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A number of literature reports have shown that multi-view clustering can acquire a better performance on complete multi-view
data. However, real-world data usually suffers frommissing some samples in each view and has a small number of labeled samples.
Additionally, almost all existing multi-view clustering models do not execute incomplete multi-view data well and fail to fully
utilize the labeled samples to reduce computational complexity, which precludes them from practical application. In view of these
problems, this paper proposes a novel framework called Semi-supervised Multi-View Clustering with Weighted Anchor Graph
Embedding (SMVC_WAGE), which is conceptually simple and efficiently generates high-quality clustering results in practice.
Specifically, we introduce a simple and effective anchor strategy. Based on selected anchor points, we can exploit the intrinsic and
extrinsic view information to bridge all samples and capture more reliable nonlinear relations, which greatly enhances efficiency
and improves stableness. Meanwhile, we construct the global fused graph compatibly across multiple views via a parameter-free
graph fusion mechanism which directly coalesces the view-wise graphs. To this end, the proposed method can not only deal with
complete multi-view clustering well but also be easily extended to incomplete multi-view cases. Experimental results clearly show
that our algorithm surpasses some state-of-the-art competitors in clustering ability and time cost.

1. Introduction

In many practical applications, a growing amount of real-
world data naturally appears in multiple views, which are
called multi-view data, where the data may be characterized
by different attributes or be collected from diverse sources.
For example, an image can be described with different
features, such as SIFT (Scale-Invariant Feature Transform),
HOG (Histogram of Oriented Gradient), LBP (Local Binary
Pattern), etc. [1]; a piece of specific news can be reported to
multiple news organizations [2]; and a web page can be
represented as a web page with links, texts, and images,
respectively [3]. In other words, all of these objects are
characterized by different characteristics, and each charac-
teristic is referred to as one view describing the object.

Generally, an individual view has a wealth of information to
execute machine learning tasks, but it ignores leveraging the
consistent and complementary information from multiple
views [4]. Proper use of such information has the possibility
of elevating various machine learning performances.
+erefore, it is critical to consider how to effectively leverage
such information.

Multi-view clustering, which adaptively separates data
into corresponding groups by utilizing the consistency or
complementarity principle among multiple views, is a very
popular research direction. From the perspective of involved
technologies, most of the existing literature reports are
roughly classified into three types: matrix factorization-
based, graph-based, and subspace-based approaches. As
Kang et al. [5] pointed out, matrix factorization-based
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approaches seek a common matrix among different views,
and graph-based approaches explore a common affinity
graph, while subspace-based approaches learn the consensus
subspace with low dimension. +erefore, as multi-view
clustering, the key to obtaining high performance is to
confirm that the optimal consistent representation is gen-
erated. To this end, multiple multi-view clustering models
have been presented [6–17] and widely used in various real-
world scenarios, for instance, object recognition [18], feature
selection [19], information retrieval [20], etc.

One of the basic assumptions is that all views are
complete, which is adopted by the aforementioned multi-
view clustering approaches. However, in real-world appli-
cations, it is very common that samples are missing in some
views for a lot of reasons, such as man-made faults or
temporary failure of the sensor. +us, previous complete
multi-view methods cannot work well in this scenario since
the pairwise information of samples missing some views
cannot be directly used. If we want to apply conventional
multi-view clustering algorithms to deal with the incomplete
dataset, we can either remove the samples with incom-
pleteness or fill incomplete samples with information during
pre-processing. Nevertheless, these pre-processing methods
will cause the original data to lose information or introduce
noise, which makes conventional multi-view clustering
methods unavoidably degrade or even fail. +erefore, in-
complete multi-view clustering cases have drawn increasing
interest recently, and many attempts have been made to
tackle this problem [2, 21–26].

Moreover, real-world data usually contains a small
number of labeled samples in some practical applications.
+e aforementioned methods are unsupervised and cannot
leverage prior information to improve the performance,
which limits their application. In practice, labeled samples
are available, and efficiently exploiting these data can sig-
nificantly improve clustering performance and reduce
clustering time consumption. Inspired by this framework,
some advanced semi-supervised multi-view clustering
frameworks have recently been created to perform various
clustering tasks [27–33]. However, most of these methods
learn the optimal common indicator matrix from multiple
views by performing alternative optimization algorithms,
which leads to high computational complexity and cannot be
widely used.

In view of the above issues, we present a new framework
called Semi-supervised Multi-View Clustering with
Weighted Anchor Graph Embedding (SMVC_WAGE),
which is conceptually simple and efficiently generates high-
quality clustering results in practice. SMVC_WAGE em-
ploys inherent consistency and external complementary
information to seek the optimal fusion graph that spans
multiple views compatibly in structure. Specifically, we apply
the anchor graph learning to bridge all the intrinsic view
samples, which can greatly enhance efficiency and improve
stableness. Moreover, this can also solve the dilemma that
samples sharing no common views cannot be directly used
for computing cross-view similarities. Besides, instead of
regularizing or weighting the loss of each view in a con-
ventional way, the proposed method directly combines the

graphs of different views to construct the global optimal
fused graph, where the weights are learned in a nearly pa-
rameter-free manner. +erefore, through exploring anchor
selection strategy from labeled samples and designing the
weighted fusion mechanism for multiple views simulta-
neously, the proposed method can not only deal with
complete multi-view clustering well, but also be easily ex-
tended to the incomplete multi-view instance. +e main
contributions of this paper are summarized as follows:

(1) We provide a simple and effective anchor strategy.
Based on these anchor points, the proposed method
can exploit the intrinsic and extrinsic view infor-
mation to bridge all samples and capture more re-
liable nonlinear relations, which can greatly enhance
efficiency and improve stableness while partitioning
multi-view data into different clusters.

(2) We propose a novel graph fusion mechanism that
constructs the global fused graph via directly coa-
lescing the view-wise graphs, and the procedure is
nearly free of parameters.

(3) We present a more general semi-supervised clus-
tering framework that can deal with complete multi-
view clustering well and be easily extended to in-
complete multi-view cases.

(4) Experimental results on six widely used multi-view
datasets clearly show that our algorithm surpasses
some state-of-the-art competitors in clustering
ability and time cost.

Other parts of the paper are organized as follows: Section
2 briefly reviews the related works. In Section 3, the pro-
posed algorithm is described in detail. Afterwards, the ex-
perimental results and discussion are given in Section 4.
Finally, Section 5 concludes the paper.

2. Related Work

In this section, we firstly make an introduction of recent
progress of two specific multi-view clustering approaches.
+en, we briefly describe the related work of semi-super-
vised multi-view clustering.

2.1. Complete Multi-View Clustering. Multi-view clustering
exploits the consistent and complementary information
frommulti-view data to increase clustering performance and
stability, which has attracted extensive attention recently.
Numerous multi-view clustering models have been built.
Usually, the multi-view clustering approaches assume that
total samples have complete information in each view, where
the samples are called complete multi-view data. Roughly
speaking, in terms of related techniques, they can be mainly
divided into two sections: graph-based and subspace-based
methods.

