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Abstract
Objectives The purpose of this study was to assess the comparative prognostic value of mitral annular plane systolic excursion
(MAPSE) versus left ventricular ejection fraction (LVEF), measured by cardiac magnetic resonance (CMR) imaging in patients
with ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI).
Methods CMR was performed in 255 STEMI patients within 2 days (interquartile range (IQR) 2–4 days) after infarction. CMR
included MAPSE measurement on CINE 4-chamber view. Patients were followed for major adverse cardiovascular events
(MACE)—death, non-fatal myocardial re-infarction, stroke, and new congestive heart failure.
Results Patients with MACE (n = 35, 14%, median follow-up 3 years [IQR 1–4 years]) showed significantly lower MAPSE
(8 mm [7–8.8] vs. 9.6 mm [8.1–11.5], p < 0.001). The association between decreased MAPSE (< 9 mm, optimal cut-off value by
c-statistics) remained significant after adjustment for independent clinical and CMR predictors of MACE. The AUC of MAPSE
for the prediction of MACE was 0.74 (CI 95% 0.65–0.82), significantly higher than that of LVEF (0.61 [CI 95% 0.50–0.71];
p < 0.001).
Conclusions Reduced long-axis function assessed with MAPSE measurement using CINE CMR independently predicts long-
term prognosis following STEMI. Moreover, MAPSE provided significantly higher prognostic implication in comparison with
conventional LVEF measurement.
Key Points
• MAPSE determined by CMR independently predicts long-term prognosis following STEMI.
• MACE-free survival is significantly higher in patients with MAPSE ≥ 9 mm than < 9 mm.
• MAPSE provides significantly higher prognostic implication than conventional LVEF.
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Abbreviations
AUC Area under the curve
CMR Cardiac magnetic resonance
CoV Coefficient of variation
HR Hazard ratio
ICC Intraclass correlation coefficients
IQR Interquartile range
IS Infarct size
LV Left ventricular
LVEF Left ventricular ejection fraction
MACE Major adverse cardiac events
MAPSE Mitral annular plane systolic excursion
MVO Microvascular obstruction
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pPCI Primary percutaneous coronary intervention
SD Standard deviation
SENC Strain-encoded magnetic resonance
STEMI ST-elevation myocardial infarction

Introduction

Acute myocardial ischemia has a profound impact on myocar-
dial structure and function [1, 2]. Left ventricular ejection
fraction (LVEF) serves as a well-established and robust pre-
dictor for worse clinical outcome in patients suffering from
acute ST-elevation myocardial infarction (STEMI) [3].
However, propulsion of the intraventricular blood pool is
based on a complex interplay of longitudinal shortening, cir-
cumferential contraction, and torsion along the long axis of the
left ventricle [4]. The main factor for sufficient LV function is
ventricular longitudinal shortening, accounting for about 60%
of LV stroke volume both in healthy subjects and in disease,
including STEMI [5–7]. Therefore, atrioventricular plane mo-
tion has been suggested as an easy-to-measure surrogate for
ventricular function and it has been shown that reduced am-
plitude of valvular plane movement in echocardiography is a
predictor of adverse events in patients with various cardiovas-
cular diseases [8]. Impaired mitral annular plane systolic ex-
cursion (MAPSE) in cardiac magnetic resonance (CMR) im-
aging is an independent determinant of all-cause mortality in
patients with reduced LVEF (< 50%), regardless of the under-
lying cause of impaired systolic function [9]. Rangarajan et al
highlighted a decreased MAPSE as determined by CMR to
predict major adverse cardiac events (MACE) in a mixed pop-
ulation, including patients with known coronary artery disease
or prior myocardial infarction [10]. However, the prognostic
implicat ions of CMR-derived MAPSE in a large
homogenously treated patient cohort with acute STEMI have
not been assessed so far. The aim of this study was therefore to
investigate whether CMR-determined MAPSE predicts
MACE in patients with reperfused first-time STEMI and to
evaluate its prognostic value in comparison with routine
LVEF measurement.

