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Abstract: In this paper, we describe the convolutional neural network (CNN)-based approach to
the problems of categorization and artefact reduction of cosmic ray images obtained from CMOS
sensors used in mobile phones. As artefacts, we understand all images that cannot be attributed to
particles’ passage through sensor but rather result from the deficiencies of the registration procedure.
The proposed deep neural network is composed of a pretrained CNN and neural-network-based
approximator, which models the uncertainty of image class assignment. The network was trained
using a transfer learning approach with a mean squared error loss function. We evaluated our
approach on a data set containing 2350 images labelled by five judges. The most accurate results
were obtained using the VGG16 CNN architecture; the recognition rate (RR) was 85.79% ± 2.24%
with a mean squared error (MSE) of 0.03 ± 0.00. After applying the proposed threshold scheme to
eliminate less probable class assignments, we obtained a RR of 96.95% ± 1.38% for a threshold of 0.9,
which left about 62.60% ± 2.88% of the overall data. Importantly, the research and results presented
in this paper are part of the pioneering field of the application of citizen science in the recognition
of cosmic rays and, to the best of our knowledge, this analysis is performed on the largest freely
available cosmic ray hit dataset.

Keywords: cosmic rays; CMOS sensors; mobile phones; citizen science; deep neural network approx-
imation; transfer learning; image processing

1. Introduction

In this paper, we describe a convolutional neural network (CNN)-based approach to
the problems of categorization and artefact reduction of cosmic ray images obtained from
CMOS sensors used in mobile phones. As artefacts, we understand all images taht cannot
be attributed to particles’ passage through the sensor but rather result from the deficiencies
of the registration procedure. Our approach is based on the morphological properties
of particle tracks rather than their physical interpretation, although some studies [1–3]
associated certain shapes of tracks like spots, wiggles (which we here call worms), etc., with
muons, electrons, etc. Unambiguous mapping between track shapes and radiation types,
however, requires detailed studies of radiation propagation in a sensor of given geometry.
Such studies are challenging for commodity devices and, to the best of our knowledge,
had not yet been performed. Therefore, we take an alternative approach and categorize the
registered events relying solely on their morphology. This study is timely and opportune as
it is compatible with any future interpretation of a given track in terms of particle species.

In 1912, Victor Hess conducted a series of balloon experiments, revealing that the
electric conductivity of the atmosphere increases with the elevation above the sea level.
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He boldly conjectured that the effect was due to the interaction of the atmosphere with
the corpuscular charged particle radiation of extraterrestrial origin. More than 100 years
after the discovery, due to their still undetermined origin, cosmic rays are being actively
studied by astrophysicists. Further areas of interest include their implications for radiative
safety [4], operation of electronic devices working both on Earth and in space [5,6], or
even the earthquake prediction [7–9]. Of the several types of cosmic ray detectors [10,11],
we focused on the semiconductor detectors [12]. Originally, they were conceived for
measurements of particle energies, but with multi-sensor arrays equipped with many
thousands of read-out channels and up to several hundred square meters of surface
coverage, they became primarily used for particle tracking in nuclear and high-energy
physics experiments [13]. Due to their low energy threshold, they also found applications
beyond physical research, e.g., in medical imaging [14]. Notwithstanding their large
number of applications, the basic physical processes upon which all semiconductor sensors
are based are the same. Notably, the same physical processes are used in CMOS sensors
applied in domestic electronic devices like video recorders or digital cameras used by
mobile phones. The cameras of mobile phones are of particular interest for cosmic ray
detection due to these devices’ ubiquity and network connectivity. Combining these
features makes the mobile phones an ideal framework for creating the global network
of radiation detectors coupled to central data storage. This idea underpinned several
particle detection initiatives like CRAYFIS [15–19], DECO [1,3,20,21], and CREDO [22,23].
The analysis presented in this paper is based on the CREDO detection data set, as this is
currently the largest publicly available data set of particle images obtained with mobile
phones. The range of the CREDO worldwide device infrastructure is shown in Figure 1.
Currently, the total number of registering devices is over 10,000 and is increasing.
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Figure 1. Locations of CREDO registered phone-based detectors.

