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Increased genetic risk for obesity in premature coronary
artery disease

Christopher B Cole1,2,3, Majid Nikpay1,2,3, Alexandre FR Stewart2 and Ruth McPherson1,2

There is ongoing controversy as to whether obesity confers risk for CAD independently of associated risk factors including

diabetes mellitus. We have carried out a Mendelian randomization study using a genetic risk score (GRS) for body mass index

(BMI) based on 35 risk alleles to investigate this question in a population of 5831 early onset CAD cases without diabetes

mellitus and 3832 elderly healthy control subjects, all of strictly European ancestry, with adjustment for traditional risk factors

(TRFs). We then estimated the genetic correlation between these BMI and CAD (rg) by relating the pairwise genetic similarity

matrix to a phenotypic covariance matrix between these two traits. GRSBMI significantly (P=2.12×10−12) associated with CAD

status in a multivariate model adjusted for TRFs, with a per allele odds ratio (OR) of 1.06 (95% CI 1.042–1.076). The addition

of GRSBMI to TRFs explained 0.75% of CAD variance and yielded a continuous net recombination index of 16.54% (95%

CI=11.82–21.26%, Po0.0001). To test whether GRSBMI explained CAD status when adjusted for measured BMI, separate

models were constructed in which the score and BMI were either included as covariates or not. The addition of BMI explained

~1.9% of CAD variance and GRSBMI plus BMI explained 2.65% of CAD variance. Finally, using bivariate restricted maximum

likelihood analysis, we provide strong evidence of genome-wide pleiotropy between obesity and CAD. This analysis supports the

hypothesis that obesity is a causal risk factor for CAD.
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INTRODUCTION

Coronary artery disease (CAD) is a major cause of morbidity and
mortality; much international effort has been expended to detect risk
factors, both heritable and environmental.1 One of these, obesity, is
associated with CAD, but it is not clear whether this association is
directly causal, is due to confounding by conventional risk factors such
as diabetes mellitus, or is due to reverse causation. Genome-wide
association studies (GWAS) for body mass index (BMI) have
identified multiple obesity risk alleles. Recent studies have demon-
strated an association between carrier status for fat mass and obesity-
related gene (FTO) risk alleles and cardiovascular disease, with
un-replicated results implicating FTO plus a small number of other
BMI risk SNPs as part of a genetic risk score (GRS).2–5 Here, we have
carried out a Mendelian randomization study to determine the effects
of a GRSBMI, incorporating a much larger set of 35 BMI risk alleles, on
CAD risk in subjects without diabetes mellitus, a major obesity-
associated CAD risk factor, and with adjustment for traditional risk
factors (TRFs). Our findings support the hypothesis that obesity is a
causal risk factor for CAD and show that a GRSBMI improves the
predictive value for CAD beyond that of a single measurement of BMI.

METHODS

Study subjects
Details of the cohorts have been previously described.6 Briefly, the participants
are part of four CAD case–control cohorts, recruited at the University of
Ottawa Heart Institute (UOHI) Lipid Clinic, catheterization lab, or as part of
the Cleveland Clinic Gene Bank study. Cases had a history of at least one of:

myocardial infarction, coronary artery bypass grafting, percutaneous coronary
intervention, or a coronary angiogram or computed tomography angiogram
demonstrating a stenosis of at least 50% in at least one epicardial artery.
Controls were either minimally burdened with disease (o30% stenosis in any
major coronary artery) or asymptomatic for ischemic cardiovascular disease.
Cases were ≤ 55 years of age for men and ≤ 65 years of age for women at onset,
while controls were ≥ 65 years of age for men and ≥ 70 years of age for women.
Subjects with diabetes mellitus were excluded. Subjects were collected under
human research protocols approved by their respective committees.

Genotyping and imputation
SNP genotyping of the cohorts was performed on Affymetrix 6.0 Arrays and
Affymetrix 500k Arrays (Santa Clara, CA, USA) at the University of Ottawa
Heart Institute (UOHI) using the standard protocol recommended by the
manufacturer and processed as described.6,7 Imputation was performed using
IMPUTE28,9 and the December 2012 release of the 1000 Genomes European
reference panel. After imputation, approximately 16M SNPs passed post-
quality control measures (HWE41e-6, Missing o10%). It was from these
genotyped and pruned SNPs that genotypic information was derived.

