10's with 5 min
between stimulations for heart rate to return to baseline values. For vagus nerve
and paravertebral ganglia stimulation experiments, a lead II electrocardiogram was
obtained by two needle electrodes inserted subcutaneously into the right forepaw
and the left hindpaw.

Electrophysiology data analysis. The heart rate was averaged over 0.5 s before
and during stimulation. A minimum of three beats were averaged before and
during stimulation for P wave duration.

CTB heart injections. Mice were given carprofen (5 mgkg~!, s.c.) and bupre-
norphine (0.05mgkg~1, s.c.) 1 h before surgery. Animals were anesthetized with
isoflurane (induction at 5%, maintenance at 1-3%, inhalation), intubated, and
mechanically ventilated. Core body temperature was measured and maintained at
37 °C. The surgical incision site was cleaned 3 times with 10% povidone iodine and
70% ethanol in H,O (vol/vol). A left lateral thoracotomy was performed at the
fourth intercostal space, the pericardium opened, and the heart was exposed. Ten
microliters of CTB conjugated to Alexa Fluor 488 (0.1% in 0.01 M PBS (vol/vol),
ThermoFischer Scientific, C22841) was subepicardially injected in the heart with a
31-gauge needle. The surgical wounds were closed with 6-0 sutures. Buprenor-
phine (0.05 mg kg™, s.c.) was administered once daily for up to 2 d after surgery.
Animals were sacrificed 6 d later for tissue harvest.

Transcardial perfusion. Mice were given heparin (100U, i.p.) to prevent blood
clotting and euthanized with sodium pentobarbital (150 mgkg~1, i.p.). Once all
reflexes subsided, a midsternal incision was made and animals were transcardially
perfused with 50 mL ice-cold 0.01 M PBS containing 100U heparin followed by 50
mL freshly prepared, ice-cold 4% paraformaldehyde (PFA; EMS, RT 15714) in PBS.
Tissues were postfixed in 4% PFA overnight at 4 °C, washed, and stored in PBS
with 0.01% sodium azide. Langendorff-perfused hearts were immersion fixed in 4%
PFA overnight at 4 °C at the end of the functional experiments

iDISCO heart clearing. Whole mouse hearts were stained and cleared using a
modified iDISCO protocol?’. Fixed hearts were dehydrated with a graded methanol
series (20, 40, 60, and 80% methanol in H,O (vol/vol), each for 1h at room
temperature), washed twice with 100% methanol for 1h at room temperature, and
chilled at 4 °C. Hearts were then incubated in 66% dichloromethane/33% methanol
overnight at room temperature with agitation, washed twice in 100% methanol for
1h at room temperature, and chilled to 4 °C. Next, hearts were bleached with 5%
H,0, in methanol (vol/vol) overnight at 4 °C. After bleaching, hearts were rehy-
drated with a graded methanol series, followed by one wash with 0.01 M PBS and
two washes with 0.01 M PBS with 0.2% Triton X-100, each for 1h at room tem-
perature. For staining, hearts were permeabilized with 0.01 M PBS with 0.2%
Triton X-100, 20% DMSO, and 0.3 M glycine and blocked with 0.01 M PBS with
0.2% Triton X-100, 10% DMSO, and 5% normal donkey serum (NDS), each for 2 d
at 37 °C with agitation. Hearts were incubated in primary antibody rabbit anti-
PGP9.5 (Abcam, ab108986, 1:200) diluted in 0.01 M PBS with 0.2% Tween-20 and
10 mg ml~! heparin (PTwH) for 1 week at 37 °C with agitation. Hearts were then
washed several times in PTwH overnight at room temperature before secondary
antibody donkey anti-sheep Cy3 (Jackson ImmunoResearch, 713-165-003, 1:300)
incubation in PTwH for 1 week at 37 °C with agitation. Primary and secondary
antibodies were replenished half way through staining. Hearts were then washed
several times in PTwH overnight at room temperature. For clearing, stained hearts
were dehydrated with a graded methanol series and incubated in 66% dichlor-
omethane/33% methanol for 3 h at room temperature with agitation. Hearts were
then washed twice in 100% dichloromethane for 15 min at room temperature.
Hearts were stored and imaged in benzyl ether (Millipore Sigma, 108014
ALDRICH; refractive index: 1.55).

