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Abstract: Nutritional epidemiology employs observational data to discover associations between
diet and disease risk. However, existing analytic methods of dietary data are often sub-optimal, with
limited incorporation and analysis of the correlations between the studied variables and nonlinear
behaviours in the data. Machine learning (ML) is an area of artificial intelligence that has the potential
to improve modelling of nonlinear associations and confounding which are found in nutritional
data. These opportunities notwithstanding, the applications of ML in nutritional epidemiology must
be approached cautiously to safeguard the scientific quality of the results and provide accurate
interpretations. Given the complex scenario around ML, judicious application of such tools is
necessary to offer nutritional epidemiology a novel analytical resource for dietary measurement
and assessment and a tool to model the complexity of dietary intake and its relation to health.
This work describes the applications of ML in nutritional epidemiology and provides guidelines
to avoid common pitfalls encountered in applying predictive statistical models to nutritional data.
Furthermore, it helps unfamiliar readers better assess the significance of their results and provides
new possible future directions in the field of ML in nutritional epidemiology.
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1. Introduction

The ever increasing hardware and Internet accessibility and the novel big data sources
are just some of the key elements that are now enabling technologies to unlock the power
of artificial intelligence (AI) and machine learning (ML). ML is an area of AI that works by
learning from data. Here, analytical model building is automated to provide predictions
without being explicitly programmed to do so. Therefore, it does not come as a surprise
that ML methods are becoming progressively pervasive in our society, where most fields of
science have undergone a big data revolution.

Nutritional epidemiology uses dietary analysis to study the complex link between
nutritional intake and health. Given the ongoing technology revolution resulting in an
increased amount of available electronic data, nutritional epidemiology research has re-
cently been seeing a rapid expansion of ML applications, especially in the field of data
fusion, modelling of nonlinear associations and feature reduction. Nevertheless, reconciling
between the well established scientific principles of nutritional epidemiology and this novel
field is proving to be difficult.

Given the still young state of ML in nutritional epidemiology, the goal of this work is to
provide a critical overview of the applications of ML in nutritional epidemiology research,
its limitations and future perspectives. Clearly, this demands an ever deeper understanding
of such approaches at hand. Many researchers have addressed this problem by teaming
up with or contracting mathematically qualified scientists, but the shortage of suitably
trained professionals means that research groups often rely on untrained or inexperienced
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scientists to perform complex data analysis. Although previous commentaries have offered
recommendations and guidelines to avoid common pitfalls associated with these analysis
tasks, in practice, following these guidelines has proven more difficult than expected.
Furthermore, these frameworks have never been provided for the field of nutritional
epidemiology. By bringing in a novel perspective on some of the key statistical issues,
we hope that the exposition below will help readers better apply such techniques and
interpret results from studies. In the next sections, we will first review current areas
of research and limitations of nutritional epidemiology. Following that, we provide the
introductory concepts and a literature review on ML and big data. We then describe the
current approaches of ML in nutritional epidemiology and focus on its benefits, limitations
and common pitfalls to avoid when applying data-driven models to the field of nutritional
epidemiology. We conclude by proposing future directions for research on the applications
of ML in nutritional epidemiology.

2. Nutritional Epidemiology

Nutritional epidemiology is a discipline that studies the impact of diet and/or nu-
tritional elements on disease occurrence in populations. The findings from nutritional
epidemiology are generally applied for creating dietary policies, food fortification inter-
ventions, restriction of substances, or recommendations for prevention of cancer, chronic
diseases, obesity and congenital malformations (Satija et al. [1]).

To do so, nutritional epidemiology consists of three main research areas (Illner et al. [2]):
(1) exposure and outcome measurement (e.g., nutritional intake and disease occurrence)
through data collection on large groups of participants; (2) choice of the study design; and
(3) analytical and statistical techniques to assess the magnitude of the association between
these two measures. Nutritional epidemiology is characterised by uncertainty and an
incredible number of factors that can play a role in the measured association. Therefore,
the process of causal inference is complex, and it is generally rare for a causal relationship
to be considered unequivocal. The major challenges in the process of causal inference are
described below.

2.1. Errors in Measurement Methods

Sources of error in dietary assessments can be divided in two categories (Thornton
and Villamor [3]): random errors are generally unintentional mistakes such as marking
the wrong frequency column, or copying a wrong number when switching from a paper
to an electronic form. Such errors are considered noise in the sense that they cover the
real signal, i.e., the association between cause and effect. Plausibility checks can often
be employed to discover such errors in a dataset. The effects from random errors can be
mitigated by increasing the amount of data collected. The second types of errors are the
systematic errors which refer to biases across the population and mainly depend on the
patient. These include memory problems, lack of correct estimation in the frequency of
foods consumed and portion size (under or over-reporting of intake) and social desirability
bias. The latter describes a situation in which the interviewees report the more desirable or
socially accepted response (Hebert et al. [4]). In Section 4.1, we will describe how ML can
be used to improve the accuracy of dietary records.