Methods

Study population

In this prospective observational study, 289 STEMI patients
presenting at the coronary care unit of the Innsbruck
University Hospital (Innsbruck, Austria) were initially includ-
ed. After exclusion of 34 patients, a final cohort of 255 STEMI
patients was analyzed. Reasons for exclusion were missing
LVEF measurements due to limited image quality caused by
arrhythmia and breathing artifacts (n = 10) or incomplete

short-axis cine coverage of the LV image stack (n = 3), inad-
equate imaging plane for septal MAPSEmeasurements due to
inclusion of the LV outflow tract or aortic valve with subse-
quent invisibility of the septal insertion point of the mitral
valve (n = 9), lack of follow-up accessibility because of a
changed telephone number or withdrawal of consent to further
data acquisition (n = 11) or refusion of contrast agent applica-
tion (n = 1).

The following inclusion criteria were applied: first STEMI
according to the redefined European Society of Cardiology/
American College of Cardiology committee criteria [11] re-
vascularization by primary percutaneous coronary interven-
tion (pPCI) within 24 h after the onset of symptoms, an esti-
mated glomerular filtration rate > 30mL/min per 1.73 m2, and
Killip class < 3 at time of CMR. Exclusion criteria were age
< 18 years, any history of previous myocardial infarction or
coronary intervention, and any contraindication to CMR ex-
amination (pacemaker, claustrophobia, orbital foreign body,
cerebral aneurysm clip, or known or suggested contrast agent
allergy to gadolinium).

The clinical endpoint of the present study was the occur-
rence of MACE defined as a composite of all-cause death,
non-fatal myocardial re-infarction, stroke, and congestive
heart failure. Re-infarction was defined in accord with the
redefined European Society of Cardiology/American
College of Cardiology committee [11] and new congestive
heart failure was defined as the first episode of cardiac decom-
pensation requiring diuretic therapy. Follow-up data for clin-
ical endpoint assessment were collected at 6 months and
12 months after STEMI then annually via telephone interview
using a standardized questionnaire [12]. All interviews were
performed by trained personnel blinded to baseline CMR,
laboratory, and angiographic findings. The declared endpoints
were checked afterwards by carefully reviewing the corre-
sponding medical records.

Before inclusion in the present study, all participants gave
their written informed consent. The study was approved by the
local research ethics committee and conducted in conformity
with the Declaration of Helsinki.

Cardiac magnetic resonance imaging

All patients were investigated on a clinical 1.5-T MR im-
aging unit (AVANTO_fit; Siemens Healthineers) within
2 days (interquartile range (IQR) 2–4 days) after success-
fully reperfused first acute STEMI by pPCI. The standard-
ized imaging protocol of our research group was published
in detail previously [13]. Briefly, LV volumes and function
were assessed on short-axis cine images using breath-hold,
retrospective ECG-triggered trueFISP bright-blood se-
quences. For postprocessing, standard software (ARGUS;
Siemens) was applied. Papillary muscles were assigned to
the LV volume [14].
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End-diastolic and end-systolic mitral annular planes were
defined on a long-axis four-chamber view by connecting the
septal and lateral attachment of the mitral valve to the myo-
cardium on the respective images of the long-axis stack, with
end-diastole being defined by the largest diameter of the left
ventricle and end-systole as the image immediately before
mitral valve opening. “Septal” MAPSE was defined as the
perpendicular distance of the end-systolic mitral annular plane
to the end-diastolic plane, measured in regard to the septal
attachment of the mitral valve in end-diastole as shown in
Fig. 1. Similarly, “lateral”MAPSEwas defined as the distance
of the lateral attachment of the mitral valve between end-
diastole and end-systole. Average MAPSE is the calculated
mean between septal and lateral MAPSE.

Late gadolinium enhancement images were acquired
15 min after the application of a 0.2 mmol/kg bolus of
contrast agent (Multihance; Bracco) using an ECG-
triggered phase-sensitive inversion recovery sequence
with consecutive short-axis slices. The late gadolinium
enhancement extent of each slice was quantified by using
a PACS workstation (IMPAX; Agfa HealthCare). We de-
fined “hyperenhancement” as + 5 SDs above the signal
intensity of remote myocardium in the opposite myocar-
dial segment of the LV [15]. Infarct size (IS) was
expressed as a percentage of LV myocardial mass.
Microvascular obstruction (MVO) was defined as a

persisting area of “hypoenhancement” within the infarct-
ed, hyperenhanced territory [16]. All CMR images were
analyzed by experienced observers, blinded to clinical and
angiographic data. A randomly determined sample of 30
study participants was evaluated three times to evaluate
intra-observer and inter-observer variability.

