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Abstract
Purpose To improve the image quality of inflated fixed cadaveric human lungs by utilizing ultra-high-resolution computed 
tomography (U-HRCT) as a training dataset for super-resolution processing using deep learning (SR-DL).
Materials and methods Image data of nine cadaveric human lungs were acquired using U-HRCT. Three different matrix 
images of U-HRCT images were obtained with two acquisition modes: normal mode (512-matrix image) and super-high-
resolution mode (1024- and 2048-matrix image). SR-DL used 512- and 1024-matrix images as training data for deep learning. 
The virtual 2048-matrix images were acquired by applying SR-DL to the 1024-matrix images. Three independent observers 
scored normal anatomical structures and abnormal computed tomography (CT) findings of both types of 2048-matrix images 
on a 3-point scale compared to 1024-matrix images. The image noise values were quantitatively calculated. Moreover, the 
edge rise distance (ERD) and edge rise slope (ERS) were also calculated using the CT attenuation profile to evaluate margin 
sharpness.
Results The virtual 2048-matrix images significantly improved visualization of normal anatomical structures and abnormal 
CT findings, except for consolidation and nodules, compared with the conventional 2048-matrix images (p < 0.01). Quanti-
tative noise values were significantly lower in the virtual 2048-matrix images than in the conventional 2048-matrix images 
(p < 0.001). ERD was significantly shorter in the virtual 2048-matrix images than in the conventional 2048-matrix images 
(p < 0.01). ERS was significantly higher in the virtual 2048-matrix images than in the conventional 2048-matrix images 
(p < 0.01).
Conclusion SR-DL using original U-HRCT images as a training dataset might be a promising tool for image enhancement 
in terms of margin sharpness and image noise reduction. By applying trained SR-DL to U-HRCT SHR mode images, virtual 
ultra-high-resolution images were obtained which surpassed the image quality of unmodified SHR mode images.

Keywords Deep learning · Artificial intelligence · Convolutional neural networks · Cadaveric lung · Ultra-high-resolution 
computed tomography

Introduction

The usage of artificial intelligence (AI) in diagnostic imag-
ing is undergoing extensive evaluation and application in 
clinical settings. Higaki et al. described techniques that 
improve medical image quality using a convolutional 
neural networks (CNN)-based algorithm as follows: (1) 
noise and artifact reduction, (2) super-resolution, and 
(3) image acquisition and reconstruction [1]. Noise and 
artifact reduction lead to reduced radiation exposure and 
decreased imaging time, and super-resolution leads to the 
improvement of diagnostic ability. Dong et al. reported the 
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effectiveness of a CNN-based algorithm for reconstruction 
of high-resolution images from low-resolution ones [2]. 
In addition, Umehara et al. successfully restored original 
images using a CNN-based algorithm from intentionally 
downsampled low-resolution chest computed tomography 
(CT) images [3].

While these preceding studies show promising results of 
CNN-based super-resolution methods, the strategy has limi-
tations. In commonly used CT devices, the maximum matrix 
size is 512 and the maximum spatial resolution is limited 
to around 0.3 mm regardless of the field-of-view (FOV). 
Therefore, 512-matrix CT images are artificially degraded 
and used as training data alongside the original 512-matrix 
images as a training dataset for the AI algorithm to restore 
the degraded images. Thus, limitations of matrix size and 
spatial resolution of training images have been a bottleneck 
of developing CNN-based super-resolution algorithms for 
CT.

There has been little progress in increasing in-plane spa-
tial resolution over the last 30 years until ultra-high-resolu-
tion CT (U-HRCT) became available for clinical settings. 
In U-HRCT, introduced in 2017, the minimum focus size 
of the X-ray tube is 0.4 × 0.5 mm, the detector element size 
is 0.25 × 0.25 mm, and a spatial resolution of 0.14 mm was 
achieved in a metal slit phantom experiment [4]. A study by 
Yanagawa et al. using inflated fixed cadaveric human lungs 
concluded that U-HRCT produced images of significantly 
superior quality to 320-detector-row CT systems with area 
detectors [5]. In clinical research, Iwasawa et al. recently 
reported the usefulness of U-HRCT in the diagnosis of novel 
coronavirus (COVID-19) pneumonia [6].