Graph-based methods aim to construct the optimal
fusion graph which is performed by graph-cut or other
techniques to obtain the final result. Li et al. [6] developed a
novel approach, named Multi-view Spectral Clustering
(MVSC), which selects several uniform salient points to
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construct a bipartite graph that represents the manifold
structures of multi-view data. Nie et al. [7] offered a new
approach called Self-weighted Multi-view Clustering
(SwMC), which is completely self-weighted and directly
assigns the cluster label to the corresponding data point
without any post-processing. Wang et al. [8] proposed a
general Graph-based Multi-view Clustering (GMC), which
jointly learns the graph of each view and the unified graph in
a mutually enhanced manner and directly generates the final
clustering result. Tang et al. [9] presented a robust model for
Multi-view Subspace Clustering, which designs a diversity
regularization term to enhance the diversity and reduce the
redundancy among different feature views. Additionally,
graph-based methods usually need to predefine graphs, and
the quality of the graph largely determines the final clus-
tering performance. +e work in [10] introduced a novel
model named Multi-view Clustering with Graph Learning
(MVGL), which learns one global graph from different
graphs constructed by all views to promote the quality of the
final fusion graph. +e work in [11] presented a novel
method named Multi-view Consensus Graph Clustering
(MCGC), which minimizes disagreement among all views
and imposes a low-rank restraint on the Laplacian matrix to
gain a unison graph. +e study in[12] proposed a novel
model called Graph Structure Fusion (GSF), which designs
an objective function to adaptively tune the structure of the
global graph. +e work in [13] proposed a novel multi-view
clustering method, which learns a unified graph via cross-
view graph diffusion (CGD), where the initial value entered
is each predefined view-wise graph matrix. To further learn a
compact feature representation, the study in [14] proposed
to capture both the shared information and distinguishing
knowledge across different views via projecting each view
into a common label space and preserve the local structure of
samples by using the matrix-induced regularization.

Subspace-based methods are widely studied; they utilize
various techniques to obtain low-dimensional embedding.
In general, they can efficiently reduce the dimensionality of
the raw data and be easy to explain. Because of this property,
the study in [15] proposed to simulate different views as
different relations in a knowledge graph, which learns a
unified embedding and several view-specific embeddings
from similarity triplets to perform multi-view clustering.
+e work in [16] proposed a novel model called Latent
Multi-view Subspace Clustering (LMSC), which encodes
complementary information between different views to
automatically learn one latent consistent representation. To
decrease the computational complexity and this memory
requirement, the work in [17] introduced a novel framework
entitled Binary Multi-View Clustering (BMVC), which
jointly learns these collaborative binary codes and binary
cluster structures to perform large-scale multi-view
clustering.

2.2. Incomplete Multi-View Clustering. In practical appli-
cations, we are more likely to be provided with incomplete
multi-view data. However, conventional multi-view clus-
tering approaches unavoidably degrade or even fail while

dealing with incomplete multi-view data. Recently, many
works have been executed to solve this issue, which can be
generally classified into matrix factorization-based and
graph-based methods in terms of involved techniques.

Matrix factorization-based methods directly learn a la-
tent consistent representation with low dimensionality from
all views by utilizing the matrix factorization techniques. Li
et al. [21] developed a pioneering approach called Partial
multi-View Clustering (PVC), which learns a latent con-
sistent subspace of complete samples and a private latent
representation of incomplete samples by exploiting non-
negative matrix factorization (NMF) and sparsity norm
regularization. Zhao et al. [22] presented a model that learns
the compact global structure over the entire samples across
all views by integrating Partial multi-View Clustering and
graph Laplacian term. Shao et al. [23] presented the
framework named Multi-Incomplete-view Clustering
(MIC), which exploits weighted NMF and L2,1-norm reg-
ularization to learn the latent consistent feature matrix. Hu
and Chen [24] proposed the approach called Doubly Aligned
Incomplete Multi-view Clustering (DAIMC), which can
handle negative entries through integrating weighted semi-
NMF and L2,1-norm regularized regression. While the above
approaches can deal with incomplete multi-view data, the
comparatively large storage and computational complexities
limit their real-world applications. Liu et al. [25] proposed a
novel framework called Late Fusion Incomplete Multi-view
Clustering (LF-IMVC), which simultaneously imputes each
incomplete sample and learns a consistent indicator matrix.

Graph-based methods focus on learning the low-di-
mensional representation from each graph which is con-
structed by each view and uncover the relationships between
all samples. Wen et al. [26] introduced a general framework,
which learns the low-dimensional representations from all
views via exploiting spectral constraint and coregularization
term. Guo and Ye [2] proposed a new algorithm named
Anchor-based Partial Multi-view Clustering (APMC), which
integrates the intrinsic and extrinsic view information into
the fused similarities via anchors; then, the unified clustering
outcome can be achieved by performing spectral clustering
on the fused similarities.

2.3. Semi-Supervised Multi-View Clustering. Semi-supervised
multi-view clustering, which uses a small proportion of labeled
samples as well as a great number of unlabeled samples to
perform clustering, is one of the hottest research directions in
machine learning. As the most popular technique in the area of
semi-supervised multi-view clustering, graph-based methods
construct a graph, where vertices contain unlabeled and labeled
data and edges reflecting the similarity of vertices spread in-
formation from labeled to unlabeled vertices. +inking of each
kind of feature as a modality, Cai et al. [27] proposed an al-
gorithm named Adaptive Multi-Modal Semi-Supervised
classification (AMMSS), which jointly learns the weight and the
commonly shared class indicator matrix. Karasuyama and
Mamitsuka [28] proposed a newmethod called SparseMultiple
Graph Integration (SMGI), which linearly combines multiple
graph Laplacian matrices with sparse weights for label
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propagation. Nie et al. [29] presented a new framework
called Auto-weighted Multiple Graph Learning (AMGL),
which automatically learns a set of optimal weights
without any parameters. Nie et al. [30] presented a novel
model named Multi-view Learning with Adaptive
Neighbors (MLAN), which directly partitions the final
optimal graph into corresponding groups and the process
only has the parameter for the robustness. To take ad-
vantage of the information in multi-view data, Nie et al.
[31] proposed a new model called Adaptive MUlti-view
SEmi-supervised (AMUSE), which obtains a more suit-
able unified graph for semi-supervised learning via im-
posing a structural regularization term constraint. Aiming at
the incomplete multi-view issue, Yang et al. [32] proposed a
novel framework called Semi-supervised Learning with
Incomplete Modalities (SLIM). It employs the inherent
modal consistency to learn discriminative modal predictors
and performs clustering via the external complementary
information of unlabeled data. However, graph-based ap-
proaches do not always make sure whether the final rep-
resentation has the same label as the raw data. Cai et al. [33]
introduced a new semi-supervised Multi-View Clustering
method based on Constrained Nonnegative Matrix Fac-
torization (MVCNMF). It propagates the label information
to a consistent representation via exploiting matrix factor-
ization techniques.

3. Proposed Method

In this section, we elaborate our simple yet effective approach
called Semi-supervised Multi-View Clustering with Weighted
Anchor Graph Embedding (SMVC_WAGE), which provides
a general framework for semi-supervised multi-view cluster-
ing. Specifically, SMVC_WAGE firstly provides a simple and
effective anchor strategy that exploits the intrinsic and ex-
trinsic view information to bridge all samples and capture
more reliable nonlinear relations. +en, the proposed method
learns the weight for each view via utilizing the seed-based
semi-supervised K-Means and the designed mathematical
techniques to seek the optimal fusion graph that spans
multiple views compatibly in structure. Ultimately, spectral
clustering is conducted on the global fused graph to obtain a
unified clustering result. To this end, in the following, we
describe the notation and problem definition firstly and then
introduce the Semi-supervised K-Means based on Seed for
single-view clustering.+irdly, we propose SMVC_WAGE for
solving both complete and incomplete multi-view clustering.