Statistical analysis

SPSS Statistics (version 24.0; IBM Corp) and MedCalc
(Version 15.8; MedCalc Software bvba) were used for sta-
tistical analyses. According to the presence or absence of
normal distribution, continuous variables are presented as
mean ± SD or median with corresponding IQR.
Categorical variables are expressed as absolute numbers
and percentages. The differences in continuous variables
between 2 groups were evaluated by the Mann–Whitney
U test or Student t test, as appropriate. The chi-square test
was used to assess the differences in categorical variables.
Spearman test was applied to calculate correlations of con-
tinuous variables. All parameters included in Table 1 were
included in univariable Cox regression analyses. Variables
with a p < 0.10 in univariable analysis and age were en-
tered in a multivariable model [12]. Two different multi-
variate models were compiled to ensure statistical robust-
ness with respect to our sample size and event rate. In

Fig. 1 End-diastolic (solid yellow
line) and end-systolic mitral an-
nular plane (red line) were de-
fined on a long-axis four-chamber
view by connecting the septal and
lateral attachment of the mitral
valve to the myocardium on the
respective images of the long-axis
stack, with end-diastole being de-
fined by the largest diameter of
the left ventricle and end-systole
as the image immediately before
mitral valve opening. MAPSE
(dotted yellow line) was defined
as the perpendicular distance of
the end-systolic mitral annular
plane to the end-diastolic plane,
measured in regard to the septal
attachment of the mitral valve in
end-diastole
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addition to the multivariable model comprising continuous
variables (raw data), we formed a dichotomized model in-
cluding the variables dichotomized according to the opti-
mal cut-off determined by C-statistics to warrant an accu-
rate comparison of hazard ratios. Together with MAPSE,
age, the presence of hypertension, and infarct localization
were entered in a model of clinical risk factors. Likewise,
the presence of MVO and LVEF together with MAPSE
were included in a model of imaging risk factors. Area
under the curve (AUC) differences were appraised by a
method established by de Long et al [17]; accordantly,
the AUC values were interpreted using the following stan-
dard categories: negligible (≤ 0.55), small (0.56–0.63),
moderate (0.64–0.70), and strong (≥ 0.71).

MACE-free survival was estimated and depicted by the
Kaplan–Meier method, and differences were assessed by the
log-rank test.

Intra-observer and inter-observer variabilities of MAPSE
measurements were determined by intraclass correlation coef-
ficients (ICC) and coefficients of variation (CoV). A p value
of < 0.05 was defined as statistically significant.

Results

Subject characteristics

We included 255 consecutive STEMI patients with a total
ischemia time of 205 (IQR, 132–351) minutes. Mean age of
the overall population was 57 (± 11) years. Baseline charac-
teristics and CMR parameters of the overall cohort are listed in
Table 1.

The median of septal MAPSE was 9.4 mm (IQR 7.9–
11.3 mm) and median LVEF was 54.4% (IQR 48–59.6%).
Acute IS in % of LV myocardial mass was 16.9% (IQR 7.3–
23.8%) and MVO was detected in 131 patients (51.4%).

Determinants of MACE

Thirty-five (13.7%) patients experienced a MACE event (8
deaths, 14 myocardial re-infarctions, 8 strokes, 5 congestive
heart failures). Median follow-up time was 3 years (IQR 1–
4 years). The median time to event was 36 months (IQR 12–
53 months). Table 1 provides all parameters separately for

Table 1 Patients characteristics

Total population
(n = 255)

MACE
(n = 35, 13.7%)