2.2. Nonlinearities

The simplest models assume a linear association between exposure and outcome.
However, most of the times a nonlinear relationship exists. A variety of approaches have
been developed for dealing with nonlinearities, but they are usually ad hoc solutions based
on experience, needing domain expertise and careful assessment and interpretation of
the results. Some factors are specifically crucial in jeopardising the detection of nonlinear
effects, which in turn cause misinterpretation of the results (May and Bigelow [5]). Some
of these factors are: (i) sample size: If the data are not large enough, detecting the true
relationship between exposure and outcome is troublesome. Additionally, if the range of
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exposure is small, any inference of nonlinearity can pass unnoticed, together with possible
threshold effects; (ii): Individual susceptibility is an important factor that can contribute to
a disease. In this case, adding data from genetic studies could be helpful although laborious
and challenging to realise; (iii): wrong models: Sometimes, authors just do not use the
right model to estimate the true function between exposure and outcome. A quick fix for
such a problems is to approach the modelling process by using multiple approaches in an
exploratory phase until the right model is found. For this reason, results from a specific
study should be judged in the context of their specific application. In Sections 3 and 4.2.1
we will describe how complex ML models have been shown to deal particularly well with
nonlinear data.

2.3. Confounding

Confounding is one of the main sources of systematic errors that can appear whenever
assessing causality in epidemiologic studies (Greenland and Morgenstern [6]). Confound-
ing represents an alternative explanation for the association between the exposure and the
outcome, and it is introduced by a third variable called a confounder. Confounding is a criti-
cal error in nutritional epidemiology. For it to occur, the confounder must be associated, but
not measured, with both the exposure and the outcome. In this case, statistical adjustment
in analyses can be performed to control for some of the effects of confounding. One example
is entering confounders as covariates in analytic models (Zeraatkar et al. [7]). However,
complete removal of the influence of confounding cannot be assured. ML approaches to
mitigate confounding are described in Section 4.3.

2.4. Missing Data

After an epidemiologic study, data that were collected are then recorded and inserted
into a database. Here, it is crucial to consider which information was not provided by
the interviewees, that is, missing data. There are different techniques that deal with
missing data (Sangra and Codina [8]), the most common being: (i) listwise method, which
completely deletes the interviewee presenting missing data, however it affects the power of
the tests; (ii): pairwise deletion, which keeps the subject whenever such missing values do
not affect the analysis, otherwise entirely deletes a subject; (iii) imputation, which replaces
missing values with the mean of other values, or though regression, etc. This approach
can however introduce random bias in the later modelling stage, which is not taken into
account by current methods. Similar to the errors related to measurement methods, missing
data can be imputed with ML models or can be dealt with during training of a ML model,
as explained in Section 5.

An exciting area of future research regards ML, which has the promise of mitigating
or solving some of these challenges. ML is presented in the Section 3.

3. Machine Learning

ML supports domain experts by automatically learning from data, thus removing the
need for manual analytical model building. Such techniques are more flexible than the
classical statistical model approaches (Ciavatta et al. [9]) because they can take advantage of
data-rich applications. ML models are then integrated into different downstream tasks and
service applications to provide data insights and support decision making. Clearly, data
are an essential component of ML. The first 2 decades of the 21st century have witnessed
a sharp increase in the volume of digitally available data, which in turn has allowed the
development and further deployment of ML in a wide range of applications in healthcare,
finTech, cybersecurity, robotics, predictive maintenance to improve processes, customer
experiences, and decision outcomes. The topic of digital data correlates with big data, a
terminology that is usually found in the AI field. Such a term refers to data coming in large
amounts. An enabling technology for big data has been the ever increasing amount of low-
cost smaller electronics, computing devices, sensors, and the Internet of Things (IoT). IoT
can be considered as a system of such physical devices connected through an area network
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and communicating with each other. An IoT device can also be a smartphone. This interac-
tion can generate an enormous quantity of data, which in turn can be used to create new
services and applications through ML (Shanthamallu et al. [10], Mahdavinejad et al. [11]).
In healthcare applications, IoT and big data analytics through ML is now allowing applica-
tions which facilitate the collection and smart usage of patients’ data, improving treatments
and services. This can also be used for population healthcare projects and clinical research.