Selection of GWAS SNPs
BMI risk SNPs were obtained from The Genetic Investigation of ANthropo-
metric Traits (GIANT) consortium’s association analysis, which revealed 18
new BMI-increasing loci, in addition to 4 prior known waist and height loci,
and 10 previously identified BMI loci.10 Additional SNPs were provided by
GIANT’s 2013 genome-wide meta-analysis that identified 11 new anthropo-
metric loci, of which those attributing significantly to the overweight, obesity
class I, and obesity class II categories were used in this analysis.11 Individual loci
used to construct the GRS are listed in Supplementary Table S1.
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Genetic risk score
After genotyping, imputation, and pruning, 35 of the 39 candidate SNPs
were available for the construction of a GRSBMI. SNPs rs4771122
(hg38 chr13:27446043:G4A), rs4735692 (hg38 chr8:75703428:A4G),
rs3810291 (hg38 chr19:47065746:G4A), and rs2287019 (hg38
chr19:45698914:C4T), tagging MTIF3, HNF4G, TMEM160(Q), and QPCTL
respectively, failed quality control procedures in all five sub-cohorts, and were
thus excluded from analysis. If a locus failed pruning in a particular sub-cohort,
it was coded as missing (NA) and thus excluded. The GRSBMI was an
unweighted sum of predisposing alleles. The maximum number of risk alleles
possessed by one individual was 32 and the minimum was 3. The average
number of risk alleles possessed by any one individual was 15 (mean± standard
deviation (SD)= 14.99± 3.44). The BMI-increasing loci were assumed to have
an additive effect, and the GRS was normally distributed.

Statistical analysis
Each of the 35 post-quality control loci were coded as 0, 1, or 2, according to
the number of effect alleles present. The GRSBMI was computed by the sum of
the number of BMI-increasing alleles for each subject. Traditional CAD risk
factors (TRFs) used in this analysis included sex, current smoking status,
plasma triglycerides (TG), LDL cholesterol (LDLc), and HDL cholesterol
(HDLc). As noted above, patients with diabetes mellitus were not recruited.
Owing to study design and intentionally very different ages of cases versus
controls, we could not use age as a covariate in the analysis. Individuals were
stratified by risk level: those with more than 15 alleles (mean for the entire
population) were denoted as high risk (HR), while those with 15 or fewer risk
alleles were denoted as low risk (LR). Those at or above the 90th percentile
(≥20 risk alleles, n= 951) were denoted as very HR (VHR) and those at or
below the 10th percentile (≤10 risk alleles, n= 893) were denoted as very LR
(VLR). Logistic regression models were used to examine associations with CAD.
Univariate models consisted of CAD as a binary response variable and GRSBMI

as a continuous predictor, while multivariate models consisted of CAD as a
binary response variable and GRSBMI, sex, smoking status, TG, LDLc, and
HDLc as predictors. The explained variance of models was obtained by
computing Nagelkerke’s pseudo-R2 for logistic regressions (http://CRAN.R-
project.org/package=fmsb). Logistic regression models were also used to
analyze the differences between HR and LR, in which case HR was coded as
1 and LR was coded as zero, as were VHR and VLR. Receiver operator
characteristics (ROC) curves were generated by coding cases as 1 and controls
as 0. Sensitivity, specificity, and accuracy were calculated from the resultant
2× 2 table. The area under the curve (AUC) was used as a measure of
predictive accuracy for the classifier. Non-parametric methods developed by
Delong et al.12 were used to test for significant differences between ROC AUCs.
ROC analysis was performed in R, using the PredictABEL13 and pROC14

packages. Additionally, reclassification tables were constructed using various
classifiers in PredictABEL in R. All analyses were performed in PLINK: Whole
genome Association Analysis Toolset,15 and R version 3.1.0 – ‘Spring Dance’
(http://www.R-project.org/).