No MACE
(n = 220, 86.3%)

p value

Age, years 57 (±11) 61.7(±11) 56 (±11) 0.01

Female, n (%) 40 (15.7) 6 (17.1) 34 (15.5) 0.80

Body mass index (kg/m2) 26.1 [24.4–28.3] 26 [24–28] 26.1 [24.4–28.4] 0.76

Diabetes, n (%) 21 (8.2) 5 (14.3) 16 (7.3) 0.18

Hyperlipidemia, n (%) 156 (61.2) 25 (71.4) 131 (59.5) 0.20

Smoking, n (%) 136 (53.3) 15 (42.9) 121 (55) 0.27

Hypertension, n (%) 139 (54.5) 25 (71.4) 114 (51.8) 0.04

Positive family history, n (%) 73 (28.6) 7 (20) 66 (30) 0.31

Peak hs-cTnT (ng/L) 3594 [275–6884] 4257 [23.5–10166] 3471 [298.3–6672] 0.27

LVEF (%) 54.4 [48–59.6] 51.1 [42.2–57.3] 54.5 [48.8–59.7] 0.05

LVEDV (mL) 147.9 [120.9–167.6] 153.5 [115.8–166.9] 147.1 [121.4–168.9] 0.81

LVESV (mL) 67.8 [50–82.5] 70.5 [52.9–98.2] 67.2 [50–81.7] 0.28

LV mass (g) 136.7 [115.5–157.6] 143.3 [122.5–160.2] 136.5 [115.4–156.3] 0.38

Septal MAPSE (mm) 9.4 [7.9–11.3] 8 [7–8.8] 9.6 [8.1–11.5] < 0.001

Lateral MAPSE (mm) 11.1 [9.2–13.1] 9.9 [7.6–11.5] 11.4 [9.4–13.2] 0.002

Average MAPSE (mm) 10.2 [8.6–12] 8.9 [7.4–10.1] 10.5 [8.9–12.2] < 0.001

IS, % of LVMM 16.9 [7.3–23.8] 15.9 [10.6–21.8] 13.5 [6.9–24] 0.32

MVO, n (%) 131 (51.4) 23 (65.7) 108 (49.1) 0.07

Infarct localization 0.04

Anterior (LAD) 118 (46.3) 22 (62.9) 96 (43.6)

Non-anterior (RCA and LCX) 137 (53.7) 13 (34.1) 124 (56.4)

hs-cTnT, high-sensitivity cardiac troponin T; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left
ventricular end-systolic volume; MAPSE, mitral annular plane systolic excursion; IS % of LVMM, infarct size in percent of left ventricular myocardial
mass; MVO, microvascular obstruction; LAD, left anterior descending artery; RCA, right coronary artery; LCX, left circumflex artery
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patients with (n = 35; 14%) and without (n = 220; 86.3%)
MACE. There was a significant association of age (p = 0.01)
and the incidence of hypertension (p = 0.04) as well as infarct
localization (p = 0.04) with the occurrence of MACE.
Regarding CMR parameters, patients displaying MACE
showed lower LVEF (p = 0.05) and MAPSE (p < 0.001) and
displayed a trend to a higher incidence ofMVO (p = 0.07). No
significant association of MACE with other CMR parameters
(IS, LVend-diastolic volume, and LVend-systolic volume) or
clinical parameters (diabetes, hyperlipidemia, smoking, posi-
tive family history, peak high-sensitivity cardiac troponin T,
and infarct-related artery) were found (all p > 0.05). In multi-
variable analysis, MAPSE remained a significant independent
predictor of MACE, in both clinical risk factor model (hazard
ratio = 0.77 [CI 95% 0.66–0.90]; p = 0.001) and CMR risk
factor model (hazard ratio = 0.83; CI 95% 0.73–0.95,
p < 0.006), see Table 2.

Prognostic value of MAPSE

After adjustment for both clinical and imaging risk factors that
were univariate predictors (p < 0.10), MAPSE < 9 mm
remained a significant predictor of MACE in the model of
dichotomized clinical risk factors (hazard ratio = 6.02; CI
95% 2.47–14.69, p < 0.001) as well as in the model of dichot-
omized imaging risk factors (hazard ratio = 5.03; CI 95%
2.11–12.01, p < 0.001), see Table 3.

Receiver operating characteristics (ROC) analysis revealed
significantly higher (p = 0.03) AUC of septal MAPSE (0.74
[95% CI 0.66–0.82]) compared with average MAPSE (0.70
[95% CI 0.61–0.79]) as well as in comparison with lateral
MAPSE (0.66, [95% CI 0.57–0.75], p = 0.01) for the predic-
tion of MACE, see Fig. 2a.