3.1. Training and Evaluation of Machine Learning Models

The main goal of using ML is to produce a model that enables the prediction of
a value ŷ for any observation represented as a d-dimensional input vector x which has
the values for d variables (features). Model training in ML is referred to as the process
by which a mathematical model φ is identified by means of data selected for this task.
During model training, the model’s parameters are identified based on the training dataset
(Hastie et al. [12]). For ML models to understand how to provide predictions, the training
datasets are fed into the ML algorithm; this is then followed by validation datasets which
ensure that the model is interpreting this data accurately and it is not overfitting. Overfitting
happens whenever a ML model learns how to exactly reproduce the pattern of the training
data. When this happens, the algorithm unfortunately cannot generalise well on new,
unseen data. Broadly speaking, the more data are provided to the ML system, the better
that model can learn to generalise and improve its performance. Model performance
is generally defined as the model’s generalisation capacity, i.e., the ability of a training
model to correctly predict new values for previously unseen data points. The data can be
represented in different ways: (i) We can use a collection of observations, each describing a
state y. For example, we can have different biomarker measurements for the same patient
which might express that observation as belonging to the class y denoting cancer. (ii) Time-
series data representing the temporal changes of the variables under study might be used.
These data are usually used for regression problems, where the goal is to predict what
the next values will be, given the previous ones. (iii) Image data, mainly used recently in
computer vision applications, might also be employed.

3.2. Machine-Learning Techniques

Based on the availability of target labels, ML models can be broadly divided in
supervised and unsupervised models.

Supervised models are trained using the training data with associated target labels
yi (Caruana and Niculescu-Mizil [13]). The model φ is trained with the given dataset
D = {(xi, yi)}N

i=1 to predict the associated label. These predictions are compared with the
target labels, and the parameters of the model are learned by means of the loss function and
the optimisation algorithm. The loss function evaluates how well the model is fitting on the
given data. The optimisation algorithm is used to find the values of the model’s parameters
that minimise the loss function. Most typically, the labels are provided by a human expert.
After training, the models can be used to predict the target label for each new unseen data
point. In unsupervised techniques, the model scores the data solely based on the patterns in
the training dataset without any target label (Hastie et al. [14]). In this case, the training
dataset D = {xi}N

i=1 consists of N data points where (i = 1, . . ., N). ML techniques can
also be divided in classification applications, where yi can only acquire discrete label values
associated to a class. A class denotes a set of data having common characteristics. Regression
problems involve learning the underlying function f (x) of input–output, which means
predicting a continuous value yi.

3.3. Neural Networks and Deep Learning

Between the most employed ML models, special mention goes to artificial neural
networks (ANNs) due to their vast usage (Hassoun et al. [15]). ANNs compute the predicted
output value by means of a network of simple yet nonlinear unit operations (neurons). Each
neuron has its own set of parameters. While ANNs are essentially nonlinear regression
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models, they are extremely flexible due to the ability to string an almost arbitrary number
of neurons together, specifically by using large numbers of layers between data samples
and predicted labels (hidden layers), each including many neurons. ANNs are used
in both supervised regression and classification tasks. A deep neural network (DNN)
(LeCun et al. [16]) falls under the deep learning umbrella and can be considered as multiple
ANNs composed of several layers that have the ability of learning very complex functions.
In fact, in the mathematical theory of ANNs, the universal approximation theorem (Winkler
and Le [17]) states that ANNs and specifically DNNS, have the capabilities of universal
approximators, i.e., no matter what underlying function represents the data, there is always
a network that can approximately approach the result. Of course, this is an ideal situation
that depends on the architectural choice and on the quality (and quantity) of input data.
Clearly, this can be proven to be very useful in modelling complex diet–disease processes.
There are different types of DNNs, and their main difference lies in the types of neurons
(nodes) used (LeCun et al. [16]). For example, convolutional neural networks (CNNs)
are mostly used for image recognition and for their ability to learn hierarchical feature
representations. Recurrent neural networks are also another type of DNNs, where the
connections between nodes form a graph along a temporal sequence and are mainly using
for time-series data and speech recognition.

To conclude this section, we summarise in Table 1 the different learning types, tasks
and ML models that are most commonly found in the literature. Note that some ML
models can be used for more than one technique (e.g., ANNs can be applied in both
classification and regression tasks). For a deeper dive into these, we refer the reader to
Hastie et al. [14], LeCun et al. [16], Murphy [18].

Table 1. Summary of the main machine-learning categories.

Learning Type Technique Models

Supervised

Classification
Random Forest, Naïve Bayes,

Support Vector Machine,
k-Nearest Neighbour, ANN

Regression
Linear Regression

Logistic Regression
Random Forest, ANN

Unsupervised

Feature extraction
PCA

Deep Autoencoders
Manifold Learning

Clustering
Gaussian Mixture Models

k-Means
Deep Neural Networks

4. Applications and Common Pitfalls

In this section, we describe different applications of ML in the field of nutritional
epidemiology, highlighting their strengths and weaknesses.

4.1. Health and Dietary Input Data
4.1.1. Increasing the Amount of Data

Nutritional digital data can be generated through multiple means, thanks to the
ubiquity of Internet-connected computers and smartphones. For example, ML mod-
els can now successfully leverage the entire contents of the electronic health records
(Morgenstern et al. [19]). In wearable technology (Phillips et al. [20]), dietary assessment
can be conducted by using wearable devices containing gyroscopes and/or accelerom-
eters. These can track wrist movements and indirectly record lifting of hands and cut-
lery as an approximation to account for calorie intake and eating patterns (Vu et al. [21]).
Of course, such systems can also be used to monitor daily physical activity. Wearable
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sensors can also be used to continuously monitor glucose (Cappon et al. [22]) for dia-
betes treatment and self-management in downstream ML-based decision-support systems
(Contreras et al. [23], Kavakiotis et al. [24]).