The U-HRCT scanner has three scan modes: normal 
resolution (NR), high-resolution (HR), and super-high-
resolution (SHR). The quality of NR images is expected 
to be equivalent to the conventional 512-matrix image. On 
the other hand, the maximum matrix size in SHR mode is 
2048, the maximum spatial resolution is 0.14 mm, and the 
image quality is better than common 512-matrix images as 
reported by Hata and Yanagawa [4, 5]. By utilizing different 
image acquisition modes of U-HRCT, we can obtain actual 
CT images of different resolutions at the same slice posi-
tion, which enables us to use actual CT images of different 
resolution as a training dataset for a deep learning-based 
super-resolution algorithm. Therefore, we developed a CNN-
based super-resolution algorithm using 512-matrix images 
from the NR mode and 1024-matrix images from the SHR 
mode obtained from inflated fixed cadaveric human lungs as 
a training dataset. We then applied the trained CNN-based 
algorithm to 1024-matrix images from the SHR mode and 
reconstructed virtual 2048-matrix images, and then com-
pared them to conventional 2048-matrix images from the 
SHR mode to examine the degree of improvement of image 
quality.

The purpose of this study is to develop a CNN-based 
super-resolution algorithm using actual U-HRCT images as 
a training dataset, and to reconstruct CT images of inflated 
fixed cadaveric human lungs which surpass the original 
U-HRCT image in image quality.

Materials and methods

Our institutional review board approved this experimental 
study and waived the requirement for obtaining informed 
patient consent (No. R2020-178).

U‑HRCT scanner

A U-HRCT scanner (Aquilion Precision; Canon Medical 
Systems, Tochigi, Japan) was used in this study. The detec-
tor element size was 0.25 × 0.25 mm; the detector had 1792 
channels with 160 rows. The minimum focus size of the 
X-ray tube was 0.4 × 0.5 mm. The U-HRCT scanner has 
three scan modes: NR, HR, and SHR. The NR mode is 
similar to standard CT, in which 896 detector channels with 
0.5 × 0.5 mm size are used and only a 512 × 512 matrix and a 
0.5 mm slice thickness are available. In the SHR mode, 1792 
detector channels with 0.25 × 0.25 mm size are used, and 
512 × 512, 1024 × 1024, and 2048 × 2048 matrix sizes with 
a 0.25 mm slice thickness are available, thereby providing 
high-resolution images in both the in-plane and body-axis 
directions.

Cadaveric human lungs

Nine cadaveric human lungs were inflated and fixed using 
the Heitzman method [7]. The lungs were distended through 
the main bronchus with fixative fluid containing polyethyl-
ene glycol 400, 95% ethyl alcohol, 40% formalin, and water 
at a ratio of 10:5:2:3. The specimens were immersed in fixa-
tive fluid for 2 days and then air-dried.

The pathological diagnoses of these nine lungs were as 
follows: pulmonary lymphangitic carcinomatosis (n = 1), 
lung cancer (n = 2), metastasis from colon cancer (n = 1), 
metastases from gastric cancer (n = 1), multiple myeloma 
(n = 1), pneumocystis pneumonia (n = 1), rheumatoid arthri-
tis-interstitial pneumonia (n = 1), and early-stage idiopathic 
pulmonary fibrosis (n = 1).

U‑HRCT image acquisition

Image data of the nine inflated fixed cadaveric human lungs 
were acquired with the U-HRCT scanner. The U-HRCT 
images were obtained with a 0.5 s gantry rotation, 200 mm 
FOV, 120 kVp, and two types of acquisition modes: NR 
mode (helical scan) [280  mA, 896 channels per row, 
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0.5 mm × 80 rows, pitch factor (PF): 0.638, volumetric CT 
dose index (CTDIvol): 14.2 mGy] and SHR mode (heli-
cal scan) [260 mA, 1792 channels per row, 0.25 mm × 160 
rows, PF: 0.569, CTDIvol: 14.3 mGy]. The NR mode heli-
cal scan was reconstructed with a 512 × 512 matrix size and 
the SHR mode helical scan was reconstructed with both 
1024 × 1024 and 2048 × 2048 matrix sizes. In this study, we 
refer to the conventional 1024 × 1024 matrix size image as 
“c1024-images,” and the conventional 2048 × 2048 matrix 
size image as “c2048-images.” These images had the same 
cross-sectional levels because all image data were acquired 
at the same time. All U-HRCT images of 0.5-mm thickness 
were reconstructed using a lung kernel (FC51) and adap-
tive iterative dose reduction in three dimensions (AIDR 3D). 
Although it was possible to obtain 0.25 mm-thick images 
in the SHR mode, we set the slice thickness to 0.5 mm to 
match the slice thickness of the NR mode. This is to obtain 
training dataset of the same slice thickness. All CT series 
were anonymized and transferred to a distant workstation 

viewer by one chest radiologist who was not involved in 
image evaluation.