3.1. Notation and Problem Definition

(1) Notations. Except in some specified cases, italic, not
bold letters (v, V, . . . , ) represent scalars. Bold up-
percase letters (X, . . . , ) denote matrices, while bold
lowercase letters (x, . . . , ) are vectors. I is an identity
matrix with an appropriate size, and 1 is an all-one
vector with a compatible length.

(2) Definition. As multi-view data, each sample is
characterized by multiple views with one unified
label. Assume that we are provided with a dataset

X � X(1), X(2), . . . , X(V)  composed of N samples
from the V views in K clusters, in which X(v) �

[x(v)
1 ; x(v)

2 ; . . . ; x(v)
n ] ∈ Rn×dv is the data matrix of the

v-th view. Denote x(v)
i ∈ R

dv as the i-th sample xi in
the v-th view, where dv is the dimensionality of data
features in the v-th view.

Multi-view clustering aims to classify all samples into K

batches via utilizing the consistent and complementary
information frommulti-view data, where K is assumed to be
predefined by users.

3.2. Semi-Supervised K-Means Based on Seed. +e proposed
method performs spectral clustering on the global fused
graph to obtain a unified clustering result whereas K-Means
clustering is the important component of spectral clustering.
Additionally, for our method, the seed-based semi-super-
vised K-Means is the key step to learn the weights from
multiple views. +erefore, it is necessary to review Semi-
supervised K-Means based on Seed.

Without any loss of generalization, we assume a single-
view data matrix X � [x1; x2; . . . ; xn] ∈ Rn×d, where X can
be acquired from the above-mentioned multi-view data.
Suppose that the single-view data matrix X is categorized
into K clusters Cl 

K

l�1. In a semi-supervised single-view
clustering framework, we customarily collect a small
amount of labeled data XS, termed the seed set XS⊆X,
through prior knowledge, and we suppose that, for each
cluster Cl⊆X, there is typically at least one seed point
xi ∈ XS. Note that we take a disjoint K partitioning XS,l 

K

l�1
of the seed set XS, so that xi ∈ XS,l belongs to Cl. In semi-
supervised K-Means, the seed set XS is utilized to initialize
the K-Means approach. +us, the centroid of the l-th
cluster Cl is initialized with the mean of the l-th partition
XS,l; then, the semi-supervised K-Means objective function
can be written as

JK−Means � 

K

l�1


N

i�1
xi − ul

����
����
2δ xi − ul( , (1)

where xi ∈ Rd is the i-th sample xi from the single-view data
matrix X, ul ∈ Rd is the mean of the l-th partition XS,l, and δ
is the Dirac delta function. Furthermore, ul and δ(xi − ul)

can be defined as the following equations, respectively.

ul �
1

XS,l





x∈XS,l

x, (2)

δ xi − ul(  �
1, if l � argmin

h

xi − uh

����
����
2∀h ∈ [1, K],

0, otherwise,

⎧⎪⎨

⎪⎩

(3)

where |XS,l| is the number of samples in XS,l.
+rough further analysis of K-Means objective function

equation (1), its optimal solution is an NP-hard problem
[34]. However, the objective function is quickly locally
minimized and converges to a local optimum by using the
efficient iterative relocation algorithms [35].
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3.3. 4e Proposed Method for Complete Multi-View Data

3.3.1. Anchor-Based Global Fused Similarity Matrix Con-
struction in Multi-View Data. In recent years, some studies
[2, 36, 37] apply an anchor-based scheme to form the
similarity matrix S. Generally, the anchor-based scheme
mainly consists of two steps. +e first step is that m anchor
points can be searched from the raw data, where m≪ n. +e
second is that a matrix Z ∈ Rn×m is designed to measure the
similarity between anchor points and data points.

+ere are two common methods for anchor point
generation: random selection and K-Means method. Ran-
dom selection is to extract a portion of data as anchor points
via adopting random sampling from original data. Although
the random selection strategy saves time, it cannot ensure
that the selected anchor points are always good, which
makes the results neither ideal nor stable. K-Means ap-
proach utilizes the clustering centroids as anchor points,
which makes the chosen anchors more representative in
comparison with random selection. Nevertheless, an in-
evitable problem is that K-Means is sensible to its origin
centroid. To eliminate this problem, the K-Means method
requires numerous independent and repeated running.
For this reason, exploiting the K-Means as a pre-pro-
cessing or post-processing framework is also unpredict-
able and has computational complexity. Considering that
several real samples may have the label in practice and real
samples that belong to the same cluster have similar
statistical characteristics, while samples belonging to
different clusters have greater differences in statistical
characteristics, we can obtain the seed set XS �

X(1)
S , X(2)

S , . . . , X(V)
S , y  from the labeled samples in V

views, where X(v)
S � [X(v)

S,1 ; X(v)
S,2 ; . . . ; X(v)

S,K] ∈ Rq×dv denotes
the seed set in the v-th view with K clusters, y �

[y1; y2; . . . ; yq] ∈ Rq denotes the corresponding label
vector, and q � |X(v)

S | denotes the number of labeled
samples. +en, the mean of each partitioning in the seed
set XS can be chosen as anchor points.

Specifically, the generated anchor points set in the v-th
view can be represented as U(v) � [u(v)

1 ; u(v)
2 ;

. . . ; u(v)
K ] ∈ RK×dv , where u(v)

l can be obtained according to
(2). +en, the similarity between data point x(v)

i and anchor
point u(v)

l is defined as

Z(v)
�

exp −D
2 x(v)

i , u(v)
l /σ2 


K
l�1 exp −D

2 x(v)
i , u(v)

l /σ2 
, (4)

whereD(x(v)
i , u(v)

l ) is a distance function, such as l2 distance.
+e truncated similarity matrix Z(v) ∈ RN×K is defined in
v-th view based on a kernel function Kσ(·), and Gaussian
kernel Kσ(x(v)

i , u(v)
l ) � exp(−D2(x(v)

i , u(v)
l )/σ2) is usually

adopted. +e parameter σ can be set to 1 without loss of
generality.

For multi-view clustering, there is a common assump-
tion that it can increase clustering performance and stability
via appropriately exploiting the consistent and comple-
mentary information between different views. Based on this
assumption, how to seamlessly combine multiple views is
crucial to the final clustering result. Considering the

differences in the clustering quality of each view, we first
calculate the clustering accuracy of each view through the
prior information and then obtain the weights for different
views, where the view with greater clustering accuracy has
larger weight during information fusion, and similarly the
view with less clustering accuracy has a smaller weight. More
specifically, we utilize the semi-supervised K-Means to ac-
quire clustering result c(v) � [c(v)

1 ; c(v)
2 ; . . . ; c(v)

q ] ∈ Rq in the
v-th seed set X(v)

S , where anchor points set U(v) of the v-th
view is used to initialize semi-supervised K-Means. Note
that c(v) and y are the cluster labels and the ground-truth
labels of the seed set X(v)

S , respectively, and then we calculate
the clustering accuracy of each view by (17) in the seed set
XS. Furthermore, to ensure that the view with greater
clustering accuracy has a larger weight, we apply the softmax
function to acquire the weights for different views. +e
weights of the views can be represented by

wv �
e
λav


V
j�1 e

λaj
, ∀v ∈ [1, V], (5)

where wv is the non-negative normalized weight for the v-th
view and the sum of all elements of w is 1, av is the clustering
accuracy for the v-th view in the seed set X(v)

S , and λ is a
scalar used to control the distribution of weights between
different views.