Genetic correlations between obesity and CAD
GWAS data can be used to estimate the phenotypic variance explained by SNPs
by comparing a matrix of pairwise genomic similarity to a matrix of pairwise
phenotypic similarity in unrelated individuals using a random-effects mixed
linear model. A bivariate extension of this method can be used to estimate the
genetic correlation between two traits (rg) by relating the pairwise genetic
similarity matrix to a phenotypic covariance matrix between traits 1 and 2.
We used the bivariate REML analysis implemented in GCTA to estimate the
genetic correlation between obesity and CAD. Any pair of individuals whose
genetic similarity is equal to or greater than a fourth cousin was removed
(pairwise relatedness 40.025) prior to the analysis, and first and second
ancestry principal components were used to correct for population stratification
and for genotyping artifacts.
Bivariate analysis was performed in OHGS_A2, OHGS_B2, OHGS_C2,

and CCGB_2 cohort, and the genetic correlations were combined and
weighted mean of genetic correlation (rg ) was calculated based on

fixed-effect model as follow:

rg ¼
Pn

i¼1 wi ´ rgiPn
i¼1 wi

Where wi is the inverse variance of the ith study and n is the number of studies
Standard error (SE) of combined effect is:

SE rgð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Pn
i¼1 wi

s

and P-value was calculated as:

P ¼ 1� ðF rg

SE rgð Þ
����

����Þ;
where Ф is the standard normal cumulative distribution function.
Data are available at http://www.gwascentral.org/study/HGVST1831

RESULTS

BMI is strongly associated with CAD case–control status
General population characteristics by case–control status are provided
in Table 1. The prevalence of obesity (BMI430 kg/m2) (χ2= 263.15,
Po2.2× 10− 16) was much greater in CAD cases versus controls. The
control subjects were older than cases (owing to the original design of
the CAD GWAS that sought to recruit young CAD cases and older
healthy control subjects) and had lower plasma TGs and higher HDLc.
Cases also had a higher smoking prevalence versus controls
(χ2= 277.19, Po2.2 × 10− 16).

Genetic risk for obesity is associated with CAD
In the whole population, the constructed GRSBMI significantly
(P= 4.33× 10− 10) associated with CAD in a univariate model, with
a per allele odds ratio (OR) of 1.04 (95% CI= 1.026–1.051). The
constructed GRSBMI also positively and significantly (P= 2.12× 10− 12)
associated with CAD status in multivariate models adjusted for TRFs,
with a per-allele OR of 1.06 (95% CI 1.042–1.076) (Table 2). In the
univariate model alone, GRSBMI explained ~ 0.5% of variation in CAD
(Nagelkerke’s R2= 5.490×10− 3), while the multivariate model including
TRFs explained ~ 27% of variation (Nagelkerke’s R2= 0.2701). When
GRSBMI was omitted from the multivariate model, ~ 26.25% of CAD
variation was explained, a differential of ~ 0.75% which is similar to
the univariate model. As an analogue, if BMI was included in the
model and subsequently removed, we observed that BMI adds ~ 1.9%

Table 1 Characteristics of coronary artery disease cases and healthy

control subjects

All participants Cases Controls

n 9663 5831 3832

Agea (years) 62.8±12.3 56.2±10.1 73.0±7.4

Smoke Current (%) 29.6 36 20

Male (%) 65.3 76.7 47.9

Obeseb (%) 29 35.1 19.7

BMI (kg/m2) 28.1±5.3 28.9±5.3 26.7±4.9

TGc (mmol/l) 1.46±1.47 1.66±1.70 1.18±0.99

HDLcc (mmol/l) 1.27±0.44 1.13±0.39 1.46±0.44

LDLcc (mmol/l) 3.29±1.08 3.18±1.17 3.43±0.93

GRSBMI
d 14.99±3.44 15.17±3.49 14.72±3.36

All values are expressed as mean± one standard deviation unless otherwise noted. Patients with
diabetes mellitus were not recruited for this study.
aAge represents age at consent for controls and age at diagnosis for cases.
bObesity is defined as having a BMI of greater or equal to 30 kg/m2 at time of collection.
cTG (triglyceride), LDLc (low density lipoprotein cholesterol), HDLc (high density lipoprotein
cholesterol).
dGRSBMI refers to number of BMI risk alleles.
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to the explained variance (Nagelkerke’s R2 with BMI= 0.2817,
Nagelkerke’s R2 without BMI= 0.2625). Each risk allele resulted in
an increased BMI of 0.0541 (95% CI= 0.0202–0.0880), or ~ 156 g of
weight for a 1.7 m (67 in) individual.