Super‑resolution processing using deep learning

The super-resolution processing using deep learning (SR-
DL) proposed in this study was based on a very deep super-
resolution neural networks [8]. The SR-DL estimates high-
frequency components in a high-resolution CT image from 
a low-resolution CT image. The high-resolution CT image is 
then generated by adding the estimated high-frequency com-
ponents to the low-resolution image. The SR-DL consists of 
an input layer, 13 repeated applications of a convolutional 
layer and a rectified linear unit (ReLU), and a regression 
layer (output layer). Each convolutional layer contained 64 
filters with a kernel size of 3 × 3.

In this study, the training dataset images and the test 
dataset images were not obtained from the same lungs. We 
developed two methods for super-resolution, named SR-DL1 

Fig. 1  The raw data were acquired in the U-HRCT NR mode (detec-
tor 0.5 × 0.5  mm), and the 512 × 512 matrix images were then 
reconstructed. Raw data were also acquired in U-HRCT SHR mode 
(detector 0.25 × 0.25  mm), and the 1024 × 1024 matrix images and 
2048 × 2048 matrix images (Conventional 2048) were then recon-
structed. The SR-DL was trained using the 512 × 512 matrix images 

as low-resolution data and the 1024 × 1024 matrix images as high-
resolution data. Then, the 1024 × 1024 matrix images were applied to 
this trained SR-DL to construct the 2048 × 2048 matrix images (Vir-
tual 2048). U-HRCT  ultra-high-resolution computed tomography, NR 
normal resolution, SHR super-high resolution, SR-DL super-resolu-
tion processing using deep learning
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and 2. Nine patients’ data were randomly divided into two 
datasets (four patients’ data; group A, and five patients’ data; 
group B). SR-DL1 was developed by utilizing group A as 
training dataset and evaluated by utilizing group B as test 
dataset. SR-DL2 was developed vice versa. The low-reso-
lution CT image up-sampled using bicubic interpolation to 
match the size of the high-resolution CT image was input-
ted to the input layer of the SR-DL. In the training of the 
SR-DL, the residual images, which were the “difference” 
images between the input low-resolution CT images and the 
corresponding high-resolution CT images, were used as the 
desired output values (teaching signals) in the output layer 
of the SR-DL. The parameters in the SR-DL were updated 
such that the mean squared errors between the output of 
the proposed SR-DL and the corresponding teacher sig-
nals were minimized. To test the SR-DL, an up-sampled 

low-resolution CT image in the test dataset was input to the 
trained SR-DL. The high-resolution CT image was then gen-
erated by adding the estimated high-frequency components 
to the input low-resolution image (Fig. 1).

Virtual 2048‑matrix image acquisition by SR‑DL

The trained SR-DL was applied to the c1024-images to 
obtain virtual 2048-matrix images (v2048-images), as 
shown in Fig. 1. First, a c1024-image is up-sampled to a 
2048-matrix image by bicubic interpolation. It is then input 
to the trained SR-DL, where the high-frequency components 
are estimated. Finally, by adding it to the input image, a 
v2048-image was generated. All images were anonymized 
and transferred to a distant workstation viewer by a chest 
radiologist with 21 years of experience.