+e truncated similarity matrix Z(v) can be obtained by
(4), and then all truncated similarity matrices are integrated
into a global truncated similarity matrix Z ∈ RN×K between
all samples and anchors.

Z � 
V

v�1
wvZ

(v)
. (6)

Once we obtain the matrix Z, the global fused similarity
matrix S ∈ RN×N between all samples can be approximated
by an anchor graph [36].

S � ZΛ− 1ZT
, (7)

where Λ � diag(ZT1) ∈ RK×K is the diagonal matrix.

3.3.2. Spectral Analysis on Global Fused Similarity Matrix.
To further simplify the clustering process, spectral clustering
can be performed on the global fused similarity matrix S.
Specifically, the objective function of spectral clustering is

min
FTF�I

tr FTLF , (8)

where tr(·) is the matrix trace operator, F ∈ RN×K is the
indicator matrix, and K is the number of clusters. +e
Laplacian matrix L is defined as L � D − S in graph theory,
where the degree matrix D ∈ RN×N is written as a diagonal
matrix with Dii � 

N
j�1 Sij. We can obtain the indicator

matrix F that consists of eigenvectors corresponding to the
largest K eigenvalues by performing eigen decomposition on
L. However, the computational complexity is O(N2K) via
performing eigen decomposition on L, which leads to being
not suitable for large-scale data.
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Fortunately, according to [2, 37], S is a double stochastic
matrix. +us, the degree matrix D � diag(S1) is an identity
matrix I, and the Laplacian matrix L can be written as
L � I − S. To make the analysis simple, (8) is equivalent to
the following equation:

max
FTF�I

tr FTSF . (9)

Note that S can be written as S � ZΛ−1ZT �

ZΛ−1/2Λ−1/2ZT � AAT, where A � ZΛ−1/2 and A ∈ RN×K.
+e Singular Value Decomposition (SVD) of A can be
formulated as

A � UΣVT
, (10)

where U ∈ RN×N, Σ ∈ RN×K, and V ∈ RK×K are the left
singular vector matrix, singular value matrix, and right
singular vector matrix, respectively. Furthermore, U and V
satisfy both UTU � I and VTV � I. +us S can be derived
from (10) as

S � AAT
� UΣVT

  UΣVT
 

T
� U ΣΣT

 UT
. (11)

It is obvious that the column vectors of U are the ei-
genvectors of the similarity matrix S. To reduce the com-
putational complexity, we prefer to conduct SVD on A to
acquire the desired F rather than to directly perform ei-
genvalue decomposition on S. Based on this, (10) is written
as

U � AVΣ− 1
. (12)

Since Σ and V are the singular value matrix and right
singular vector matrix of A, respectively, we can perform
eigen decomposition on a small K × K matrix
R � ATA � Λ−1/2ZTZΛ−1/2, resulting in K eigenvector-ei-
genvalue pairs (vi, θi) 

K

i�1, where 1> θ1 ≥ . . . ≥ θK > 0. We
denote by V � [v1, . . . , vK] ∈ RK×K a column-orthonormal
matrix containing the K eigen vectors and by
Θ � diag(θ1, . . . , θK) ∈ RK×K a diagonal matrix storing the
K eigen values on the main diagonal. It is obvious that

R � ATA � UΣVT
 

T
UΣVT

  � V ΣTΣ VT
, (13)

where ΣTΣ returns a K × K diagonal matrix storing all the
eigen values of R � ATA. +us, the singular value matrix Σ
can be derived as Σ � Θ1/2. +en, the final solution can be
simplified as

F � ZΛ− 1/2VΘ− 1/2
, (14)

where F ∈ RN×K is the indicator matrix. After that, we can
perform semi-supervised K-Means on F to acquire the final
results.+e whole procedure of SMVC_WAGE for complete
multi-view data is summarized in Algorithm 1.

3.4. 4e Proposed Method for Incomplete Multi-View Data.
Our proposed method (SMVC_WAGE) can not only deal
with complete multi-view clustering well, but also be easily
extended to incomplete multi-view clustering. To simplify
the incomplete multi-view case, we take three views as an

example, which verifies that SMVC_WAGE can be
straightforwardly extended to the scenarios of incomplete
multi-view data.

Similar to the problem definition in Section 3.1, we still
assume that the incomplete three-view data consists of N

samples. In order to make the discussion easy without losing
generality, we follow [2] to adjust the original dataset to
X � X(1,2,3), X(1,2), X(1,3), X(2,3), X(1), X(2), X(3) , where
X(1,2,3) ∈ Rnc×(d1+d2+d3), X(1,2) ∈ Rn12×(d1+d2), X(1,3) ∈
Rn13×(d1+d3), X(2,3) ∈ Rn23×(d2+d3), X(1) ∈ Rn1×d1 , X(2) ∈
Rn2×d2 , and X(3) ∈ Rn3×d3 denote the samples present in the
three views, both view-1 and view-2, both view-1 and view-3,
both view-2 and view-3, only view-1, only view-2, and only
view-3, respectively. Similarly, nc is the number of samples
described by the three views. n12 denotes the number of
samples shared by both view-1 and view-2; n13 and n23 have
the same meaning. nv(v � 1, 2, 3) stands for the number of
samples only existing in the v-th view. +e total number of
samples is N � nc + n12 + n13 + n23 + n1 + n2 + n3.

As stated in Section 3.3, the proposed method
(SMVC_WAGE) for incomplete multi-view data mainly
consists of two steps, i.e., construction of anchor-based
global fused similarity matrix S and spectral analysis of a
global fused similarity matrix. Figure 1 shows the whole
construction process of the global fused similarity matrix,
and all possible cases are considered in incomplete three-
view data, i.e., missing two views, missing one view, and
missing no view.

It is very challenging to randomly choose from labeled
data to generate anchor points in incomplete multi-view
data, as some labeled samples miss one view or two views,
and thus pairwise information may be unavailable. For-
tunately, the common samples appearing in all views
can help generate anchor points to solve the dilemma.
Based on the above analysis, we assume that all labeled
samples covering each cluster are included in common
samples; then, we can obtain the seed setXS � X(1,2,3)

S , y 

from the common samples with the label, where
X(1,2,3)

S ∈ Rq×(d1+d2+d3) denotes the seed set present in all
views, y � [y1; y2; . . . ; yq] ∈ Rq denotes the corresponding
label vector, and q represents the number of samples in the
seed set. +en, as stated in Section 3.3.1, the generated
anchor points set in the v-th view can be represented as
U(v) � [u(v)

1 ; u(v)
2 ; . . . ; u(v)

K ] ∈ RK×dv , where u(v)
l can be

obtained according to (2).
As illustrated in the second column in Figure 1, we

partition this incomplete three-view case into three sce-
narios. Specifically, we rearrange the samples according to
the characteristics of each sample so that we can directly
perform the anchor-based truncated similarity matrix
construction method described in Section 3.3.1 on each
scenario. Each scenario can be represented as a view and the
view’s anchor points, where missing samples are removed.
Taking the first scenario as an example, there are nc + n12 +

n13 + n1 samples that appeared in view-1, and nk anchor
points are generated from the seed set X(1,2,3)

S . +en, we
construct an anchor-based truncated similarity matrix
Z(1) ∈ R(nc+n12+n13+n1)×nk by (4). Similarly, we can analyze
other scenarios.