Genetic risk for obesity associates with CAD status after adjustment
for measured BMI
To test whether GRSBMI contributed to CAD risk beyond measured
BMI, separate models were constructed in which the score and BMI
were either included as covariates or not. These parameters and values
are provided in Table 2. When both GRSBMI and BMI were included
as predictors, along with TRFs, the model explained 28.9% of CAD
variation as compared with 26.25% of variation with TRFs alone.
Thus, the GRSBMI and BMI explain 2.65% of CAD variation. As noted
above, the addition of GRSBMI to traditional predictors explained
0.75%, and the addition of BMI explained ~ 1.9%, for a total of
~ 2.65%. Thus, GRSBMI provides information on CAD risk beyond
BMI measurement per se.
Among those with a GRSBMI above versus below the average for the

whole population, the mean number of risk alleles differed by 6.18
(95% CI= 6.10–6.27). When considered as a binary trait, HR versus LR
status significantly (P= 2.64×10− 9) predicted CAD, giving a univariate
OR of 1.29 (95% CI= 1.18–1.40) and a multivariate OR of 1.49 (95%
CI= 1.33–1.66, P= 8.65×10− 13). Of the CAD cases, 45.6% were HR
(415 risk alleles) as compared with 39.4% of controls (P= 2.9×10− 9).
When subjects were then stratified by the top and bottom deciles for
GRSBMI (VHR and VLR), as expected, the differences were more
pronounced. In a univariate model, VHR versus VLR status was
associated with an OR for CAD of 1.65 (95% CI= 1.36–1.99,
P= 2.31×10− 7), while in a multivariate model, VHR versus VLR risk
status was associated with an OR of 1.98 (95% CI= 1.52–2.59,
P= 4.55×10− 7). Again a higher proportion of cases were in the upper
decile of GRSBMI as compared with controls (χ2 P= 2.75×10− 7)
(Table 3). When SNPs were analyzed individually, none survived
multiple testing correction for association with CAD.

Effect of addition of GRSBMI to traditional CAD risk factors
TRFs yielded an AUC of the ROC of 0.7642 (95% CI= 0.7530–
0.7754), predicting CAD moderately well. The addition of GRSBMI to

TRFs provided a 0.35% increase in predictive accuracy (AUC= 0.7677,
95% CI= 0.7566–0.7788). This difference was small, but significant
(DeLong’s test for correlated ROC curves P= 3.38× 10− 3). Similarly,
the addition of BMI to TRFs resulted in a 0.9% increase in predictive
accuracy (AUC= 0.7731, 95% CI= 0.7621–0.7841), a small but
significant (DeLong’s test for correlated ROC curves
P= 1.08× 10− 8)12 addition to the model’s predictive accuracy.
Together, GRSBMI and BMI added ~ 1.2% predictive accuracy to the
model (AUC= 0.7761, 95% CI= 0.7652–0.7871), a significant
improvement (P= 1.12× 10− 8).
The addition of GRSBMI to TRFs provided a continuous net

reclassification index (NRI) of 16.54 % (95% CI= 11.82–21.26%,
Po0.0001) (Supplementary Table S2). It is important to note that the
reclassification tables constructed do not follow clinically relevant
strata of 5, 10, and 20 percent 10-year risk, as our models did not
involve Cox-proportional hazard modeling with a 10-year longitudinal
analysis. Thus, the NRI although relevant, does not have direct clinical
application because the prevalence of CAD in the study population is
much higher than in a normal population, and thus, frequencies and
risks are highly inflated. The addition of GRSBMI to TRFs also
provided an integrated discrimination improvement of 0.0058
(Po0.0001). Full reclassification results are provided in Table 4.

Genetic correlation between BMI and CAD
Finally, we estimated the genetic correlation (rg) between BMI and
CAD by relating the pairwise genetic similarity matrix to a phenotypic
covariance matrix between the traits 1 and 2, using the bivariate REML
analysis implemented in GCTA. These analyses provide strong
evidence of genome-wide pleiotropy between obesity and CAD
(Table 5).
These data are available at http://www.gwascentral.org/study/

HGVST1831

DISCUSSION

Here, we have performed a large Mendelian randomization study to
assess the contribution of genetic risk for obesity to CAD in a
population without diabetes mellitus and when controlling for other
TRFs highly associated with obesity including plasma TGs and
HDLc.16 We report that a GRSBMI based on 35 BMI risk alleles
identified by the GIANT consortium significantly (P= 2.12× 10− 12)
predicts CAD; each allele predisposing to higher BMI yields an OR for
CAD of 1.06 or a 6% increase in risk. Each BMI risk allele predisposes
to a mean 156 g increase in body weight for a 1.7 m individual.
Subjects with a GRSBMI above 15 were more likely (OR= 1.49) to be
CAD cases as compared with those in the lower half of the GRSBMI

distribution. Those in the upper versus lower decile for GRSBMI had
twice the prevalence of CAD (OR= 1.98). This finding confirms the
importance of genetic contributions to both obesity and its vascular
sequelae.
In the current study, no individual BMI risk variant significantly

associated with CAD, likely owing to inadequate statistical power.