Fig. 2  a A straight line that 
traverses the bronchiolar wall 
almost vertically. b The CT 
attenuation profile along the 
straight line shown in (a). CT 
computed tomography
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Subjective image evaluation

One chest radiologist, who was not involved in image 
evaluation, recorded information on the normal anatomical 
structures (vessels and bronchi) and abnormal CT findings 
in each inflated fixed cadaveric human lung. Abnormal 
CT findings include ground-glass opacity (GGO), bron-
chiectasis with bronchial wall thickening, emphysematous 
change, nodules, interlobular septal thickening, consolida-
tion, and reticular opacity. There were 211 findings from 
56 slices, which consisted of 66 GGOs, 22 bronchiecta-
sis with bronchial wall thickening, 18 emphysematous 
changes, 15 nodules, 10 interlobular septal thickening, 12 
consolidation, 28 reticular opacity, and 40 normal ana-
tomical structures. Three independent radiologists read 
all 56 images and evaluated them on an 8.8-megapixel, 
31.1-inch color LCD (4 K resolution) monitor without 
prior knowledge of histopathological diagnoses or image 
acquisition parameters. These images were displayed with 
a window level of -600 Hounsfield units (HU) and a win-
dow width of 1600 HU. The image display could be up to 
double the magnification as needed. When enlarging the 
image, the enlargement ratios of the c1024-image and the 
2048-matrix image had to be the same. The chest radiolo-
gist created an evaluation map in which the evaluation 
target regions in the c1024-images were marked with a 
collar marker so that the evaluator could easily recognize 
the evaluation target regions. For each inflated fixed cadav-
eric human lung, the blinded 2048-matrix images, which 
were either the c2048-images or the v2048-images, and 
the reference c1024-images were evaluated side-by-side on 
the 8 M monitor. Because all images were reconstructed 
from common raw data, the slice positions were exactly 
the same. Abnormal CT findings and normal anatomical 
structure were subjectively graded using a 3-point scale: 

Table 1  Subjective image evaluation

Data are presented as mean ± SD. Data of the subjective image evaluation were statistically analyzed using the Wilcoxon signed-rank test
GGO ground-glass opacity, B/B bronchiectasis with bronchial wall thickening, Emp emphysematous change, IST interlobular septal thickening, 
Ret reticular opacity, Nor normal anatomical structure
*There was a significant difference between c2048-images and v2048-images (p < 0.05)

CT finding GGO* B/B* Emp* Nodule IST* Consolidation Ret* Nor*

N 66 22 18 15 10 12 28 40
Conventional 2048-matrix image 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00
Virtual 2048-matrix image 2.97 ± 0.17 2.86 ± 0.35 3.00 ± 0.00 2.27 ± 0.70 2.90 ± 0.32 2.17 ± 0.39 2.89 ± 0.31 3.00 ± 0.00
p value 1.28 ×  10–15 1.45 ×  10-5 2.47 ×  10-5 0.182 0.00335 0.346 6.21 ×  10-7 2.67 ×  10–10

Fig. 3  a The conventional 2048-matrix image and b the virtual 
2048-matrix image. The interlobular septal thickening (white arrow) 
is more clearly seen in (b) than in (a)
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(1), poor image quality (i.e., it was possible to detect struc-
tures but difficult to clearly evaluate their margin or inter-
nal characteristics); (2), fair image quality (i.e., the margin 
or internal characteristics can be detected and evaluated 
as well as in the reference images); (3), excellent image 
quality (i.e., it was easy to detect findings and to evaluate 
their margin or internal characteristics without any indis-
tinct findings).

Quantitative image noise evaluation

Quantitative image noise measurements were calculated 
by measuring the standard deviations (SDs) in circu-
lar regions of interest (ROIs) 20 mm in diameter using 
ImageJ software (National Institutes of Health, Bethesda, 
MD; http:// rsb. info. nih. gov/ ij). ROIs were placed in three 
homogeneous parts of air adjacent to every lung [9] and in 
exactly the same location on both the c2048-image and the Ta
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Fig. 4  a The conventional 2048-matrix image and b the virtual 
2048-matrix image. The fine reticular opacity in the ground-glass 
opacity is more conspicuous in (b) than in (a). There is also a sub-
pleural nodule (white arrow)
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v2048-image. The SDs from these ROIs were statistically 
compared between c2048-images and the v2048-images.