6 Computational Intelligence and Neuroscience



To fuse the above truncated similarity matrices that
appeared in three scenarios appropriately, we reorder them
into aligned matrices, with rows and columns following the
order of the original samples. To fully exploit the consistent
and complementary information among different views, we
make the view with high quality have a larger weight ratio in
the common representation by employing the prior
knowledge from multi-view data. More specifically, we first
obtain the clustering accuracy av of each view in the seed set
XS � X(1,2,3)

S , y  and apply softmax function to acquire the
weight w for different views as mentioned in Section 3.3.1.
+en, we obtain the global truncated similarity matrix
Z ∈ RN×nk according to the weighted combining scheme by
(6). Finally, we acquire the global fused similarity matrix
S ∈ RN×N by (7) as Figure 1 shows.

According to Section 3.3.2, as a final step, spectral
clustering is performed on the global fused similarity matrix
S to acquire a unified clustering result. +e whole procedure

of SMVC_WAGE for incomplete three-view data is sum-
marized in Algorithm 2.

3.5. 4eoretical Analysis of the Proposed Algorithm. In this
section, we provide a brief theoretical analysis of the pro-
posed algorithm, containing computational complexity
analysis and convergence analysis.

3.5.1. Computational Complexity Analysis. +e computa-
tional complexity of the proposed algorithm mainly consists
of five parts, i.e., calculating U(v), Z(v), wv, F, and the final
clustering results. In Algorithm 1, the corresponding
computation is in steps 3, 4, 6, 9, and 10, where the number
of anchor points and clusters, expressed in K, is equal for
each view. Specifically, computation complexity of these
steps is summarized as follows:
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Figure 1: Anchor-based global fused similarity matrix construction for incomplete three-view data.

Input:
(1) Given the complete multi-view dataX � X(1), X(2), . . . , X(V) , whereX(v) � [x(v)

1 ; x(v)
2 ; . . . ; x(v)

n ] ∈ Rn×dv is the data matrix of the
v-th view.

(2) Given q labeled samples covering K clusters; the corresponding label vector y∈ Rq.
(3) +e number of clusters K; the trade-off parameter λ.

Output:
(1) Cluster label of each sample.

Procedure
(1) Initialize the trade-off parameter λ � 10 and the width parameter σ � 1 in Gaussian kernel function.
(2) Generate the seed set XS � X(1)

S ,X(2)
S , . . . ,X(V)

S , y  containing q labeled samples in V views, where
X(v)

S � [X(v)
S,1 ; X(v)

S,2 ; . . . ; X(v)
S,K] ∈ Rq×dv denotes the seed set in the v-th view with K clusters.

(3) Generate anchor points set U(v) � [u(v)
1 ; u(v)

2 ; . . . ; u(v)
K ] ∈ RK×dv for each view by (2).

(4) Construct the truncated similarity matrix Z(v) ∈ RN×K for each view by (4).
(5) Calculate clustering accuracy av of each view by (1) and (17) in the seed set XS.
(6) Acquire the weight wv for different views by (5).
(7) Obtain global truncated similarity matrix Z by (6).
(8) Calculate global fused similarity matrix S by (7).
(9) Derive the indicator matrix F by (9)–(14).
(10) Perform semi-supervised K-Means on the indicator matrix F to acquire the final results.

ALGORITHM 1: +e proposed SMVC_WAGE for complete multi-view data.
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(1) Obtaining anchor points set U(v) containing K an-
chor points requires O(1)

(2) Obtaining the truncated similarity matrix Z(v) re-
quires O(NKdv) according to (4)

(3) Obtaining the weight wv requires
O(tvqKdv) + O(K2) according to (5) and (17), where
tv and q are the iterative number and the number of
labeled samples, respectively, when performing
semi-supervised K-Means for each view

(4) Obtaining the indicator matrix F requires O(K3) by
performing eigen decomposition on R � ATA
according to (13)

(5) Obtaining the final clustering results requires
O(tNK2) by performing semi-supervised K-Means,
where t is the iterative number

+erefore, the total main computational complexity of
Algorithm 1 is

O 
V

v�1
1 + NKdv + tvqKdv + K

2
  + K

3
+ tNK

2⎛⎝ ⎞⎠. (15)

Note that the dataset’s view number V≪N, clusters or
anchor points number K≪ d and K≪N, and the number of
labeled samples q depends on the samples number N and the
percentage of labeled data ξ. Since we exploit semi-super-
vised K-Means to obtain the clustering result, tv and t are
usually small [38].

Compared with Algorithm 1, the main difference of
Algorithm 2 is to deal with incomplete multi-view data.
+erefore, similar to the Algorithm 1, the total main
computational complexity of Algorithm 2 is

O 
V

v�1
1 + NvKdv + tvqKdv + K

2
  + K

3
+ tNK

2⎛⎝ ⎞⎠, (16)

where Nv denotes the number of non-missing samples in the
v-th view.

According to the above analysis, in order to further
simplify the representation, the overall computational
complexity of SMVC_WAGE is O(Nd + qd + N), where
d � max(d1, d2, . . . , dV). In addition, the experimental re-
sults of running time have also proven the computational
advantages of SMVC_WAGE.

3.5.2. Convergence Analysis. Firstly, the whole procedure of
SMVC_WAGE just exploits the semi-supervised K-Means
to calculate the optimal clustering result in an iterative
manner, where the strong convergence property of semi-
supervised K-Means has been proven in [38, 39]. Secondly,
by calculating (13) performing eigen decomposition, indi-
cator matrix F can obtain the global optimal solution [9].
+irdly, the experimental result of convergence study can
also demonstrate the strong convergence of SMVC_WAGE.
In summary, the proposed method has good convergence
property.

4. Experiments

In this section, extensive experiments are performed to
evaluate the performance of our method (SMVC_WAGE).
Firstly, we describe six multi-view datasets used in the ex-
periment. Secondly, we introduce the comparative methods
and evaluation metrics. Ultimately, the comparison results
show the proposed method's effectiveness and efficiency.

Input:
(1) Given the incomplete three-view data X � X(1), X(2),X(3) , where X(v) � [x(v)

1 ; x(v)
2 ; . . . ; x(v)

n ] ∈ Rn×dv is the data matrix of the
v-th view.

(2) Given q labeled samples appearing in all views and covering K clusters; the corresponding label vector y∈ Rq.
(3) +e number of clusters K; the trade-off parameter λ.

Output:
(1) Cluster label of each sample.

Procedure
(1) Initialize trade-off parameter λ � 10 and width parameter σ � 1 in Gaussian kernel function.
(2) Adjust original data to X � X(1,2,3),X(1,2),X(1,3),X(2,3),X(1), X(2),X(3) .
(3) Generate seed set XS � X(1,2,3)

S , y , which contains q labeled samples appearing in three views, where
X(v)

S � [X(v)
S,1 ; X(v)

S,2 ; . . . ; X(v)
S,K] ∈ Rq×dv denotes the seed set in the v-th view with K clusters.