1.1. State of the Art

As mentioned above, our goal was categorization and artefact rejection in cosmic
ray images obtained from the CMOS sensors used in mobile phones by applying a two-
dimensional analysis of the morphological properties to particle tracks. From the perspec-
tive of image processing and recognition, this problem should be solved by an algorithm
from the group of algorithms devoted to the recognition of shapes and objects. Computer
methods of shape feature extraction have been explored for many years. The most popular
approaches are contour-based methods (i.e., Hausdorff distance, shape signature, boundary
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moments, spectral transform, shape invariants, etc.) and region-based methods (i.e., invari-
ant moments, shape matrices, convex hull, etc.) [24–26]. In the last years, object recognition
has evolved from early methods that used hand-crafted representations and descriptions to
state-of-the-art deep-learning-based approaches. Especially, convolutional neural networks
have become one of the most successful image-based pattern recognition methods [27–30].
A transfer learning approach is among most useful techniques for adapting pre-trained
CNN architectures to other image domains [31–34]. With the aid of transfer learning, it
is possible to train an effective deep neural network (DNN) architecture with a limited
number of training samples because it is possible to reuse previously trained kernels. DNN
can also be successfully used in approximation tasks using uncertain data [34–36]. In
practice, in some cases, it is possible to use the previously trained convolutional layers of
a neural network as the input of a deep learning architecture. By using those pretrained
layers, time and resources can be saved because rather than training from scratch, already
available knowledge can be used.

1.2. Study Motivation

Conventional cosmic ray detectors range in scales from several centimeters square to
about 3000 km square, like in the case of the Pierre Auger observatory [10]. Even such vast
facilities must be considered of limited coverage, so to increase the number of registered
showers, either the detector’s surface should be increased or it should be run longer. Both
options are economically prohibitive. So, the idea behind projects like CREDO is to trade
the very limited coverage of a single phone sensor, which is of the order of a few millimeters
square, for the huge number of particle-detecting devices scattered worldwide. This is an
example of a citizen science project, where the research infrastructure is contributed by
interested but not necessarily scholarly affiliated members.

However, the practical implementation of this attractive concept meets several diffi-
culties that need to be properly considered. First, contrary to detectors working as parts
of dedicated research infrastructures, the geometries, up and down times, and working
conditions of individual sensors remain uncontrolled. Various devices’ responses to similar
particle signals may vary considerably depending on sensor geometry (height, width, and
depth), noise level, and particular noise reduction algorithms implemented in the device
(for a detailed discussion of sensor working conditions, see [23]). To enhance the partici-
pants’ activity, the project relies on the gamification of measurements, with the adverse
effect of the possibility of users cheating (i.e., deliberately producing artefacts). Thus, the
scientific quality of a given device output generally needs to be evaluated by individual
inspection, which is possible to only a limited extent, as currently there are over 18 million
registered events and this number is expected to increase by two orders of magnitude [23].
The search for anomalies requires a flexible and adaptive approach.

Therefore, methods have to be developed for automatic artefact rejection as well as
searching for particular signals of interest. In this context, the machine learning methods
and convolutional neural networks are particularly suitable. Importantly, the research
and results presented in this paper are in the pioneering field of the application of citizen
science in the recognition of cosmic rays and, to the best of our knowledge, this analysis is
performed on the largest freely available cosmic ray hit dataset.

From the perspective of motivation, the methods and specific tested architectures
in our work are similar to those of [1] (project DECO). However, there are significant
differences in image labeling for the classification purpose between our data set and that
from DECO, which has convinced us that it is worth trying a different approach than the
one proposed so far. According to [1], the class was also assigned by eye, by multiple
people, and if humans disagreed on the classification, which occurred 10% of the time, the
image was labeled as ambiguous and excluded from the training set. In our case, as can
be seen in Table 1, about 66% of images were labeled unanimously by all judges. There
might be two reasons for that: either the DECO data set is higher quality than ours or, more
probably, a different labeling approach was undertaken; for example, in our case, judges
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did not contact each other. How many judges participated in labeling the DECO data set
was not specified. The large ambiguity in the data set is, in our opinion, cannot be ignored.
Moreover, we can take advantage of it. Remember that uncertainties provide additional
information about inter-class similarity.

Table 1. Distribution of votes for the certain class in the data set. Columns represent number of
voices and rows represent certain classes. A judge could skip voting for a certain image if they were
unsure as to which class it should be assigned.

0 1 2 3 4 5

Spots 1790 103 82 34 80 261
Tracks 1832 136 91 73 109 109
Worms 1834 198 85 98 104 31