The optimal cut-off value of septal MAPSE was 9 mm
providing the highest sensitivity (80%) and specificity (63%)
(Fig. 2b). This AUC of MAPSE was significantly higher (p =

0.03) than the AUC of LVEF (0.60 [95% CI 0.50–0.78]) for
the prediction of MACE.

According to the Kaplan–Meier analysis, patients with
MAPSE < 9 mm showed a significantly lower MACE-free
survival (p = 0.001) than patients with MAPSE ≥ 9 mm
(Fig. 3).

Intra-observer and inter-observer variability
for MAPSE measurements

Intra-observer analyses of septal MAPSE measurements
showed an excellent agreement with an ICC of 0.94 (95%CI
0.75–0.98). The coefficient of variability was 13%. Similarly,
inter-observer analyses showed excellent reproducibility of
0.89 (95%CI 0.50–0.98) and coefficient of variability 16%.
The mean of the absolute difference between the two reader
measurements was 0.57 mm. The mean of the absolute differ-
ence between the main reader measurements at different time
points was 0.38 mm.

Discussion

This study is the first to evaluate the prognostic value of
CMR-derived MAPSE in a large STEMI cohort treated by
pPCI. The main study findings can be summarized as follows:

1. Septal MAPSE determined by CMR early after reper-
fused STEMI is a powerful, independent predictor of
MACE at long-term follow-up (3 years).

2. Patients with MAPSE ≥ 9 mm showed a significantly
higher MACE-free survival than patients with MAPSE
< 9 mm.

3. The predictive value of MAPSE was significantly higher
than that of conventional LVEF.

Table 2 Cox regression analysis
for the prediction of MACE Univariable analysis Multivariable analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Clinical risk factor model

Age 1.021 (0.989–1.054) 0.19 – –

Hypertension 1.410 (0.660–3.014) 0.38 – –

Infarct localization 2.283 (1.137–4.585) 0.02 – –

MAPSE 0.803 (0.706–0.914) < 0.001 0.770 (0.658–0.901) 0.001

CMR risk factor model

MVO 1.880 (0.935–3.782) 0.07 – –

LVEF 0.950 (0.917–0.985) 0.05 – –

MAPSE 0.796 (0.710–0.893) < 0.001 0.829 (0.726–0.947) 0.006

CI, confidence interval; MAPSE, mitral annular plane systolic excursion; CMR, cardiac magnetic resonance;
MVO, microvascular obstruction; LVEF, left ventricular ejection fraction
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Therefore, these results argue for the routine assessment of
MAPSE in patients early after acute STEMI.

The longitudinal function of the LV is the main contributor
to left ventricular pump function [6, 7]. Supposed longitudinal
orientation of subendocardial myocardial fibers has long been
discussed as a cause for impaired longitudinal function in
patients with acute myocardial infarction [5, 18–20].
However, recent studies on myocardial microstructure
assessed by CMR diffusion tensor imaging reported a spiral
configuration of myocytes gradually shifting from a right-
hand helix subendocardially to a left-hand helix
subepicardially, working as a syncytium [21]. In myocardial
infarction, myocardium adjacent to the scarred area shows a
decrease in the right-hand helix of subendocardial fibers as

well as a decreased range of helix angles across the whole
myocardial wall in subacute myocardial infarction in a pri-
mate model [22]. Additionally, myocardial microstructures
termed “sheetlets,” consisting of several myocytes, work to-
gether as mechanical units to change tilting angle over the
cardiac cycle and are thought to be accountable for systolic
myocardial thickening [21]. However, possible changes of
sheetlet mechanics in myocardial infarction have not been
studied yet. Therefore, underlying mechanisms of impaired
longitudinal function in myocardial infarction are still to be
discussed, as causality between myocardial fiber architecture
and cardiac function has not been proven yet [23].