(4) Generate anchor points set U(v) � [u(v)
1 ; u(v)

2 ; . . . ; u(v)
K ] ∈ RK×dv for each view by (2).

(5) Remove missing samples for each view as illustrated in the second column in Figure 1.
(6) Construct truncated similarity matrix Z(v) for each view by (4) as illustrated in Figure 1.
(7) Reorder Z(v) into aligned matrix with rows and columns following the order of original samples, where Z(v) ∈ RN×K as illustrated

in the fourth column in Figure 1.
(8) Calculate clustering accuracy av for each view by (1) and (17) in the seed set XS.
(9) Acquire weight w for different views by (5).
(10) Obtain global truncated similarity matrix Z by (6).
(11) Calculate global fused similarity matrix S by (7).
(12) Derive the indicator matrix F by (9)–(14).
(13) Perform semi-supervised K-Means on the indicator matrix F to acquire the final results.

ALGORITHM 2: +e proposed SMVC_WAGE for incomplete three-view data.
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4.1. Datasets Description. Six real-world multi-view data-
sets are adopted to validate our method. Among these
datasets, the first two are text datasets, and the other four
are image datasets. +ey are widely used benchmark
datasets. +e descriptions of these datasets are given
below, and some important statistical information is
presented in Table 1.

(1) Cornell (http://lig-membres.imag.fr/grimal/data.
html): this text dataset is one of the popular
WebKB datasets [3, 26]. It includes 195 documents
with more than 5 labels: student, project, course,
staff, and faculty, where each document is charac-
terized by two views: the citation view and the
content view, i.e., 195 citation features and 1703
content features.

(2) 3Sources (http://erdos.ucd.ie/datasets/3sources.
html): this text dataset is naturally an incomplete
multi-view dataset [2] and is collected from three
well-known online news sources: BBC, Reuters, and
+e Guardian. In total, it contains 948 news articles
covering 416 distinct news stories, which are cate-
gorized into six topical labels: business, entertain-
ment, health, politics, sport, and technology. Among
these distinct stories, 53 appear in a single news
source, 194 are in two sources, and 169 are reported
in all three sources.

(3) UCI Handwritten Digit (http://archive.ics.uci.edu/
ml/datasets/Multiple+Features): this image dataset
consists of 2000 samples of hand-written numerals
(0–9) extracted from Dutch utility maps. Each class
has 200 samples. +ere are six different types of
features which can be used for performing multi-
view learning, that is, 76 Fourier coefficients of the
character shapes, 216 profile correlations, 64
Karhunen–Loève coefficients, 240 pixel averages in
2× 3 windows, 47 Zernike moments, and 6 mor-
phological features [31].

(4) ORL (http://www.cad.zju.edu.cn/home/dengcai/
Data/FaceData.html): this image dataset contains
400 images of 40 distinct individuals with 10 dif-
ferent images which were taken at different times,
varying the lighting, facial expressions, and facial
details [40]. Following experiments in [41], we used
three feature sets: 4096 dimension intensity feature,
3304 dimension LBP feature, and 6750 dimension
Gabor feature.

(5) NUS-WIDE-OBJECT (NUS) (https://lms.comp.nus.
edu.sg/wp-content/uploads/2019/research/nuswide/
NUS-WIDE.html): this image dataset is a real-world
web image dataset.+ere are 31 object categories and
30000 images in total [42]. In our experiments, 7
categories of the animal concept are selected. +ey
are bear, cow, elk, fox, horses, tiger, and zebra. Each
image can be represented by five public available
low-level features on its homepage website: 64 di-
mension color histogram (CH), 225 dimension color
moments (CM), 144 dimension color correlation

(CORR), 73 dimension edge distribution (ED), and
128 wavelet texture (WT).

(6) MSRC-v1 (https://www.microsoft.com/en-us/
research/project/image-understanding/): this image
dataset contains 240 images in eight categories, and
each category has 30 images [43]. Following ex-
periments in [29], we select seven categories: tree,
building, airplane, cow, face, car, and bicycle. Each
image is represented by five features: 24 dimension
Color Moment (CM), 576 dimension Histogram of
Oriented Gradient (HOG), 512 dimension GIST, 256
dimension Local Binary Pattern (LBP), and 254
Centrist features (CENTRIST).

4.2. Compared Methods and Experimental Settings. Our
proposed method solves the problem of complete and in-
complete multi-view clustering. +us, to prove the efficiency
and effectiveness of this framework, we choose Spectral
Clustering [44] and three multi-view methods to compare
the performance of complete multi-view clustering: MVSC
[6], AMGL [29], and MLAN [45]. Similarly, we compare the
Spectral Clustering [44], PVC [21], IMG [22], DAIMC [24],
IMSC_AGL [26], and APMC [2] for incomplete multi-view
clustering. We denote the proposed method as
SMVC_WAGE.+e description of these methods is given as
follows:

(1) SC: we perform Spectral Clustering (SC) [44] on all
views independently as the baseline.

(2) SC (concat): we firstly concatenate all views into
long dimension features and then run Spectral
Clustering [44] to acquire the result.

(3) MVSC: Multi-View Spectral Clustering (MVSC) [6]
constructs a bipartite graph and then uses local
manifold fusion to integrate the graph of each view
into a fused graph. Finally, Spectral Clustering is
performed on the fused graph to obtain the result.

(4) AMGL: Auto-weighted Multiple Graph Learning
(AMGL) [29] is a Spectral Clustering-based method
and is easily extended to semi-supervised multi-
view clustering. It automatically learns a set of
optimal weights without any parameters.

(5) MLAN: Multi-view Learning with Adaptive
Neighbors (MLAN) [45] is a graph-based multi-
view learning model and calculates the ideal weights
automatically after finite iterations. It can perform
local manifold structure learning and semi-super-
vised clustering simultaneously.

(6) PVC: Partial multi-View Clustering (PVC) [21]
works based on non-negative matrix factorization
to acquire a consistent representation. Lastly,
K-Means is performed on the consistent repre-
sentation to acquire the result.

(7) IMG: Incomplete Multi-modal Grouping (IMG)
[22] utilizes matrix factorization techniques to
obtain the consistent representation. It learns the
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compact global structure from the latent consistent
representation, and lastly K-Means is performed on
the consistent representation to acquire the result.

(8) DAIMC: Doubly Aligned Incomplete Multi-view
Clustering (DAIMC) algorithm [24] learns a latent
consistent representation from all views via inte-
grating weighted semi-NMF and L2,1-norm regular-
ized regression. Lastly, K-Means is performed on the
latent consistent representation to acquire the result.

(9) IMSC_AGL: Incomplete Multi-view Spectral
Clustering with Adaptive Graph Learning
(IMSC_AGL) [26] integrates the spectral clustering
and adaptive graph learning technique to obtain the
latent consistent representation from all views.
Lastly, it partitions the samples into their respective
groups via K-Means clustering.

(10) APMC: Anchor-based Partial Multi-view Cluster-
ing (APMC) [2] utilizes anchors to integrate intra-
and inter-view similarity matrices, and then Spec-
tral Clustering is performed on the fused similarity
matrix to acquire the unified result.