Artefacts 1115 82 3 0 0 1150

2. Materials and Methods
2.1. Problem Formulation

As mentioned above, it is currently not possible to associate unambiguously particular
particle types with track morphologies. Therefore, we proceedws in a general way and
defined 3 morphological categories, which we dub spots, tracks, and worms, the latter
being tracks with one or more wiggles of sufficiently large curvature for them to be visually
distinguishable from tracks. The common feature of these 3 categories of signals is that
they are quasi zero-dimensional (point-like) or one-dimensional (line-like). This is in line
with the physical intuition that the microscopic objects colliding with the sensor’s surface
are able to deposit the charge within a small vicinity of the collision point. This entails
point-like events if the particle hits the sensor at the angle close to 90◦ and line-like events if
the particle hits the sensor at smaller angles. Additionally, we defined the artefact category
that encompasses all events not satisfying the above requirements, i.e., those featuring
large widths (being effectively two-dimensional) or related to too-large energy/charge
deposit in the sensor. The approach that was undertaken to overcome the ambiguity of
assigning images to a certain class was to ask a group of judges to assign each image to one
of the four classes. Each judge could assign an image to only one class. They could also
skip voting for certain images if unsure as to which class it should be assigned. According
to this, if there are n judges, no more than n votes could be cast to a single class. It is
also possible that a certain image would have zero votes cast on all classes. This situation
occurs when all judges decide to skip voting this image when they are uncertain as to what
class it belongs. We discuss the data set that was used in this experiment in Section 2.3. In
summary, a labelled data set contains pairs: an RGB image I and a 4-dimensional vector of
votes v, each coordinate of which is the number of votes cast to a certain class.

The problem we aimed to solve was assigning a certain shape that is registered by the
detector to one of the four classes: spots, tracks, worms, or artefacts. This is a classification
problem, but we did not have ground truth image data labels defined as a crisp set. Due to
the subjectivity of judges’ decisions, it is possible that each image was assigned to more
than one class. We could have filtered out all ambiguous data and leave only images that
were unequivocally assigned to a single class; however this binary approach would have
caused the loss of some important information about visual class similarities. Due to this, to
model the uncertainty in judges’ voting, we formulated this problem as an approximation
rather than classification. Let I be an input image in the RGB color scale. To each image
I, we want to assign a 4-dimensional real-valued vector with non-negative coordinates p,
which approximates the potential voting of judges, using a certain approximation function
Φ. Each dimension of the vector represents the number of votes that judges cast for a
certain class.

Φ(I) = p (1)
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To make the approximation independent of the number of judges that participated
in data set preparation, we also assumed that coordinates of vector p are scaled in range
[0, 1], where 0 means that no judge voted for a certain class, while 1 indicates that all judges
voted for it. We can easily transfer the votes of the judges from vector v to p by division of
each coordinate of v by the number of judges k.

p =
v
k

(2)

Vector p is neither normalized nor do its coordinates sum to 1 intentionally. Finally,
we have the following data set D:

D = {(Ii, pi); i = [0, . . . , n]}, (3)

where Ii and pi are the ith image and the judges’ labelling of the image, respectively; n is
number of images in the data set.

2.2. Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network

The data set in the form presented in Equation (3) can be easily adapted to a machine
learning framework. As indicated in Section 1.1, the state-of-the art approach for image
embedding is the application of convolutional neural networks. We can either design a
dedicated architecture that, after training, will generate valuable feature vectors, or use a
pretrained model and retrain its non-convolutional layers using transfer learning. The first
option requires a relatively large data set of example images, which might be difficult to
manually label by judges. Because of this, we decided to use the second approach and adapt
already trained network models. The second approach has a very important advantage:
a pretrained convolutional network has many specialized filters that, in many cases, can
be adapted to detect sophisticated objects (and shapes) in input images. The output of
each CNN was processed by a global average pooling 2D layer and then propagated to
the next layers. Because, as already mentioned in Section 2.1, we wanted to model an
approximation rather than perform classification, we followed convolutional DNN in two
layers: a dense (fully connected) layer with 128 neurons with ReLu activation function
and the final dense layer with four neurons with a sigmoid activation function. A ReLU
activation function is defined as [37]:

relu(x) =
{

x i f x > 0
0 i f x 6 0

(4)

A sigmoid neurons layer provides the opportunity for signal approximation. The
schematic diagram of the system architecture is presented in Figure 2. The input dimension
of the image was set to 60 × 60 (see Section 2.3).

Image

Feature extraction

Dense,
sigmoid
4 neurons

Convolutional DNN Dense, relu
128 neurons

in hidden layer

Approximation

60 x 60

Approximated class
assigning

4D Vector

Figure 2. The architecture of the proposed deep convolutional neural network for uncertain class assigning.
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The proposed approximator was trained using a first-order gradient-based Adam
optimizer [38] with a mean squared error loss function; CNN layers weights remained fixed.