However, global longitudinal function remains the main
contributor to LVEF in ischemic heart disease [5]. MAPSE

Fig. 2 a ROC analysis of septal MAPSE (AUC 0.74 [95% CI 0.66–
0.82]), average MAPSE (AUC 0.70 [95% CI 0.61–0.79]), and lateral
MAPSE (AUC 0.66, [95% CI 0.57–0.75]) for the prediction of MACE.
AUC indicates area under the curve; MAPSE, mitral annular plane
systolic excursion; ROC, receiver operating characteristics. b ROC

analysis of MAPSE (AUC 0.74 [95% CI 0.66–0.82]) and LVEF (AUC
0.60, [95% CI 0.50–0.78]) for the prediction of MACE. AUC, area under
the curve; LVEF, left ventricular ejection fraction; MAPSE, mitral
annular plane systolic excursion; ROC, receiver operating characteristics

Table 3 Cox regression analysis
for the prediction of MACE
(dichotomized clinical and CMR
risk factors)

Univariable analysis Multivariable analysis
Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Clinical risk factor model

Age > 60 1.338 (0.674–2.659) 0.41 – –

Hypertension 1.537 (0.719–3.287) 0.27 – –

Infarct localization 1.805 (0.899–3.622) 0.10 – –

MAPSE < 9 mm 5.056 (2.182–11.716) < 0.001 6.021 (2.469–14.682) < 0.001

CMR risk factor model

MVO 1.880 (0.935–3.782) 0.08 – –

LVEF < 52% 2.360 (1.209–4.608) 0.01 – –

MAPSE < 9 mm 5.947 (2.595–13.630) < 0.001 5.030 (2.108–12.003) < 0.001

CI, confidence interval; MAPSE, mitral annular plane systolic excursion; CMR, cardiac magnetic resonance;
MVO, microvascular obstruction; LVEF, left ventricular ejection fraction
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as recorded by different echocardiographic methods, includ-
ing M-mode, tissue Doppler, and strain imaging and speckle
tracking assessed in both acute and chronic setting of myocar-
dial infarction, was shown to predict adverse events [18–20,
24]. However, although easily available and cost-efficient,
these techniques suffer from several disadvantages such as
angle dependency issues for M-modemethod or problems that
are related to signal noise [25]. Strain imaging overcomes
monodimensional focality by providing segmental and global
information regarding longitudinal deformation but is highly
dependent on imaging quality and operator experience [26].
Advanced CMR tools provide incremental prognostic stratifi-
cation in patients with STEMI [27, 28] and easy-to-measure
CMR-derived MAPSE has been linked to adverse outcome
after STEMI. However, prognostic data of MAPSE in CMR
either come from large all-comers cohorts without specific
heart disease or from smaller groups of patients with myocar-
dial infarction [10, 29, 30]. Our homogeneously treated a large
patient group with first acute STEMI septal MAPSE with an
optimal cut-off value of 9 mm provided the highest value for
MACE prediction. Furthermore, septal MAPSEwas shown to
provide significantly higher predictive value after STEMI
compared with lateral or averageMAPSE. Other CMR studies
revealed threshold values for lateral MAPSE of 9 mm [9] and
11 mm [10] respectively as cut-off points for risk stratification
in mixed CMR populations. Lateral mitral annulus movement
in healthy subjects is usually greater than septal movement
(16 ± 3 mm compared with 13 ± 3 mm) [31]. Therefore, a
larger cut-off value for lateral MAPSE is in accordance with
anatomical properties. Romano et al used death as a primary
endpoint, which might serve as an explanation why their re-
ported cut-off for lateral MAPSE (9 mm) is equal as we found
for septal MAPSE. However, Pahlm et al reported a decrease

in global and regional MAPSE in infarcted as well as remote
myocardium, supporting our thesis that septal MAPSE pro-
vides prognostic information regardless of infarct localization
[32]. Based on the significantly higher predictive value of
septal MAPSE compared with lateral and average MAPSE
in our population as well as on the independency of MAPSE
decrease from infarct location, we consider the exclusive mea-
surement of septal MAPSE to be reasonable.