For comparison methods, the source codes are available
from the authors’ websites. Since the 3Sources dataset is a
naturally incomplete multi-view dataset, we utilize it for
incomplete multi-view clustering and conduct complete
multi-view clustering on the other datasets. We select the best
two views from the 3Sources dataset as the input of PVC and
IMG, because they cannot work on more than two-view
scenario. Since SC cannot directly deal with incompletemulti-
view data, we first populate the missing information with the
mean of the feature values in the corresponding view. Em-
pirically, the number of nearest neighbors accounts for 10% of
the dataset size. Since all the comparison methods conduct
K-Means clustering on the latent consistent representation,
we set the maximum number of iterations to 1000 for
K-Means clustering. Considering the limitation of the
comparison methods, we firstly learn a latent consistent
representation of the raw data and then use labeled data to
generate seed clusters that are utilized to initialize the cluster
centroids of semi-supervisedK-Means. Furthermore, tomake
the experiments more conclusive and fair, the parameters of
each method are initialized, being corresponding to the pa-
per’s report, and present the final result of SMVC_WAGE
with the trade-off parameter λ � 10 and the width parameter
σ � 1 in Gaussian kernel function. In terms of semi-super-
vised clustering, for all datasets, we randomly choose a small
proportion as labeled data in each category, where the pro-
portion is denoted by ξ(10%, 20%, 30%, 40%). To randomize

the experiment, we run each method 20 times with different
random initialization to record the mean performance as well
as the standard deviations in all experiments. Due to different
parameter ranges and preprocessing, some of the results may
be inconsistent with the published information.

4.3. Evaluation Metrics. +ere are many evaluation metrics
for assessing the clustering performance [46]. In our ex-
periments, we choose three evaluation metrics, namely,
Clustering Accuracy (ACC), Normalized Mutual Informa-
tion (NMI), and Purity, to conduct a comprehensive eval-
uation. +ese evaluation metrics can be calculated in a
certain framework through the clustering result and the
ground-truth of the dataset.

+e first evaluation metric is ACC, usually defined as
follows:

ACC �


n
i�1 δ map ci( , yi( 

n
, (17)

where n means the number of samples, yi means the ground-
truth label of the i-th sample, ci means the corresponding
cluster label calculated, δ means the Dirac delta function:

δ(x, y) �
1, if x � y,

0, otherwise,
 (18)

and map(·) is the optimal mapping function that arranges
the cluster labels to match the ground-truth labels via the
Kuhn–Munkres algorithm [47].

+e second evaluation metric is NMI, which integrates
mutual information and entropy. NMI is formulated as
follows:

NMI ci, yi(  �
I ci, yi( 

���������
E ci( E yi( 

 , (19)

where I(yi, ci) denotes the mutual information between yi

and ci, and E(·) returns the entropy.
Let nc

i be the number of samples in cluster Ci(1≤ i≤ k)

which is acquired via performing clustering methods, and n
y
j

be the number of samples belonging to cluster Yj(1≤ j≤ k)

with the ground-truth label. +en, NMI is rewritten as

NMI �


k
i�1 

k
j�1 ni,jlog n · ni,j/n

c
i · n

y
j 

�������������������������������


k
i�1 n

c
i log n

c
i /n(   

k
j�1 n

y

j log n
y

j /n  

 , (20)

where ni,j means the number of samples in the intersection
between Ci and Yj.

Table 1: Statistics of multi-view datasets used in our experiments.

Dataset # samples # clusters # views # features
Cornell 195 5 2 1703/195
3Sources 416 6 3 3560/3631/3068
Digit 2000 10 6 76/216/64/240/47/6
ORL 400 40 3 4096/3304/6750
NUS 2833 7 5 64/225/144/73/128
MSRC-v1 210 7 5 24/576/512/256/254
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Figure 2: ACC (%) of SMVC_WAGE, SC (the best single view), and SC (concat) on six real-world datasets with a different percent of labeled
data: (a) Cornell; (b) UCI Handwritten Digit; (c) ORL; (d) NUS-WIDE-OBJECT; (e) MSRC-v1; (f ) 3Sources.
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+e third evaluation metric is Purity which measures the
effectiveness of clustering by calculating the percentage of
correct labels. Purity is defined by

Purity �
1
n



k

i�1
max
1≤j≤k

Ci ∩Yj



. (21)

For the three evaluation metrics, a higher value indicates
a better performance. +e readers can refer to [48] to get
more details about their definitions.

4.4. Experimental Results and Analysis

4.4.1. Complete Multi-View Clustering Results. To explore
the effectiveness of our method, these complete multi-view
methods are performed on five complete multi-view datasets
with different percentages of labeled data, where the ex-
perimental results are enumerated in Tables 2–6 in the form
of ACC, NMI, and Purity. +rough the analysis of these
tables, we can get some observations as follows:

(1) From Tables 2–6, we can see that the clustering
performances are quite different in single-view
clustering scenarios for all multi-view datasets. +is
is mainly because each view has a difference in the
feature scales and distributions. +e experimental
results also imply that it is necessary to research how
to appropriately combine multiple views to enhance
the clustering performance.

(2) From Tables 2–6 and Figures 2(a)–2(e), we can find
that the proposed SMVC_WAGE can obtain much
better results than the best single view and concat for
all scenarios. Meanwhile, we can see that concat
performs the worst in most instances, mainly be-
cause directly concatenating views into a long view
may lead to redundant information, resulting in poor
clustering results. +us, these experiment results
demonstrate that clustering performance can be
effectively improved via properly exploiting the
consistent and complementary information to learn
a common representation.

(3) From Tables 2–6, we can see that the proposed
SMVC_WAGE outperforms all competitors such

as MVSC, AMGL, and MLAN while dealing with
most of the complete multi-view clustering. +is is
mainly because SMVC_WAGE can not only fully
exploit the intrinsic consistency and extrinsic
complementary information across different
views, but also make the high-quality single view
has a larger weight ratio in the common repre-
sentation by utilizing the prior information in the
multi-view data. +ese experimental results prove
that our method is effective in complete multi-view
clustering.

(4) From Tables 2–6, we observe that the performance
of the above methods first rises to high value and
then maintain slight variation as the number of
labeled data increases. For the proposed
SMVC_WAGE, with 30% or 40% labeled data, the
method always obtains the best result. Meanwhile,
with 10% or 20% labeled data, our method obtains
slightly worse results. +e main reason is that our
method heavily depends on how to construct the
graph through prior information. +us, we cannot
generate the structure of the graph optimally when
there is less labeled data, leading to slightly worse
results.

4.4.2. Incomplete Multi-View Clustering Results. To explore
the effectiveness of the presented SMVC_WAGE in dealing
with the incomplete multi-view data, we conduct experi-
ments on the naturally incomplete 3Sources dataset, where
the missing rate of each view is 16%, 28%, and 30%, re-
spectively. +e results are recorded in Table 7 and
Figure 2(f ). Similar to the complete multi-view clustering,
the above comparison results show that the performance of
the proposed SMVC_WAGE is significantly superior to all
the compared methods on the 3Sources dataset with a
different percent of labeled data. +us, our method can deal
with incomplete multi-view clustering well.

+e above experimental results on Cornell, UCI
Handwritten Digit, ORL, NUS-WIDE-OBJECT, MSRC-v1,
and 3Sources have well proven that the presented
SMVC_WAGE outperforms most algorithms in terms of
clustering ability. +e main reason is that SMVC_WAGE

Table 8: Aggregated comparison (mean ± std) of the average running time with a different percent of labeled data in different methods on
six real-world datasets (in seconds).