MSE =
1
n

n

∑
0
(pi − ci)

2, (5)

where ci is the prediction returned by the network.
Several CNN-based feature extractors were considered, namely Xception [39],

DenseNet201 [40], VGG16 [41], NASNetLarge [42], and MobileNetV2 [43]. Each network
was pretrained on the ImageNet data set [44]. We chose a well-established and verified
CNN model pretrained on various complex objects that are present in the ImageNet data
set. The CNN architectures seem to be excessive for potentially fairly simple, highly pro-
cessed images; however, the images were gathered by a large network of CMOS sensors
that have nonuniform hardware and software parameters and they were not primary
designed as cosmic rays detectors. As such, although our data set contains 2350 images
assigned to four classes by the judges, they are highly diverse, which is reflected by the
ambiguous assessments of judges. As such, we decided to use embedding generated
by general purpose pretrained CNN models that have convolutional multi-scale filters
capable of modeling various possible typologies that might be registered by CMOS
detectors. Our data set might not be large enough to train CNN-based embedding layers
from scratch.

The cascade of convolutional filters with an architecture based on VGG16 was also used
previously [1] and the authors decided to train it from scratch. As such, Winters et al. [1] had
to undertake extensive data augmentation, which was not required in our case, because we
adapted the VGG16 weights using transfer learning. As opposed to Winter et al. [1], we also
applied basic image processing, which excluded salt-like noise from the input images.

The next problem that had to be addressed was assigning the class based on the
certain result of voting pi. The most straightforward approach is to assign an image to
the class that is represented by a coordinate of pi, which has the maximal value. If more
than one coordinate has the same value, an image is assigned to a random class from
those top-voted. This approach, however, could lead to situations where some images, for
which approximation represents highly uncertang of judges, will also be assigned to a class.
For example, if there is the same distribution of votes to each class, the assignment will
be random.

Ci = max
id

pi, (6)

where Ci ∈ {Dots, Lines, Worms, Arte f acts}.
For DNN-based approximation, it is hardly possible that two neurons generate an

identical response; however, it is possible that a final layer will generate a vector with
all coordinates being, for example, close to zero and simultaneously not much differing
from each other. We intentionally did not apply a SoftMax activation in the last layer as
in Winter et al. [1] because this approach is unsuitable for simulating (approximating) the
voting of separate judges. A SoftMax activation function is defined as:

so f tmax(xi) =
exi

∑j exj
, (7)

where SoftMax is the exponent of the input xi divided by a sum of the exponents of inputs
xj [37].

Instead of applying SoftMax, we preferred to use a threshold scheme with a border
(threshold) parameter t. In this scheme, the image Ii is assigned to the class if and only if a
maximal value of vector pi coordinate is greater than t:

Ct
i =

{
id i f maxid pi > t
∅ i f maxid pi 6 t

, (8)
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where ∅ means that the classifier left the object without assigning it to any class.

2.3. Image Data Set

As of October 2020, there were about 18 million events registered in the CREDO
database from 16,000 devices scattered around the world. Of them, about 5 million of
events meet the requirements allowing to qualify them as visible, which, among others,
means that complete event metadata are recorded in the database and the integrated
brightness (related to the energy deposit) falls below the fixed threshold [23]. Of the visible
events, we selected the data set of 2350 60 × 60 RGB images for this research. These images
were subject to classification by 5 judges. After applying the class assignment method,
527 images were assigned to the spot class, 360 to the track class, 305 to the worm class,
and 1158 to the artefact class.

The data set preparation procedure consisted of the following steps:

1. Selection of the subset of the trustworthy devices operating in controlled conditions;
2. Taking the image sample from trustworthy devices containing all morphologies

of interest;
3. Assigning the dataset elements to four classes with the help of 5 judges with the

majority vote while retaining the number of votes cast for each class.

As there were potentially a few sources of artefacts like hardware malfunction, insuffi-
ciently tight lens covering, or outright user cheating, we decided to introduce the notion
of trustworthy devices. These are devices that performed the experiment in controlled
conditions. To create a representative dataset for this article, we used data from our own
devices that were run and operated under the supervision of CREDO researchers. We used
the signals only from those devices so that the possibility of using cheating-affected data
was entirely eliminated. Table 1 presents the distribution of votes for the classes in the
data set.

2.4. Image Preprocessing

Before the image is processed by the CNN, some initial preprocessing is performed.
The goal of preprocessing is to remove all objects but the signal of interest from the image
set. The signal of interest is defined as white objects with sufficiently high color value in
the RGB space. Preprocessing is performed with the following image processing steps
(Figure 3):

1. Let I be an input image in the RGB color scale (Figure 3A). First, the image is con-
verted to gray scale. The gray value is calculated as the linear combination of the
weighted RGB channels values by a standard OpenCV 4.2.0.32 function (see details in
source code).

Ig = gray(I)

2. An object of interest is detected by maximizing the separability of the resultant
classes in gray levels using an Otsu algorithm [45] (Figure 3B). The result is stored in
binary mask.