Additionally, mobile calorie counting apps (Limketkai et al. [25]) can record large
amounts of data from the users, self-reporting daily portions and calorie intakes. Nowa-
days, it is estimated that there exist about 165,000 publicly available mobile health apps
related to health and wellness (Kao and Liebovitz [26]). Such systems can represent a
large opportunity for nutritional epidemiologic studies since the data does not need to
be collected inside the clinics. Rather, it can be collected remotely at home and on the
go, without suffering from recollection bias. Furthermore, compared to traditional data
collection methods (e.g., phone interviews etc.), mobile self-reporting is also less time
demanding. A simple and inexpensive yet powerful way to track dietary habits is through
grocery purchases in smartphone-tracking applications. These records have been used in
several public health nutrition research studies to evaluate interventions (Bandy et al. [27]).
Another way to decrease the burdensome task of collecting dietary data is to use ML-based
natural language processing techniques, which convert speech into text or input variables,
e.g., by using a smartwatch combined with an audio-based detector of chews and swal-
lows to identify eating behaviours (Kalantarian and Sarrafzadeh [28]). Dietary data can
also be automatically “mined” through ML approaches from social media for ecological
studies to study community-level health outcomes (Shah et al. [29]). In another study
(Gerina et al. [30]), a ML model was used to detect cooking activities based on air quality
sensor data. The model’s output was integrated with a social robot that, by interacting with
the participant, supported filling in a food diary.

Such approaches can facilitate more longitudinal, repeated dietary measurements,
allowing for expanded sample sizes thereby increasing statistical power. However, as
sample size grows, it decreases the quality of data aggregated through wearable devices,
apps or social media due to the lack of supervision by a clinical researcher during collection.

4.1.2. Improving Data Quality

By its very nature, a ML model is sensitive to the quality of the data used during its
training and validation. The rule of “garbage in, garbage out” (Grimes [31]) applies here,
where even small errors or bias in the training data can lead to unexpected consequences in
the model’s prediction.

To increase and improve the accuracy of self-reported dietary records during food
logging, an active area of research has recently seen ML and deep learning models used
to classify foods and calories from pictures of users (Lo et al. [32], Tay et al. [33], Sahoo
et al. [34], Lo et al. [35]). Accuracy was reported to be as high as 90%. Another ap-
proach is to evaluate food sizes (Ege et al. [36]) from food images and use the resulting
value to evaluate caloric intake. Such approaches can be applied to address systematic
and random errors. However, image-based dietary assessment relies heavily on com-
puting algorithms and storage facilities, which can greatly increase the processing time.
For example in (Puri et al. [37]), the authors report an image-based assessment time of
33 s. Furthermore, such analysis can be troublesome if the dataset to train (and test) the
model is limited, such as in (Zhu et al. [38], Woo et al. [39]), which could make it nec-
essary to semi-automate the process of food recognition, as presented in (Jia et al. [40]).
To mitigate this issue, large datasets of food images are becoming increasingly available
(Min et al. [41], Aguilar et al. [42]). The idea here is that deep learning models for image
recognition such as CNNs can be pretrained on such large datasets and then, thanks to a
technique called transfer learning, can be used for online applications in a continuously
learning manner (He and Zhu [43]), further decreasing prediction times.

Low quality input data can also lead to a biased ML model. These raise ethical
questions whether we can safely trust decisions taken based on ML models’ predictions.
In fact, it is critical to ensure that the data is representative of the population under
study and not skewed or imbalanced. Large amounts of data would usually suffice
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to prevent biases of the ML model, but even large datasets need to be of high qual-
ity. For example, patients with a low socioeconomic status usually have limited access
to healthcare facilities (Arpey et al. [44]). They therefore have insufficient information
in their electronic health records, leading to a biased ML model presenting disparities
(Gianfrancesco et al. [45]). A possible solution to avoid such bias is to make sure that fea-
tures that are biased, such as ethnicity and social determinants of health, are also included
in algorithms (Gianfrancesco et al. [45]). Related to model bias is model transparency
(i.e., why a certain prediction was given) which is necessary for real-world implementations
since special care needs to be take whenever the ML model will be used for downstream
tasks such as patient care. We will discuss the aspects of transparency (interpretability and
explainability) in Section 5.4.