Margin sharpness

We selected blood vessels, bronchi, bronchioles, and the 
interlobular septum in the lung field that were clearly 
visible in the c2048-image and created a CT attenuation 

profile along a straight line that traversed them almost 
vertically using ImageJ software (National Institutes of 
Health) and its particle analysis tool (plot profile). The 
CT attenuation profiles were generated at precisely the 
same location for the c2048-image and v2048-image. 
We then measured the width of the edge response at the 
boundary of the blood vessel, bronchus, bronchiole, or 
interlobular septum determined by the 10–90% edge rise 
distance (ERD) (mm), and then calculated the edge rise 
slope (ERS) [ERS = (CT90% − CT10%)/ERD] (HU/mm) 
[10] (Fig. 2). The ERD and the ERS of the c2048-images 
and the v2048-images were statistically compared.

Statistical analysis

All statistical analyses were performed using the free 
software EZR [11]. The median values of the subjective 
scores of the three independent radiologists and the sta-
tistical significance of any differences between them from 
the c2048-images and the v2048-images were assessed 
using the Wilcoxon signed-rank test. The ERD and the 
ERS of the c2048-images and the v2048-images were 
compared using the Wilcoxon signed-rank test. Image 
noise in the c2048-images and the v2048-images was 
compared using the paired t test. Statistical significance 
was set at p < 0.05.

Results

Subjective image evaluation

The image quality scores for abnormal CT findings and the 
normal anatomical structures of the c2048-image and the 
v2048-image are summarized in Table 1. In v2048-images, 
GGO (the presence of a hazy increase in lung density on 
HRCT without obscuration of underlying vessels or the 
walls of airways) [12], bronchiectasis with bronchial wall 
thickening, emphysematous change, interlobular septal 
thickening, and reticular opacity were significantly more 
frequent than in c2048-images (p < 0.01) (Fig. 3). There 
were no significant differences in nodule and consolidation 
scores between images. Moreover, in the v2048-images, 
the normal anatomical structure scores were also signifi-
cantly higher than those in the c2048-images (p < 0.01).

Quantitative image noise evaluation

Quantitative noise values were significantly lower in the 
v2048-image (11.28 ± 2.99) than in the c2048-image 
(28.76 ± 2.97) (p < 0.001).

Fig. 5  a The conventional 2048-matrix image and b the virtual 
2048-matrix image. The consolidation is drawn to the same extent in 
(a) and (b), but the edge of consolidation and air bronchogram are 
slightly more conspicuous in (b) than in (a)
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Margin sharpness

As shown in Table 2, the ERD was significantly shorter in the 
v2048-images (0.25 ± 0.054 mm) than in the c2048-images 
(0.34 ± 0.048 mm) (p < 0.01); the ERS (mean ± SD) was 
significantly higher in the v2048-images (1955.63 ± 699.79 
HU/mm) than in the c2048-images (1094.45 ± 329.58 HU/
mm) (p < 0.01).

Discussion

We created a super-resolution algorithm by training SR-DL 
using U-HRCT NR and SHR mode images as a training 
dataset. Preceding super-resolution algorithms were trained 
to restore image quality that was intentionally deteriorated, 
but our algorithm has for the first time been trained to 
improve the image quality of original CT images. This was 
enabled by the introduction of U-HRCT to clinical settings, 
which could obtain CT images of different resolutions at 
the same slice position. Currently, U-HRCT is considered 
to have the highest in-plane resolution of existing CT, but 
by combining U-HRCT and SR-DL, we were able to clearly 
depict the details of abnormal findings and normal ana-
tomical structures of inflated fixed cadaveric human lungs 
and effectively reduce image noise compared to the origi-
nal images of U-HRCT alone. In the visual evaluation, the 
super-resolution effect of SR-DL was observed clearly in 
GGO, bronchiectasis with bronchial wall thickening, emphy-
sematous change, interlobular septal thickening, reticular 
opacity, and normal anatomical structures such as vessels, 
bronchi, and bronchioles. This margin sharpness was also 
shown in the objective evaluation by ERD and ERS using 
the CT attenuation profile. In GGO, the internal microstruc-
ture was visualized more conspicuously (Fig. 4).