Mask = Otsu(Ig)

3. The binary image Mask is dilated and then opened using image morphology opera-
tions [46] with an elliptical kernel with a diameter of 5 pixels. After this operation,
the objects detected by the Otsu algorithm have slightly increased their borders and
nearby objects are merged together. Opening also removes small holes in regions
(Figure 3C).

Mask1 = Dilate(Mask, kernel)

Mask2 = Open(Mask1, kernel)
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4. The final image Ip is generated by extracting from the gray scale image Ig only those
pixels that are in the non-zero region of the binary mask Mask2. The rest of the pixels
in Ig are set to zero (Figure 3D).

Iout = Ig&Mask2

The above pipeline is repeated for each image Ik from the data set described in
Section 2.3. The set of output images Ioutk is presented as an input image to the CNN. The
role of the above image processing pipeline is to mime the procedure that is performed by
each judge, who assigned images to a certain class. Judges only considered the curvatures
of the object; the backgrounds were irrelevant to them. The proposed algorithm generates
a binary mask whose role is to enhance only the object detected by the Otsu algorithm and
the small surroundings of those objects, because the borders of those regions are blurred.
We chose a kernel with very small diameter (5), which has the potential to fill holes with
a diameter of about 3 pixels and to remove salt-like artefacts. Due to this small kernel
diameter, the curvature of the detected objects remains the same. Perhaps it is possible to
skip the above data processing; however, all background noises will be present in CNN
embedding, which will disturb the final recognition process.

Figure 3. Image preprocessing pipeline. Each row represents a separate image. Each column
showsthe final result of a single preprocessing transformation performed on the image. The fol-
lowingprocessing steps are included: input image loading with conversion to grayscale format (A),
automaticthresholding via the Otsu algorithm (B), creation of a binary mask (C), and definitive
filteringoverlaying the binary mask on the grayscale image (D).

3. Results

The proposed image preprocessing and neural network approximation pipeline in-
troduced in Sections 2.2 and 2.4 were evaluated on the data set discussed in Section 2.3.
The solution was implemented in Python 3.6. Among most important packages that
were used were Tensorflow 2.1 for machine learning, deep neural networks Keras 2.3.1
library, and OpenCV-python 4.2.0.32 for image processing. Additional data evaluation
was conducted in R version 3.6.2. The research was computed on a PC with an Intel
i7-9700F 3.00 GHz CP, 64 GB RAM, NVIDIA GeForce RTX 2060 GPU, and operating on
Windows 10 OS. Both source codes and data are available for download from an online
repository (https://github.com/browarsoftware/credo_dnn_rays_recognition, accessed
on 10 March 2021).

https://github.com/browarsoftware/credo_dnn_rays_recognition
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The training parameters were set to 4000 training epochs and batch size to 64. The
learning rate for the first 2000 iterations was 0.001 and for the next 2000 was 0.0001. The
learning rate governs the step size of the gradient descent method (see parameter α in [38]).
The data set was split into a training data set that contained 90% of the objects (2115 images)
and a validation data set with 10% of the objects (235 images). Each network with different
CNN feature extractors was evaluated 10 times on different random data sets. Each training
data set had 2115 elements randomly chosen from the 2350 images (without replacement);
the remaining 235 images were assigned to the validation data set. In case of tied-voting by
the judges in Equation (6), we did not re-randomize classes assigning for those ten sets.
The results were averaged and the numbers in all tables are percentage values.

Table 2 presents the recognition rate and mean square error of networks with various
input convolutional architectures. The recognition rate is the total number of correctly
identified images from the validation data set divided by the total number of images in
the validation data set [47]. The highest recognition rate was obtained using VGG16. The
second highest recognition rate for DenseNet201 differed only by 1.1% and had slightly
smaller variance. Both networks have the smallest mean square error (MSE). During the
training of all networks, the loss (MSE) function was minimized until reaching a certain
value, which depends on the input CNN, the initial random weights choice, and the
training data set (Figure 4). The relatively low variance of the values in Table 2 indicates,
however, that the choice of CNN has the strongest impact on the overall results, and the
network effectiveness is robust to initial random parameters and training data set choice.
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Figure 4. Changes in the loss (mean square error (MSE)) function during the training of the neural
network with the VGG16 input layer. Time is measured in epochs. Each line represents a different
random training set. After 2000 epochs, we observed smaller variance in the loss caused by reducing
the learning rate from 0.001 to 0.0001.

Table 2. Recognition rate and mean square error of networks with various input convolutional archi-
tectures.