Numerous studies have demonstrated LVEF as a marker of
global systolic myocardial function and a powerful predictor
of morbidity and mortality in patients with acute reperfused
myocardial infarction [33, 34]. Recently presented CMR indi-
ces and scores integrating several structural and/or morpho-
logical variables were suggested to provide incremental prog-
nostic validity in STEMI patients [27, 35]. However, septal
MAPSE is a unique, simple measurable and effective marker
in standard CMR and our study showed that it offers prognos-
tic information that adds beyond traditional clinical and imag-
ing cardiac risk factors. Moreover, the high reproducibility of
MAPSE measurements shown by Romano et al was con-
firmed in our study by a very low intra- and inter-observer
variability [29]. The superior prognostic performance of
MAPSE compared with that of LVEF in STEMI patients
may be explained by the suspicion that longitudinally running
myocardial fibers are located subendocardially and are most
affected by ischemia. However, LVEF primarily tracks radial
function of the myocardium. Anyhow, recent studies suggest
more complex organization of cardiomyocyte microstructure
and dynamics [21]. In accordance with the findings previously
reported by van Kranenburg et al, infarct size in our study was
not significantly associated with MACE occurrence [36]. To
what extent large but only subendocardial infarcts are less
favorable for long-axis function and prognosis than smaller
but transmural infarcts remains to be investigated.

Despite rapid reperfusion of epicardial coronary circulation
by pPCI in STEMI, severe microvascular dysfunction, related
to initial ischemia and/or to reperfusion injury, may persist
[37]. MVO is a significant and independent short- and long-
term prognosticator for morbidity and mortality after STEMI
[38, 39]. In our current study, patients with MVO showed a
trend towards higher incidence of MACE but did not reach
significance (p = 0.07). One explanation could be that our def-
inition of adverse outcome included stroke (23% of total
MACE). Previous studies only included death and cardiac
events (re-infarction, hospitalization for heart failure) [36, 38].

Specialized CMR techniques such as strain-encoded MR
(SENC) [39] and feature-tracking software promise risk strat-
ification in patients with various cardiac diseases [28, 40–45].
Several studies recently assessed the relationship of LV strain,
infarct characteristics such as edema or hemorrhage, and their
association with prognosis in patients with acute myocardial
infarction; while Eitel et al [45] highlighted CMR feature
tracking to have incremental prognostic value above LVEF

Fig. 3 Kaplan–Meier curves for the occurrence of MACE stratified by
≥ and < 9 mm. MAPSE was calculated by ROC analysis. MACE
indicates major adverse cardiovascular events; MAPSE, mitral annular
plane systolic excursion; ROC, receiver operating characteristics
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and infarct size, others [41] showed tissue tracking to not
substantially improve risk reclassification beyond LVEF, in-
farct size, and MVO. However, this technique requires the use
of specialized software and consequently has not achieved
widespread clinical use [46]. Moreover, strain imaging is dif-
ficult to measure in the acute setting, and there is a lack of
evidence for its benefit. Good image quality is an essential
prerequisite for strain analysis as well as for LVEF measure-
ment while in case of poor imaging quality, MAPSE could
still be a suitable choice for assessing longitudinal function.

Septal MAPSE is simple to measure on 4-chamber routine
cine images, available from any vendor without any specific
software and with a good inter- and intra-observer variability.

Limitations

Due to our inclusion criteria, the results of this study only apply
to a selected patient group and must not be generalized for
patients with recurrent myocardial infarction or other cardiac
pathologies that entail left ventricular remodeling. However,
with an overall incidence rate of STEMI of 43 to 144 per
100,000 in Europe [47], specific data for this particular group
should be available to support clinical decision-making.

We did not measure atrial volumes or left atrial functional
parameters for the prediction of outcome after STEMI as it
was suggested before [48]. Future studies may address the left
atrium parameters. We only measured absolute values of sep-
tal MAPSE and did not take into account factors like patient
size, ventricular diameters, sex, or age that might influence
absolute mitral plane motion [49, 50]. Upcoming technologies
such as SENC imaging and new feature-tracking software
have not been evaluated. However, their clinical relevance is
still controversial [41].

Conclusion

We provide a parameter that is simple to measure and easy to
implement in clinical routine without the need for specialized
devices or software. Reduced septal MAPSE <9 mm—
assessed by cine CMR—is an independent long-term predictor
of MACE in patients after first-time STEMI undergoing pPCI.
It provides superior prognostic value compared with LVEF.
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