Table 2 Effect estimates and explained variance of models

Model Per allele OR (95% CI)a P valuea Nagelkerke’s R2

GRSBMI 1.04 (1.026–1.051) 4.33×10−10 0.0055

TRF+GRSBMI 1.06 (1.042–1.076) 2.1×10−12 0.2702

TRF+BMI+GRSBMI 1.06 (1.040–1.074) 1.85×10−11 0.2886

TRF+BMI NA NA 0.2817

TRFs NA NA 0.2625

Traditional risk factors (TRFs) include sex, smoking status, LDL cholesterol, HDL cholesterol,
and triglycerides.
aPer allele OR and P values refer to the association of the GRSBMI with CAD.

Table 3 Association of upper versus lower deciles for BMIGRS with CAD

No. (%) of subjects Test (univariate) Test (multivariate)a

GRSBMI Cases Controls OR (95% CI) P OR (95% CI) P

≥20b 636 (10.91) 315 (8.22) 1.65 (1.36–1.99) 2.31e-07 1.98 (1.52–2.59) 4.55e-07

≤10 492 (8.44 ) 401 (10.46) 1.00 (Ref) 1.00 (Ref)

aAdjusted for sex, current smoking status, TG levels, HDL levels, and LDL levels.
bThe 90th percentile of risk score comprised those with 20 or more BMI-increasing alleles, while the 10th percentile had 10 or less BMI-increasing alleles.
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Here, a GRSBMI explained ~ 0.75% variation for CAD when BMI was
included in the model, increasing the explained variance from 26.25%
for TRFs alone, 28.16% with TRFs and BMI, to 28.86% with TRFs,
BMI, and GRSBMI. This indicates that the BMI GRS is predictive over
and above measured BMI as discussed below. Our assumption here is
that the BMI risk SNPs associate with obesity over the course of life
and that the CAD risk due to obesity is cumulative over a lifespan.
Similarly, variants associated with LDLc concentrations in the
PCSK917or NPC1L118 genes are more strongly associated with CAD
than are associated differences in measured LDLc. For any risk factor,
including cigarette smoking, LDLc, or obesity, life years of exposure
can be considered more informative than a single measure.
This study was carefully designed, included an extended number of

BMI risk alleles, and corrected for important BMI-associated CAD risk
factors. In Mendelian randomization studies, bias by confounding is
minimized, as the distribution of genetic variants are, in the general
case, independent from the behavioral and environmental factors that
would usually confound associations between risk factors and disease
phenotypes. This approach also allows causal relationships to be
established. However, a number of caveats must be acknowledged. For
example, possible pleiotropic effects of BMI risk variants may be
directly linked to the pathogenesis of CAD. FTO has been studied in
this regard and direct effects on atherogenesis have been
hypothesized2–5 but not well substantiated. It is, however, conceivable
that the BMI risk alleles are in weak indirect pleiotropy with any of a
number of phenotypes which could affect CAD risk or that a fraction

is in direct pleiotropy. It is beyond the scope of this study to explore
such causal pathways. It appears more likely that the additional
variation in CAD explained by the GRSBMI versus BMI alone is
reflective of lifetime risk and adiposity over a lifetime may differ
substantially from BMI measured at one discrete point in time. The
use of a GRS as a proxy measure for lifetime BMI can avoid this
dilution bias, and thus the variance observed may be a result of life
course BMI rather than an incidental measure. This relationship to
lifetime risk has been used to explain the observations that coding
variants in the PCSK9 gene contribute to alterations in CAD risk that
are greater than that predicted by the associated differences in LDLc
concentrations.17