Input Convolutional Architecture Recognition Rate Mean Squared Error

VGG16 85.79 ± 2.24 0.03 ± 0.00
NASNetLarge 81.66 ± 2.53 0.04 ± 0.01
MobileNetV2 78.43 ± 2.06 0.05 ± 0.01

Xception 81.49 ± 2.94 0.04 ± 0.01
DenseNet201 84.68 ± 1.77 0.03 ± 0.00
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Figure 5 presents a pairs plot showing the bivariate relationships between all pairs of
variables for one of the validation data sets. Red dots are judge-labeled while black crosses
are predicted values. Predictions were performed using a neural network with the VGG16
input layer. As observed, judge-labeled values are obviously discreet; because of that, most
values overlap and are represented by the same points in space.

Tables 3–7 present the confusion matrices of the networks with input convolutional ar-
chitectures VGG16, NASNetLarge, MobileNetV2, Xception, and DenseNet201, respectively.
Matrices are row-normalized and each row represents a judge label. Columns represent
the predicted label. In all cases, over 93% of artefacts were correctly classified. The true
positive rate of the rest of the classes depended on type of input convolutional neural
network. The highest recognition rates for spots, tracks, and worms were obtained using
VGG16. The highest recognition rate for artefacts was obtained using the DenseNet201
architecture; however, the difference between this network and VGG16 was only 0.68%
with similar variance values.

Figure 5. The pairs plot showing the bivariate relationships between all pairs of variables in one
of the validation data sets. The pairs plot is represented as scatterplots between all pairs of these
variables. In the first line, there is a scatter plot of spots and tracks, then one of spots and worms,
and then one of spots and artefacts. The second row presents tracks and spots (symmetric to the
first), tracks and worms, and so on. For a detailed description of the pairs plot, see [48]. Red dots
are judge-labeled while black crosses are predicted values. Predictions were performed using a
neural network with the VGG16 input layer. Values on the axis are the coordinates of vector p (see
Equation (2)). For example, p1 = 1 means that all judges voted for dot and p2 = 0.5 means that half
of the judges voted for line.
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Table 3. Confusion matrix of the network with input convolutional VGG16 architecture.

Spots Tracks Worms Artefacts

Spots 90.84 ± 4.16 1.38 ± 1.88 5.04 ± 2.82 2.74 ± 1.78
Tracks 7.46 ± 3.80 73.31 ± 11.50 15.10 ± 9.01 4.14 ± 2.53
Worms 6.14 ± 6.01 22.64 ± 10.70 62.59 ± 9.92 8.64 ± 4.19

Artefacts 2.54 ± 1.23 0.80 ± 1.05 2.70 ± 1.60 93.97 ± 1.93

Table 4. Confusion matrix of the network with the input convolutional NASNetLarge architecture.

Spots Tracks Worms Artefacts

Spots 89.52 ± 5.40 3.31 ± 3.13 3.76 ± 3.29 3.41 ± 2.05
Tracks 9.27 ± 4.13 62.26 ± 5.06 17.96 ± 4.93 10.52 ± 5.46
Worms 7.83 ± 4.16 26.41 ± 9.08 51.66 ± 6.54 14.11 ± 5.30

Artefacts 2.44 ± 1.79 1.58 ± 0.39 2.71 ± 1.50 93.27 ± 2.71

Table 5. Confusion matrix of the network with the input convolutional MobileNetV2 architecture.

Spots Tracks Worms Artefacts

Spots 78.66 ± 3.46 13.37 ± 4.03 4.34 ± 2.70 3.63 ± 2.34
Tracks 12.28 ± 6.03 56.14 ± 5.78 24.40 ± 4.50 7.18 ± 5.96
Worms 7.15 ± 5.44 25.63 ± 9.40 50.84 ± 7.89 16.39 ± 3.87

Artefacts 2.09 ± 1.29 1.22 ± 0.61 3.15 ± 2.04 93.54 ± 1.74

Table 6. Confusion matrix of network with input convolutional Xception architecture.

Spots Tracks Worms Artefacts

Spots 84.29 ± 4.04 3.69 ± 2.83 6.49 ± 2.86 5.53 ± 3.67
Tracks 8.22 ± 5.66 60.21 ± 7.30 23.58 ± 7.44 7.99 ± 4.66
Worms 7.58 ± 4.77 21.18 ± 5.23 60.18 ± 8.70 11.06 ± 4.65

Artefacts 2.01 ± 1.21 1.40 ± 1.09 3.14 ± 1.71 93.45 ± 2.18

Table 7. Confusion matrix of the network with the input convolutional DenseNet201 architecture.