4.2. Modelling of Dietary Variables
4.2.1. Non-Linearities

The diet–disease relationship in epidemiologic research is mostly conducted in its
simplest form by considering linear models of association between exposure and outcome
(Boeing [46]). However, this assumed relationship is generally not correct as nonlinear rela-
tions exist (Ioannidis [47]). For instance, several studies related to cardiovascular diseases
have shown that salt, carbohydrates and fats possibly present a U- or J-shaped relation
with such disease (Kong et al. [48], Investigators et al. [49]), largely due to confounding
factors. As a consequence, if incorrect linear assumptions are taken during the modelling
phase, this can cause spurious associations and biased effect estimates (Bodnar et al. [50]).

Complex ML and deep learning algorithms such as ANNs and DNNs can overcome
these limitations due to their ability to model complex relationships between input variables.
For example, in (de Cos Juez et al. [51]), an ANN was implemented to relate 38 diet and
lifestyle variables to bone mineral density in post-menopausal women. The sample size,
however, was relatively small, with only 200 patients. No information was given about
using a validation dataset to prevent overfitting of the model. In a cross-sectional survey
(Zeng et al. [52]), the risk of hyperuricemia based on dietary information was estimated
using an ANN. In (Chew [53]) DNNs were used to classify images of patients with age-
related macular degeneration supporting the authors in evaluating the importance of
nutritional supplements. Other examples of DNNs for modelling nonlinear diet–disease
relationships are still scarce in the nutritional epidemiology literature. We suspect this is
due to the generally low availability of large datasets. In fact, in other broader disciplines
such us clinical and epidemiologic research, where data availability is improved, we found
that several studies employ DNNs, e.g., a deep learning model for the detection of breast
cancer (Puvanesarajah et al. [54]); a CNN model for non-imaging diagnostic to predict for
skin cancer (Vivot et al. [55]); or for diabetic retinopathy screening (Wong and Bressler [56]).
In medical and epidemiologic research, it is also reported that DNNs perform better than
ML approaches (Byeon [57], Xiong et al. [58], VoPham et al. [59]) due to their exceptional
capabilities to model nonlinear relationships and because they need virtually no feature
engineering of the input data. Because of this, we believe that a large amount of structured
data is still needed for nutritional epidemiology to unlock the true power of DNN models.

4.2.2. Dimensionality Reduction

Curse of dimensionality refers to a phenomenon that arises when data in high-
dimensional spaces (i.e., with a high number of variables/features) are used for analysis or
modelling purposes. Given the large amount of possible explanatory variables, modelling
studies in nutritional epidemiology have become difficult to conduct, and the task of iden-
tifying the most predictive ones is extremely challenging (Bodnar et al. [50]). In addition,
common statistical models cannot easily deal with a large number of variables. In this case,
ML can be used as a dimensionality reduction technique. Such techniques can be split into
(1) feature extraction and (2) feature selection methods.
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Feature extraction works by finding a combination of new features from the original
ones. Such algorithms simplify modelling, thereby partially overcoming the curse of di-
mensionality. Depending on the technique that is used, these methods find the best linear
or nonlinear transformation that reduces the number of dimensions with a minimum
loss of information. Examples of linear methods are principal component analysis (PCA)
and linear discriminant analysis. In (Hoffmann et al. [60]), three linear methods (PCA,
reduced rank regression and partial least squares) were employed for feature extraction
to derive dietary patterns from 49 food groups related to type 2 diabetes. The authors in
(Zhang et al. [61]), used PCA to derive dietary patterns predictive of cardiovascular disease
risk. In (Santos et al. [62]), PCA was applied on 34 variables expressing the mean food
intake of 1102 individuals from a population-based study. Nonlinear dimensionality re-
duction techniques are deep autoencoders and manifold learning (Morgenstern et al. [19]).
Deep autoencoders are especially interesting since they are DNNs and combine the ad-
vantages of being both unsupervised and nonlinear approaches, allowing for the em-
bedding of data into a low-dimensional representation while conserving its properties
(Falissard et al. [63], Wang et al. [64]). Clustering techniques (e.g., Gaussian mixture mod-
els or k-means clustering) can also be included into feature extraction techniques as they
can eliminate noisy variables. For example, (Kwon et al. [65]) employed k-means clustering
to pinpoint risk factors for low muscle mass based on nutritional factors. The algorithm
generated clusters of patients based on their dietary and health-related data, where patients
within the same cluster had similar attributes. ML logistic regression was then applied to
find risk factors in each cluster.

Feature selection methods aim at reducing the dimensionality in a large dataset. Rather
than transforming or grouping the variables into a new representation, feature selection
methods can restrict the number of variables to a smaller subset by applying a selective filter.
The selected variables are chosen based on how informative they are for the prediction of the
outcome (Walter and Tiemeier [66]). For example, techniques such as permutation feature
importance (Altmann et al. [67]) can be used to train the ML model recursively with different
variables, thereby finding the ones providing best model performance. In (Zeevi et al. [68]),
this technique was used to find the most important variable related to glycemic responses in
a regression algorithm, which was found to be related to microbiota. In (Dipnall et al. [69]),
a methodology for feature selection using ML on a large epidemiological dataset was
successfully implemented for detecting 3 out of 67 biomarkers (red cell distribution width,
serum glucose and total bilirubin) associated with depression.