While GGOs constructed with SR-DL displayed 
improved image quality, nodules and consolidations 
showed no significant difference in image quality between 
the c2048-image and the v2048-image (Fig. 5). It is known 
that the high-frequency region constitutes the edge of an 
image in the frequency domain of a digital image. There-
fore, SR-DL constructs images of fine structures by esti-
mating high-frequency components and adding them to 
the input image. However, nodules and consolidation 
are mostly composed of uniform and dense regions, and 
these characteristics are mainly defined by low-frequency 

Fig. 6  a Conventional 2048-matrix image of GGO. b FFT power 
spectrum of (a). c Virtual 2048-matrix image of GGO. d FFT 
power spectrum of (c). e Subtraction image of (d–b). f Conventional 
2048-matrix image of consolidation. g FFT power spectrum of (f). h 
Virtual 2048-matrix image of consolidation. i FFT power spectrum 
of (h). j Subtraction image of (i–g). GGO ground-glass opacity, FFT 
fast Fourier transform

▸
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components in the frequency domain. Therefore, the effect 
of SR-DL might be poor on nodules and consolidation. 
Consequently, the v2048-image shows little difference 
from the c2048-image. To further investigate the differ-
ence of image quality improvement between nodules/con-
solidations and GGOs, the power spectrum of each images 
was obtained by performing fast Fourier transform (FFT). 
Figure 6 shows a GGO and consolidation in the same loca-
tion in the c2048-image and v2048-image, respectively. 
The subtraction images of the FFT of the v2048-image 
minus the FFT of the c2048-image are also shown. In the 
GGO power spectrum, the FFT of the v2048-image (d) has 
a larger central white area than that of the c2048-image 
(b). In the subtraction image (e), the uniform gray area in 
the center is considered to be the common part, and the 
white-dominant donut-shaped area around the center is 
considered to be the part added by SR-DL. Furthermore, 
a black-dominant area in the periphery was considered to 
represent an element deleted by SR-DL. In the consolida-
tion power spectrum, the donut-shaped region with white 
dominance in the subtraction image (j) is not as notice-
able as in the case of the GGO. These results validate 
our hypothesis that GGOs are more strongly affected by 
SR-DL than nodules/consolidations. Therefore, SR-DL is 
expected to be a suitable super-resolution method in the 
depiction of fine structures.

The ultra-high-quality image constructed by SR-DL con-
tains less image noise compared to conventional U-HRCT 
images. Many previous studies report that super-resolution 
and image noise reduction can be achieved simultaneously 
[10, 13–16]. While U-HRCT shows superior image qual-
ity, the U-HRCT image obtained from inflated fixed cadav-
eric human lungs does not show lung microstructures as 
expected from its high spatial resolution. On the other hand, 
the v2048-image shows unknown microstructures that have 
not been previously depicted by CT. It is speculated that 
the microstructures contained in raw data of U-HRCT are 
hidden under image noise, and conventional image recon-
struction algorithms fail to reconstruct microstructure image 
data. Thus, to obtain CT images of lung microstructures with 
higher resolution, a new method of reconstructing high-reso-
lution images from raw data of U-HRCT was warranted. Our 
results indicate that our SR-DL is suitable for this purpose. 
The reason that SR-DL can depict unknown microstructures 
could be due to its image noise reduction in addition to add-
ing estimated high-frequency components. We conclude that 
our SR-DL is an algorithm that enables us to obtain CT 
images of lung microstructures with higher resolution.

This study has several limitations. First, the 2048-matrix 
image was evaluated by a single-blind test. However, there 
was a clear difference in image quality between the c2048-
image and the v2048-image, and radiologists who evaluated 

the images could easily distinguish these images. Therefore, 
it was difficult to evaluate whether the blind test was well-
established. Second, using c1024-images as a reference 
might not be appropriate, because there was no difference 
in image quality between c1024-image and c2048-image in 
the visual evaluation. This was because the FOV was set to 
200 mm. Under this condition, each pixel size was about 
0.2 mm in c1024-images and 0.1 mm in c2048-images. 
U-HRCT has a maximum spatial resolution of 0.14 mm in 
metal slit phantom experiments, but its actual spatial resolu-
tion in human tissue is expected to be more than 0.2 mm. 
Therefore, the pixel size had saturated the maximum spatial 
resolution in c1024-images, and the image quality did not 
improve in c2048-images.

In conclusion, the SR-DL developed in this study might 
be a promising tool for improving lung imaging quality to 
a level where it exceeds its original U-HRCT image and 
shows unknown microstructures that have not been previ-
ously depicted by CT. In the future, we will collect training 
and test datasets of living lungs and attempt to construct an 
optimal algorithm for clinical images.
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