Complete data clustering
Datasets SC (best) SC (concat) MVSC AMGL MLAN SMVC_WAGE — —
Cornell 0.32 ± 0.01 0.47 ± 0.01 0.44 ± 0.03 0.37 ± 0.01 0.24 ± 0.03 0.23 ± 0.02 — —
Digit 1.45 ± 0.02 9.72 ± 0.13 14.57 ± 0.16 62.73 ± 1.55 28.56 ± 2.40 0.36 ± 0.03 — —
ORL 5.56 ± 0.11 22.31 ± 0.31 3.96 ± 0.23 0.64 ± 0.01 1.15 ± 0.11 0.40 ± 0.03 — —
NUS 6.88 ± 0.09 23.10 ± 0.10 29.96 ± 0.64 180.78 ± 1.02 71.67 ± 8.00 0.41 ± 0.04 — —
MSRC-v1 0.10 ± 0.00 0.35 ± 0.09 0.42 ± 0.02 0.26 ± 0.01 0.32 ± 0.04 0.28 ± 0.03 — —

Incomplete data clustering
Datasets SC (best) SC (concat) PVC (V1–V3) IMG (V1–V3) DAIMC IMSC_AGL APMC SMVC_WAGE
3Sources 3.16 ± 0.09 16.85 ± 0.41 1.25 ± 0.10 18.74 ± 0.32 262.61 ± 2.32 52.56 ± 1.89 0.63 ± 0.19 0.37 ± 0.01
All experiments are conducted on a PC machine with an Intel(R) Core(TM) i7-5557U CPU @ 3.10GHz and 16G RAM in the MATLAB environment. Bold
numbers denote the best results.
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firstly introduces an effective and simple anchor strategy that
can bridge all samples and capture more reliable nonlinear
relations to deal with both complete and incomplete multi-
view data. Besides, it exploits the intrinsic consistency and

extrinsic complementary information to learn a structured
optimal fused graph in a semi-supervised clustering
weighting manner, which can greatly enhance efficiency and
improve stableness.
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Figure 4:+e performance of SMVC_WAGE in a different value of the parameter λ and ξ: (a) Cornell; (b) UCI Handwritten Digit; (c) ORL;
(d) NUS-WIDE-OBJECT; (e) MSRC-v1; (f ) 3Sources.
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Figure 3:+e average running time (seconds) of methods mentioned above on each dataset. In the figure, to ensure visual discernibility, the
running time of maximum display is 5 seconds in the coordinate axis, and the specific value can be seen in Table 8: (a) the five complete
datasets: Cornell, Digit, ORL, NUS, and MSRC-V1; (b) the incomplete dataset: 3Sources dataset.
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4.5. Running Time. +e running time was recorded to
compare the computational complexity of the methods on
all datasets. From Table 8, it is clear that the proposed
SMVC_WAGE has the shortest running time in almost all
datasets except MSRC-v1. Meanwhile, as shown in Figure 3,
in which the original data is from Table 8, we see that the
running time of SMVC_WAGE is many times smaller than
the above-mentioned multi-view clustering algorithms on
all datasets, especially the UCI Handwritten Digit, ORL,
NUS-WIDE-OBJECT, and 3Sources dataset. +is is mainly
because these datasets have a relatively large number of
views and samples, and the data quality of each view varies
greatly. In summary, the experimental results have fully
proven the computational advantages of SMVC_WAGE.

4.6. Parameter Sensitivity Analysis. Our proposed
SMVC_WAGE has only one hyperparameter λ, which trades
off the weight of each view. In the following, the parameter
analytical experiments are performed on each dataset to
reveal the effect of this parameter. We first set the percentage
of labeled data ξ from 10% to 40% asmentioned before; then,
we explore the ACC of SMVC_WAGE by ranging the λ
within 0.01, 0.1, 1, 10, 100{ } and record the average perfor-
mances. As shown in Figures 4(a) and 4(d), we observe that,
with λ increasing from 0.01 to 100, the mean of ACC with
fixed ξ first increases to high value and then decreases. Re-
garding Figures 4(b)–4(f), similarly, we observe that the result
of SMVC_WAGE increases first and then maintains slight
variation. +erefore, SMVC_WAGE can obtain a stable great
performance across a wide range of λ. Obviously, the per-
formance keeps optimal in λ � 10. +ese experiments have

fully demonstrated that SMVC_WAGE is not so sensitive to
the variation of the hyperparameter λ in the final results.

4.7. Convergence Study. To investigate the convergence
empirically, we record ACC of SMVC_WAGE in every it-
eration on each dataset where we set the percentage of la-
beled data ξ � 10% and the hyperparameter λ � 10,
respectively. For a full iteration, SMVC_WAGE firstly cal-
culates the clustering accuracy for all views via performing
semi-supervised K-Means in order to obtain the global fused
similarity matrix. In this process, the final ACC is not
calculated, but it will consume some time. Without loss of
generality, we will use semi-supervised K-Means as an it-
eration each time, while recording the final ACC. We plot
ACC in Figure 5. For each subfigure, we can see that the
value of the ACC is zero in the first multiple iterations at the
beginning because our algorithm uses the prior information
of the data, and after a finite number of iterations, the ACC
begins to increase and gradually stabilize. Moreover, it re-
veals that SMVC_WAGE usually converges within 50 it-
erations for all datasets, which empirically proves the high
efficiency of our algorithm.

5. Conclusion

In this paper, a new semi-supervised multi-view clustering
framework is developed, which is conceptually simple and
efficiently generates high-quality clustering results in
practice. Specifically, our method introduces a simple and
effective anchor strategy that exploits the intrinsic and ex-
trinsic view information to bridge all samples and capture
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Figure 5: +e value of ACC (%) in different iterative steps is acquired via running SMVC_WAGE on six datasets with λ � 10 and ξ � 10%:
(a) Cornell; (b) UCI Handwritten Digit; (c) ORL; (d) NUS-WIDE-OBJECT; (e) MSRC-v1; (f ) 3Sources.
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more reliable nonlinear relations, which can greatly enhance
efficiency and improve stableness. Besides, this can also solve
the dilemma that samples sharing no common views cannot
be directly used for computing cross-view similarities.
Meanwhile, instead of regularizing or weighting the loss of
each view in a conventional way, the proposed method
constructs the global fused graph that spans multiple views
compatibly in the structure via a parameter-free graph fu-
sion mechanism which directly coalesces the view-wise
graphs. To this end, the proposed method can not only deal
with complete multi-view clustering well, but also be easily
extended to the incomplete multi-view instance. Experi-
mental results on six widely used real-world datasets clearly
show that our proposed algorithm is superior to some state-
of-the-art competitors in clustering ability and time cost.

When handling incomplete multi-view clustering, we
found that the main limitation of this approach may be that
anchor points can only be generated from common samples
appearing in all views, which remains to be further studied.

Data Availability

Six publicly available benchmark multi-view datasets are
utilized: the Cornell dataset, 3Sources dataset, UCI Hand-
written Digit dataset, ORL dataset, NUS-WIDE-OBJECT
dataset, and MSRC-v1 dataset. All the multi-view datasets'
homepages are listed in this paper.
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