The main downside of such dimensionality reduction approaches is that they are
usually difficult to automate and apply to a different dataset because of their complexity
and application-specific fine-tuning. Additionally, they require extensive domain expertise,
experience, and process understanding (Russo et al. [70]).

4.3. ML Approaches to Confounding

In nutritional epidemiologic studies, confounding and multicollinearity are systematic
errors that can cause misinterpretation of the results. That is because they generate a false
relationship between the dietary variable and the disease risk. This aspect is particular chal-
lenging in nutritional data since nutrients from different foods are not only correlated with
each other but also with different outcomes (diseases) (Trepanowski and Ioannidis [71]).
Confounding is usually controlled by a statistical adjustment during data analyses. This
approach, however, requires domain confidence and expertise and making assumptions
about the measured variables.

A way to deal with confounding through ML is by creating “high-capacity models”.
In ML, capacity is a term representing model complexity, i.e., a model with higher capacity
is expected to be able to model more complex relationships between the variables. Usually,
high-capacity models are ANNs or deep-learning models presenting an extreme number of
parameters (in terms of millions). Training high-capacity deep-learning models with a high
number of observations and variables has been shown to better deal with confounding in
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clinical research (Brisk et al. [72], Badgeley et al. [73]). That is because such models have
the capability of processing data through their several layers and create entirely new types
of variables. This approach not only adjusts for confounding, but also for any existing
nonlinearity (Morgenstern et al. [19]) by taking advantage of the data richness in number
of observations and variables. High-capacity models of this type however are prone to
overfitting and errors in the testing phase. In the next section we will discuss the issue of
overfitting together with different methods used to adjust for it.

5. Practical Recommendations
5.1. Data Preparation

The most important step after data—especially big data—collection, is to prepro-
cess (i.e., clean and/or put in the right format), store, and make it available for research
(García et al. [74]). Additionally, metadata should also be provided. Finally, each of the
above data preparation steps should also be well documented, ideally providing the end
user with all the versions of the data, from raw to clean. Addressing the points above can
be challenging and time demanding, but it is fundamental. In fact, the success of ML tech-
niques is dependent on the quality of the data that they operate on (Kotsiantis et al. [75]).

At this stage, missing data should be handled correctly. Imputation of missing data
through ML techniques has been extensively studied (Lakshminarayan et al. [76], Richman
et al. [77], Batista and Monard [78]) and has shown to outperform common imputation
statistical methods (Jerez et al. [79]). Different ML algorithms can be applied, such as
k-nearest neighbours and self-organisation maps. Recently, nonlinear techniques, such as
ANNs, are also employed (Al-Milli and Almobaideen [80]).

Dimensionality reduction techniques and feature engineering are also part of this
stage. Feature engineering is the process of adding or creating new features with the goal
of supporting and increasing the information provided to the ML model (Heaton [81]).
Such a step is usually cumbersome and requires domain expertise. For example, in a
study exploring the predictive power of nutrients for cardiovascular disease using ML
(Morgenstern et al. [82]), the authors combined features concerning cultural and racial
origin and household income, and derived variables based on smoking as well as on
the participants’ immigrant status, age, and years since immigration. Compared to ML
algorithms, an advantage of deep learning models is that they do not require feature
engineering due to their abilities to extract meaningful information from data automatically
(LeCun et al. [16]).

During data preparation, labelling is also conducted. This is the process of assigning a
target to each observation. Data labelling is necessary for a supervised ML model to learn
from the training dataset to predict the associated label (target). Labels are also needed in
both the supervised and unsupervised case for performance evaluation (Russo et al. [83]).
While labelling an entire dataset is tedious work that requires a dedicated team of experts,
correct data labelling is crucial for any ML model. For these reasons, repeated-labelling
strategies can been employed (Sheng et al. [84]). For example, a minimum of two people is
required to label the data, and target labels are then computed by merging the provided
results to avoid bias due to decision fatigue. Additionally, a user interface designer is
needed to provide a simple, intuitive system to label data.

5.2. Data Quality and Quantity

“How much data is enough for a ML model”? There is no correct answer to this
question, as it usually depends on the type of model chosen; the number of variables (the
higher the dimension of the dataset, the more observations are needed for the model to
create an input–output function); and the data quality (Gudivada et al. [85]). Data quality
refers to the presence of noise and missing data, but it also deals with how representative
of the population under study it is. Unfortunately, the presence of low-quality observations
in the data will negatively impact any ML method. A way to address such problems is
through specialised loss functions (Wang et al. [86]) which reduce the weights of low-
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quality (or imputed) observations during training so that the model focuses more on the
most informative samples. For example, in (Tran et al. [87]) a focal loss is employed for
improving early detection and classification of pulmonary nodules.