Spots Tracks Worms Artefacts

Spots 87.44 ± 4.97 4.79 ± 2.74 4.25 ± 2.61 3.52 ± 2.54
Tracks 5.11 ± 3.06 71.03 ± 5.43 20.33 ± 5.41 3.53 ± 3.49
Worms 6.03 ± 5.00 23.46 ± 7.71 61.90 ± 10.16 8.61 ± 3.15

Artefacts 2.63 ± 0.86 0.79 ± 0.87 1.93 ± 1.17 94.65 ± 1.86

Figure 6 visualizes an example of the best and worse approximations for predictions
performed using the neural network with the VGG16 input layer.

Tables 8–10 present confusion matrices after applying the threshold scheme (8) with
various thresholds to the network with the VGG16 features generator. Only VGG16 was
evaluated because it proved to be the most reliable in previous experiments. The threshold
scheme eliminates less certain predictions with a threshold of t. The table captions provide
information about threshold t, validation data that remain after applying the threshold,
data that remain after being split into classes, and overall recognition rate.
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Figure 6. Example of best and worse approximations. C means correct (judge labeled) class, p
ispredicted class, and MSE is a mean squared error between judge-labeled value and predicted
value.Predictions were performed using a neural network with the VGG16 input layer. The MSE of
theimages in the first row is below 0.005. The images (a–d) represent correct assignments, while (e–h)
illustrate cases of misclassification.

Table 8. Confusion matrix of network with input VGG16 and threshold scheme (8) t = 0.50. Data
remaining = 85.36 ± 1.79 (S 79.92% ± 4.37%; T 80.03 ± 3.40; W 56.98 ± 16.92; A 97.89 ± 1.41),
recognition rate = 92.11 ± 1.92.

Spots (S) Tracks (T) Worms (W) Artefacts (A)

Spots 94.00 ± 3.87 2.14 ± 1.90 1.40 ± 2.13 2.46 ± 2.47
Tracks 1.99 ± 2.14 82.64 ± 5.11 14.07 ± 4.40 1.30 ± 2.38
Worms 2.65 ± 5.33 17.09 ± 10.25 75.87 ± 13.51 4.39 ± 4.15

Artefacts 1.01 ± 1.12 1.01 ± 0.69 1.86 ± 0.86 96.12 ± 1.27

Table 9. Confusion matrix of the network with input VGG16 and threshold schema (8) t = 0.75.
Data remaining = 74.26 ± 2.56 (S 63.12% ± 4.63%; T 55.60 ± 5.83; W 34.71 ± 7.93; A 96.46 ± 2.08),
recognition rate = 94.95 ± 1.00.

Spots (S) Tracks (T) Worms (W) Artefacts (A)

Spots 96.23 ± 2.29 0.92 ± 1.49 0.36 ± 1.13 2.49 ± 2.38
Tracks 0.83 ± 2.64 88.96 ± 6.79 8.72 ± 5.25 1.49 ± 3.46
Worms 1.00 ± 3.16 14.24 ± 11.74 79.54 ± 10.97 5.22 ± 5.75

Artefacts 0.65 ± 0.64 0.56 ± 0.48 1.80 ± 0.81 97.00 ± 0.95

Table 10. Confusion matrix of the network with input VGG16 and threshold schema (8) t = 0.90. Data
remaining = 62.60 ± 2.88 (S 42.03 ± 5.65; T 29.91 ± 6.55; W 18.445 ± 7.22; A 94.97 ± 2.17), recognition
rate = 96.95 ± 1.38.

Spots (S) Tracks (T) Worms (W) Artefacts (A)

Spots 98.71 ± 2.99 0.45 ± 1.44 0.00 ± 0.00 0.84 ± 1.78
Tracks 1.43 ± 4.52 88.89 ± 12.78 8.85 ± 8.78 0.83 ± 2.64
Worms 0.00 ± 0.00 7.43 ± 15.82 89.65 ± 15.52 2.92 ± 6.23