PACT heart clearing. Whole and half mouse hearts were cleared using the PACT
pr0t0c0130. Fixed hearts were incubated in 4% acrylamide (Bio-Rad, 161-0140) and
0% PFA (A4P0) (wt/vol) overnight at 4 °C with agitation. Hearts were vacuum
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degassed and bubbled with N, for 10 min each and then polymerized in fresh
A4PO0 solution with 0.25% VA-044 thermal initiator (Wako) (wt/vol) for 3 h at 37°
C. Hearts were cleared with 8% sodium dodecyl sulfate (Sigma-Aldrich, L3771)-
PBS (wt/vol) at pH 8.5 for 5 d (whole hearts) or 52 h (half hearts) at room
temperature with agitation. Hearts were then washed several times in PBS over 2 d
at room temperature. Hearts were stored and imaged in a refractive imaging
matching solution (RIMS) (refractive index = 1.46)30:34,

Immunohistochemistry. For whole-mount staining, fixed hearts and ganglia were
blocked in 0.01 M PBS with 10% NDS and 0.2% Triton X-100 PBS for 6 h at room
temperature with agitation. Tissues were then incubated in primary antibody
diluted in 0.01 M PBS with 0.2% Triton X-100 and 0.01% sodium azide for 3 nights
at room temperature with agitation. The following primary antibodies were used:
rabbit anti-PGP9.5 (Abcam, ab108986, 1:500), rabbit anti-HCN4 (Alomone Labs,
APC-052, 1:100), chicken anti-GFP (Aves, GFP-1020, 1:1000), sheep anti-TH
(Millipore Sigma, AB1542, 1:200), and goat anti-ChAT (Millipore Sigma, AB144P,
1:50). Tissues were washed several times in 0.01 M PBS overnight before incubation
in secondary antibodies diluted in 0.01 M PBS with 0.2% Triton X-100 and 0.01%
sodium azide for 2 nights at room temperature with agitation. The following
secondary antibodies were used: donkey anti-rabbit Cy3 (Jackson ImmunoR-
esearch, 711-165-152, 1:400), donkey anti-chicken 647 (Jackson ImmunoResearch,
703-605-155, 1:400), donkey anti-sheep Cy3 (Jackson ImmunoResearch, 713-165-
003, 1:400), and donkey anti-goat Cy3 (Jackson ImmunoResearch, 705-165-003,
1:400). Tissues were washed several times in 0.01 M PBS overnight before being
mounted on microscope slides in RIMS.

Fixed brains were cryopreserved in a 30% sucrose PBS solution for at least 48 h
at 4 °C. Brains were then embedded in OCT (Tissue-Tek), frozen on dry ice, and
stored in —80 °C until sectioning. For cryosectioning, 40 um coronal sections were
cut using a cryostat microtome (Leica). Sections of the medulla containing the
DMV (Allen Mouse Brain Reference Atlas) were blocked in 0.01 M PBS with 10%
NDS and 0.2% Triton X-100 for 1 h at room temperature with agitation. Sections
were then incubated in primary antibody diluted in 0.01 M PBS with 10% NDS,
0.2% Triton X-100, and 0.01% sodium azide for 1 night at room temperature with
agitation. The following primary antibodies were used: rabbit anti-ChAT (Millipore
Sigma, AB143, 1:200) and chicken anti-GFP (Aves Labs, 1:1000). Tissues were
washed several times in 0.01 M PBS with 0.2% Triton X-100 before incubation with
secondary antibody diluted in 0.01 M PBS with 10% NDS, 0.2% Triton X-100, and
0.01% sodium azide for 2 h at room temperature with agitation. The following
secondary antibodies were used: donkey anti-rabbit Cy3 (Jackson
ImmunoResearch, 711-165-152, 1:1000) and donkey anti-chicken 647 (Jackson
ImmunoResearch, 703-605-155, 1:400). Tissues were washed several times in 0.01
M PBS with 0.2% Triton X-100 before being mounted on microscope slides in
Fluoromount-G (Thermo Fisher Scientific, 00-4958-02).