On the other hand, if the only limitation is the amount of data (i.e., data shows a signal-
to-noise ratio good enough to learn meaningful input–output relationships), techniques
such as regularisation and k-fold cross-validation can be used to support correct training of
ML models. We will discuss these techniques below.

5.3. Avoiding Overfitting

Overfitting is most probably one of the main errors that happen when training a ML
model. Common causes of overfitting are related to the quantity of data (the fewer the data,
the less the model generalises well) and using a model that is too complex (we mentioned
before the term high capacity). As a general rule, we are in the presence of overfitting
whenever the performance of a trained ML model on an unseen test set is considerably
lower than the training set. In general, we should beware of results that are too good to
be true.

A method used to monitor the correct training of ML models is k-fold cross-validation
(Rodriguez et al. [88]). This is a technique that uses k numbers of held-out validation sets
to constantly evaluate whether the model is overfitting on the training data during the
training process. Such a technique is especially convenient for small datasets (which is
usually the case for nutritional epidemiology data). In this process, the model is tested
during training on an unseen data set. If the performance of the model on the held-out set
is much worse than the ones on the training data, it means the model is overfitting and:
(i) training should be stopped earlier; or (ii) regularisation techniques should be used.

Regularisation is one of the most important concepts of ML and is a technique that
prevents the model from overfitting by discouraging learning a more complex or flexible
model (Hastie et al. [12]). Regularisation comes into play during model training, i.e., by
shrinking the coefficient estimates towards zero or by preventing them from rising too high.

5.4. Dealing with Biased Data

ML models are used to generate predictions which are then implemented in down-
stream tasks such as diagnosis, causality assessment, as well as decision making in self-
driving cars or the automation industry. There are some instances, however, where an
ML-based prediction could be incorrect and cannot be relied upon because the predictions
are biased towards a particular class.

In fact, while it is nearly impossible to point out why a particular decision was made
because ML models are considered “black boxes”, a large field of research focuses on
interpretable and explainable AI which aims at providing model transparency (Holzinger
et al. [89], Gunning et al. [90]). Specifically, interpretability is about understanding the
cause and effect within the ML system, that is, how much are we able to predict what
is going to happen, given an input. Explainability, on the other hand, is the extent to
which the internal architecture and mechanics of a ML model can be explained in human
terms. Another approach also focuses on what has been called Bayesian deep learning
(Kendall and Gal [91]), which aims at obtaining a realistic, well-calibrated expression of
when and how much a model is uncertain about its own prediction and therefore how
trustworthy such a prediction is. A Bayesian neural network employs a prior distribution
for each weight of a neural network, then posterior inference is applied. Interpretability
and explainability in ML are still an open research question, and special attention should
be paid to how much a ML model’s predictions are trusted to make final decisions.
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5.5. Performance Metrics

Whenever a ML model is used during training or testing, it is critical to evaluate its
predictive performance. For regression tasks, these are usually measured in terms of R2 or
explained variance, while classification tasks generally require an accuracy metric, that is:

Accuracy =
tp + tn

tp + tn + f p + f n
, (1)

where true positives (tp) are the number of correctly identified members of the disease class,
true negatives (tn) the number of correctly classified members of the no-disease class, false
negatives (fn) and false positives (fp) are, respectively, the number of incorrectly classified
no-disease and disease (this equation refers to a case with two classes only). Clearly,
an accuracy close to one represents a ML model with powerful predictive capabilities.
However, the accuracy metric works best only when the two classes (no-disease and
disease) are balanced, which is usually not the case. Generally in fact, the data can be
skewed towards the no-disease class which will result in a prediction bias towards the
majority class. In this case, the accuracy metric will still return a value close to one, but
the model is actually unable to correctly predict the patients with disease. This will cause
misleading results and incorrect conclusions. For example, in (Batterham et al. [92]) the
authors employed and compared different ML models to classify participants achieving at
least 10,000 steps per day in a nutrition-related intervention study. A metric called area
under the curve AUC was used for performance assessment. However, the number of
participants reaching the target steps was 79%, resulting in an imbalanced dataset, where
such a performance metric is not ideal (for example, precision–recall curves or a F1 score
would have been more feasible).

Therefore, whenever the data present imbalanced classes, it is recommended to com-
pute the F1-score as:

F1 = 2
precision · recall

precision + recall
, (2)

where

precision =
tp

tp + f p
recall =

tp
tp + f n

(3)

Generally, there is an inverse relationship between precision and recall (recall is also
sometimes called sensitivity): as one increases, the other decreases. This is called the
precision–recall trade-off. While recall expresses the ability to find all relevant cases in the
dataset (what proportion of actual diseases were identified correctly), precision shows the
proportion of the data points the model identifies as diseases were real (e.g., a model that
produces no false positives has a precision = 1) (Davis and Goadrich [93]). In healthcare
applications, recall is usually preferred over precision as it is more important to identify the
disease class at the cost of having a higher number of false positives.