Artefacts .38 ± 0.50 0.27 ± 0.44 1.64 ± 0.81 97.70 ± 1.24

4. Discussion

As shown in Section 3, the proposed deep convolutional neural network architecture
is capable of approximating uncertain class assignments that were performed manually
by a group of judges. There are two measures we used to evaluate our solution: RR and
MSE. Although there are a large number of trainable parameters in classification layers,
the high recognition rate evaluated in 10-fold cross-validation assures that the network
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was not overtrained and still has generalization ability. All convolutional feature extractors
have relatively small MSE, while VGG16 and DenseNet201 seem to be the best for the
task. The value of MSE corresponds to the recognition rate of the network: the smaller the
MSE, the better the recognition rate of the network. This is an important finding because
it indicates that the uncertainty modelling of judges’ decisions was correctly designed
(Table 2). The training of the proposed architecture is stable and follows expectations.
The lowering of the learning rate value stabilizes the variation in the loss functions and
slightly decreases the MSE (Figure 4). Lowering the learning rate after a certain number
of iterations of the gradient-descent method lowers the influence of the gradient on the
final solution. This allows for a better adjustment of the solution to the local minimum.
According to confusion matrices presented in Tables 3–7, the artefact class was the easiest to
recognize. This is probably because those images differ the most from other classes despite
artefacts potentially having various forms. The second easiest to classify object was spots
because spots are among the best-defined potential shapes that can be found in the data
set. The next two classes, track and worm, were more problematic. These two classes are
most often confused with each other due to the subjectivity of the judgement of specialists
assigning images to those two classes. In case of the network using the VGG16 feature
extractor, nearly 15.10% ± 9.01% of tracks were incorrectly assigned to the worm class,
while 22.64%± 10.70% of worms were incorrectly assigned as tracks. As shown in Figure 6,
the difference between tracks and worms is very subjective: there is not much visible
difference between a track (Figure 6b) and a worm (Figure 6g). It was difficult to guess
the judges’ reasoning in this case. Worms were confused with artefacts: in case of VGG16,
incorrect classification between those classes was 8.64% ± 4.19%. This situation was also
caused by judges’ subjectivity. Due to the MSE being quite low, the proposed architecture
correctly models the judges’ decision despite there only being five judges and the shape of
the worm class was not clearly defined (see Section 2.3). There are two possible solutions to
overcome this problem. The first is to increase the number of judges and to define each class
more precisely; however, this does not guarantee improving the true positive rate of worm
and track classes. The second possibility is to apply the threshold scheme (8). Application of
this scheme involves a trade-off between the accuracy and the number of objects that can be
classified. As shown in Tables 8–10, even the application of the lowest considered threshold
t = 0.50 improves the true positive rate of all classes (compare with Table 3). For example,
the true positive rate of the worm classes improved from 62.59%± 9.9% to 75.87%± 13.51%
when t = 0.50, to 79.54% ± 10.97% when t = 0.75, and to 89.65% ± 15.52% when t = 0.90.
This operation, however, results in 56.98%± 16.92%, 34.71%± 7.93%, and 18.445%± 7.22%
of worms being appropriately classified, respectively. Due to this finding, threshold t has
to be chosen carefully, considering many factors of certain detection. At this moment,
it is difficult to compare our results directly with those from Winter et al. [1], mainly
because the DECO dataset is not publicly available; however, the accuracy of the results
we obtained is very similar to those previously reported: spots 98.9% (our result from
Table 10 is 98.7%), tracks 95.4% (ours: 88.9%), worms 92.9% (ours: 90.0%), and artefacts
98.2% (ours: 97.7%). Notably, we did not exclude any object either from the training or
validation dataset due to labeling disagreement between judges, as was performed for the
DECO dataset. Certainly, the image quality and the labelling process of the dataset have
considerable impacts on the results of a method. In our case, we used approximation rather
than a classification approach in DNN training, which seems to be reasonable with the
presence of uncertainty in class assigning. Based on our experience, we think that unless
some standardized approach to class assigning is established, uncertainties are inevitable.
Therefore, the classification model should not only be able to deal with them but also take
advantages of them, as does our proposed method.

5. Conclusions

Based on the research presented in this paper, we conclude that the proposed recog-
nition algorithm based on the approximation of uncertain class assignment with a deep
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convolutional neural network together with threshold scheme seems to be promising
method to identify various classes of cosmic ray images obtained from CMOS sensors used
in mobile phones. We recommend using VGG16 as the feature extractor. The performance
of our method using VGG16 is not considerably different from other CNN networks beside
MobileNetV2. According to Table 2, both VGG16 and DenseNet201 have the smallest
mean squared error; however, DenseNet201 has a more complex architecture that affects
its performance. Increasing the complexity and depth of artificial neural networks for
classification is not always necessary to achieve state-of-the-art results [49]. The appropri-
ate choice of threshold t highly depends on the detection setup, because it is a trade-off
between the accuracy and number of objects that can be classified. Because the proposed
approach is based on machine learning, a high-quality training data set is a crucial com-
ponent to obtain reliable classification. To improve the obtained results, a larger data set
of images that contains more objects labelled by a larger number of scientists must be
created. Moreover, we think that VGG16 might be a too-extensive architecture for features
extraction. After acquiring the larger data set that we mentioned above, research should be
conducted to optimize the CNN to reduce the number of layers and weights. A smaller
CNN architecture will result in the acceleration of training and computation speed and
will make the model more portable by limiting the amount of required memory to store all
its parameters.
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