Although we excluded individuals with diabetes mellitus and
adjusted for TRFs, this adjustment was based on single measures for
each. Beyond effects on conventional risk factors,16 GRSBMI-associated
risk may also derive from additional processes such as pro-
inflammatory milieu of adipose tissue19 or differences in the gut
flora.20 Whether through pleiotropy, effects on lifetime adiposity
measures, or factors not yet considered, this study provides strong
evidence that cumulative risk for obesity associates with CAD. The
addition of the GRSBMI to TRFs increased predictive accuracy by
approximately 0.35% a small but significant (P= 3.38× 10− 3) differ-
ence. This is apparent even when BMI is included added to TRFs,
again showing that the GRSBMI predicts BMI, which itself adds around
0.9% predictive accuracy. Together GRSBMI and BMI yielded a
continuous NRI of 16.5% (Po0.0001) and an integrated discrimina-
tion improvement of 0.0058 (Po0.0001), a significant improvement
in the model.
For this study, we recruited elderly asymptomatic control subjects,

because younger subjects may harbor a significant burden of occult
atherosclerosis. To the knowledge of the authors, none of the alleles
used in this analysis have been associated with longevity, and thus,
differing allele frequencies between cases and controls should not
contribute significantly to the results of this study. It should be noted,
however, that in elderly subjects, TRFs may be less strongly associated
with CAD,21 and the observed effect of the GRSBMI may differ from
those encountered in a prospective cohort study.

Table 4 Reclassification table comparing predicted CAD risk with and without GRSBMI

Model with GRS

Modelwith-

out GRSa 0–o20% b 20–o40% 40–o60% 60–o80% 80–o100% % Reclassified

0–o20% Controls 390 36 0 0 0 8

Cases 86 7 0 0 0 8

Combined 476 43 0 0 0 8

20–o40% Controls 66 802 67 0 0 14

Cases 14 317 40 0 0 15

Combined 80 1119 107 0 0 14

40–o60% Controls 0 98 694 73 0 20

Cases 0 47 664 125 0 21

Combined 0 145 1358 198 0 20

60–o80% Controls 0 0 80 589 25 15

Cases 0 0 124 1433 142 16

Combined 0 0 204 2022 167 16

80–100% Controls 0 0 0 24 113 18

Cases 0 0 0 71 830 8

Combined 0 0 0 95 943 9

aGRS, Genetic Risk score. Model without GRS included sex, smoking status, high density lipoprotein cholesterol, low density lipoprotein cholesterol, and triglyceride levels at collection.
bRisks based on CAD frequencies and computed using PredictABEL in R vs. 3.1.

Table 5 Genetic correlations between obesity and CAD

Study Sample size rg SE

OHGS_A2 3578 0.566 0.244

OHGS_B2 5718 1.000 0.787

OHGS_C2 2816 0.778 0.713

CCGB_2 4365 0.868 0.496

Combined: rg = 0.66, SE rgð Þ= 0.2, P-value= 5e− 4.
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In summary, in a Mendelian randomization study, we demonstrate a
causal relationship between BMI and CAD risk. We demonstrate that an
individual with an above average genetic risk for obesity has a 50%
greater risk for CAD, while those individuals in the top GRSBMI decile
have twice the CAD risk of those in the bottom decile. We additionally
show that a GRSBMI has predictive value in addition to BMI per se. The
addition of GRSBMI to TRFs provided a small but significant increase in
predictive accuracy, NRI, and integrated discrimination improvement.
Finally, we provide evidence of genome-wide pleiotropy between obesity
and CAD. These analyses further strengthen a body of evidence that
obesity is causal risk factor for CAD.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Supported by Canadian Institutes for Health Research (CIHR) MOP2390941
and OPB134211 (RM) and a CIHR Genetics Computational Biology
studentship (CC).
Translational Perspective: Obesity is an important risk variable for CAD

and it is acknowledged that this risk is mediated in part by obesity-associated
risk factors including diabetes mellitus. Obesity-associated CAD risk may also
derive from reverse causality to the extent that individuals with CAD are more
sedentary and have a greater propensity for weight gain. Whether there is a
casual relationship between obesity and CAD remains unclear. We have carried
out a Mendelian randomization study to investigate this question in a
population of 5831 early onset CAD cases without diabetes mellitus and 3832
elderly healthy control subjects, with adjustment for TRFs. Using a GRS,
consisting of an enlarged set of 35 obesity risk alleles, we demonstrate that
obesity is a causal risk factor for CAD. Furthermore, genetic risk for obesity
associates with CAD status beyond measured BMI and this may be related to
adiposity effects over the course of a lifetime or unknown pleiotropic effects of
obesity risk alleles.
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