5.6. Skilled Personnel

Finally, applying ML in nutritional epidemiology needs teams of experts from a large
variety of disciplines. That is because best practices and approaches need to be followed
to build a productive ML team (Schelter et al. [94]). Necessary figures include: (1) a data
engineer responsible for building data pipelines architectures and infrastructure; (2) a data
scientist to identify cases that can be solved with ML and develop custom ML models;
(3) a ML scientist/researcher to optimise and deploy models to production and conduct
research for novel ML use cases and applications. Building such a team in small enterprises
or for short-term research projects, however, is a challenge and can lead to lack of adequate
personnel and scientific credibility of conducted research. Usage of consultancy firms can
be helpful, although expensive, in this case.
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6. Conclusions
6.1. Critical Points for the Application of ML

This study tried to reveal current and possible future applications of machine learning
(ML) to the field of nutritional epidemiology. The current literature is, however, still almost
devoid of practical and successful examples of ML in this sector. We have identified some
critical points that need to be addressed for future integration and development of these
fields (Diebolt et al. [95]).

• Most of the studies in the literature are limited to few models and small datasets, there-
fore not showing the real advantages of one method compared to another. Systematic
comparisons and benchmark datasets are therefore needed.

• It is important to take advantage of the datasets already collected in different studies.
That means an organised system of aggregation of the data is essential, together with
a regulatory framework for ensuring data privacy and trustworthiness. Extensive
work is needed to ensure that research projects collect and publish datasets in a
well-organised manner and with robust security.

• In addition, availability of technical skills in the use of ML, as well as access to high-
performance computing, is needed to produce clear, quantifiable demonstrations of
the benefits of ML in nutritional epidemiology research. This can be reached thanks to
collaborations and large investments in the training of personnel and infrastructures.

• Whenever dealing with data with a low signal to noise ratio, such as survival rate
or readmission rate in hospitals, several epidemiologic studies have shown that
ML algorithms provide improved performance compared with traditional statistical
models (Feng et al. [96], Mortazavi et al. [97]). On the other hand, the situation
is overturned for data with higher signal to noise ratio, such as risk prediction of
major chronic diseases or depression. In this case, ML models have been surpassed by
conventional statistical models (Nusinovici et al. [98], Gravesteijn et al. [99]). We expect
a similar situation to occur in nutritional epidemiology, although the high correlation
between nutritional variables could also play a big role in favour of ML models.

6.2. Limitations of Current Work

The main challenges found while reviewing the applications of ML in nutritional
epidemiology are not only the limited literature examples but also their broad range of
applications. For example, studies employing deep-learning models range from modelling
input–output relationships to computer vision-based food detection. To compensate for
this, research papers employing ML in clinical research were also included in the present
review with the goal of showing the prospective applications of ML. If that was the case, it
was explicitly specified in the text.

This review focused on current applications and pitfalls of ML in nutritional epidemi-
ology. An aspect of nutritional epidemiology which was not discussed relates to the existing
biorepositories and national surveys in public health nutrition such as (Rosso et al. [100],
Riboli et al. [101]). Similarly, we did not delve into the aspect of specialised medicine and
nutrition as application fields for ML (Zeevi et al. [68]). The reason for these choices lies
in the objective of this study, which is to provides guidelines to avoid common pitfalls for
practitioners applying data-driven models to nutritional data, leaving the above topics
outside the scope of our work.

Similar to our work is (Sak and Suchodolska [102]), where the authors explore the
applications of AI in nutrients science research. Different than this review, however, the
authors focused on a broad range of applications areas: biomedical nutrients, clinical nutri-
ents and nutritional epidemiology. As for the latter, the study mainly focuses on using ML
for data integration such as dietary assessment and IoT systems, without mentioning mod-
elling capabilities and providing practical recommendations. To the best of our knowledge,
our work is the first review that provides a state-of-the-art snapshot of the current literature,
critically evaluating diverse results while revealing possible inconsistencies in the body of
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research. Additionally, this work provides for the first time practical recommendations and
possible future directions in the field of ML and nutritional epidemiology.

6.3. Future Perspectives

We believe that in the future a complete integration of ML into the field of nutritional
epidemiology might be accomplished by data-driven approaches, the likes of which are
seen today in artificial neural networks and deep learning, despite the challenges discussed
in this work. Such techniques not only have powerful modelling capacities, requiring
minimal data preprocessing, but also have promising applications within the area of data
augmentation. This is mainly due to their capability in the computer vision field, of
increasingly extracting abstract features from images (Goodfellow et al. [103]), which has
been already applied for estimating dietary intake from food pictures. Although few initial
works on deep learning in nutritional epidemiology can be found in the body of research,
to really reap the power of such techniques, larger datasets and efforts are still needed.
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