Imaging, image processing, and imaging data analysis. Images were acquired
on a confocal laser scanning microscope (Zeiss, LSM 880) fitted with the following
objectives: Fluar 5x/0.25 M27 Plan-Apochromat, 10x/0.45 M27 (working distance
2.0 mm), Plan-Apochromat 25x/0.8 Imm Corr DIC M27 multi-immersion, and LD
C-Apochromat 40x/1.1 W Korr. Cleared heart in Supplementary Video 3 was
imaged on a custom-built lightsheet fluorescence microscope fitted with a 10x/0.6
CLARITY objective (Olympus, XLPLN10XSVMP)31.

All image processing was performed using Zeiss Zen 2.1 v11, Adobe Photoshop
and Illustrator, NTH Image], Bitplane Imaris 8.3, and custom Matlab scripts.

Computational tracing of nerve fibers to establish global innervation patterns
was performed using a customized version of the open-source software neuTube’!
to perform initial batch tracing of image tiles. The resulting tracings were stitched,
filtered, and visualized using custom Matlab scripts. Tracing of cholinergic neurons
from a cardiac ganglion to the SA node was performed semi-automatically using
neuTube.

Quantification of cell transduction in cardiac ganglia (Fig. 3b and
Supplementary Fig. 3e), stellate ganglia (Fig. 6¢), and medulla sections
(Supplementary Fig. 3b) was performed by manual cell counting using NIH Image]
Cell Counter.

For the stellate ganglion heat maps in Figs. 5d, 3d locations of CTB-labeled cell
bodies in each stellate ganglion were marked using NIH Image] Cell Counter.
Maximum intensity projection images were manually annotated with 2D polygonal
regions of interest demarcating the extent of the stellate ganglion. Marked cell
bodies outside the stellate ganglion were excluded from subsequent analysis.
Landmark point locations were selected along the stellate ganglion boundary (e.g.,
ansa). One right and one left stellate ganglion image were selected to serve as
reference shapes (white dashed outline in Fig. 5d). To align the landmarks for each
sample with the selected reference sample, a non-rigid warping was estimated by
fitting a 2D thin plate spline warp’? with a regularization parameter of le~¢. The
density of labeled cell bodies was estimated by binning the x,y-image coordinates of
each marked cell into 50 x 50 um bins and counting the number of cells falling in
each bin in order to compute the number of cells per square um in projection.
These density maps from each individual sample were then warped using the thin
plate spline warp estimated from the spatial landmark correspondences to align
them all with the reference sample. Finally, the densities were averaged point-wise
across samples. One could, in principle, perform warping and density estimation in

3D. However, we observed little variation in the densities labeled of cells along the
optical z-axis, presumably due to the consistent orientation of samples on slides.

Statistics. Microsoft Excel 16.21.1 and GraphPad Prism 8.0.1 were used for data
analysis and graph generation. The animal group sizes were chosen based on
preliminary data that suggested a large effect size. Two animals in which optoge-
netic stimulation of the IPV-GP was attempted were excluded from data analysis
owing to failed Langendorff-perfusion of the heart. Sample sizes are indicated in
figure legends or text. In Fig. 3b, 153 + 27 cardiac ganglion neurons were counted
per animal. In Fig. 6c, 291 + 62 stellate ganglion neurons were counted per animal.
In Supplementary Fig. 3b and e, 65+ 17 DMV neurons and 202 + 31 cardiac
ganglion neurons were counted per animal, respectively. Data distribution was
assumed to be normal, but this was not formally tested. Data are presented as
mean +/— s.e.m. Comparisons for all pairs were conducted with a two-tailed
Student’s t-test. P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
authors upon reasonable request. Viral vectors and protocols are available through
Addgene or Beckman Institute for CLARITY, Optogenetics, and Vector Engineering
Research for technology development and broad dissemination: http://www.
beckmaninstitute.caltech.edu/clover.shtml.

Code availability
Nerve fiber visualization and analysis algorithms used in this study are available are
available at: https://www.ics.uci.edu/~fowlkes/SPARC/volume/.
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