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Spexin (SPX) is an evolutionarily conserved neuropeptide, which was first

identified in human proteome by data mining. Two orthologs (SPX1 and

SPX2) are present in some non-mammalian species, including teleosts. It has

been demonstrated that SPX1 is involved in reproduction and food intake,

whereas the functional role of SPX2 is still absent in any vertebrate. The aim of

the current study was to evaluate the actions of intraperitoneal injection of

endogenous SPX2 peptide on the expression levels of some key reproductive

genes of the brain-pituitary axis in half-smooth tongue sole. Our data showed

an inhibitory action of SPX2 on brain gnih, spx1, tac3 and pituitary gtha, lhb
mRNA levels. However, SPX2 had no significant effect on brain gnihr, gnrh2,

gnrh3, kiss2, kiss2r, spx2 expression or pituitary gh expression. On the other

hand, SPX2 induced an increase in pituitary fshb expression. Taken together,

our results provide initial evidence for the involvement of SPX2 in the regulation

of reproduction in vertebrates, which is in accordance with previous studies

on SPX1.
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Introduction

Spexin (SPX), also termed neuropeptide Q (NPQ) or

C12ORF39, is a novel hypothalamic neuropeptide that was

first identified by bioinformatics approach (1, 2) , and

subsequently its orthologs have been found from fish to

mammals (3–5). The SPX mature peptide is a tetradecapeptide

that is flanked by two dibasic protein cleavage sites (RR and

GRR), and its amino acid sequence is highly conserved in

various vertebrates, with only one amino acid substitution at

position 13 between tetrapods and teleosts (3–5). Consistent

with its widespread distribution in different tissues of teleosts

and other vertebrates, SPX participates in a variety of

physiological functions, such as glucose homeostasis, lipid

metabolism, feeding, digestion, reproduction, among others

(6–10). Preliminary evidence in teleosts and other vertebrates

have indicated that SPX binds to the membrane galanin receptor

2 (Galr2) and Galr3, but not Galr1, to exert its functions (11–13).

Based on data acquisition and comparative synteny analysis, a

novel SPX form, namely SPX2, has been identified in a few non-

mammalian species, such as chicken, anole lizard, Xenopus

tropicalis, zebrafish, medaka, and coelacanth (11). However,

SPX2 is absent in mammals and the initial SPX is designated as

SPX1 now (11). Interestingly, Nile tilapia and other cichlid fish

species have two SPX1 paralogs (SPX1a and SPX1b) but have no

SPX2 (12). In teleosts, the physiological functions of SPX are just

emerging, and mainly focus on the control of reproduction and

appetite (3–5). For instance, in vivo and in vitro administration of

SPX1 suppress LH secretion in goldfish (14), and both LH and

FSH plasma levels are significantly reduced after a single

intraperitoneal injection of SPX1a or SPX1b in Nile tilapia (12).

However, the reproductive capability is not impaired in SPX1

mutant zebrafish, suggesting that SPX1 is not essential for

reproduction in this species (15).

SPX1 expression can be altered by nutritional status in

several fish species (12, 16–22), and SPX1 has been shown to

act as a satiety factor in goldfish (16) and zebrafish (15).

Moreover, overexpression of SPX1 in the dorsal habenula

reduces anxiety in zebrafish (23). On the other hand, no

information is available regarding the biological role of SPX2

in any vertebrate, other than two studies on the SPX2-Galr2/3

interaction and detailed brain distribution of SPX2 in zebrafish

(3–5). The serum response element-driven luciferase (SRE-luc)

activity is significantly elevated by zebrafish SPX2 in HEK293

cells expressing zebrafish, Xenopus, and human Galr2 or Galr3,

suggesting that SPX2 is an endogenous ligand for Galr2/3 (11).

Recent data in zebrafish have revealed that SPX2 expression is

restricted in the preoptic area of the hypothalamus by whole-

mount in situ RNA hybridization, implying that SPX2 is

implicated in reproduction and feeding control in this species

(24). Accordingly, further investigation is urgently needed to

clarify the potential role of SPX2 in vertebrates.
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In all vertebrates, reproduction is mainly regulated by the

brain-pituitary-gonadal (BPG) axis. A plethora of neuropeptides

are involved in the control of reproduction, including

gonadotropin-releasing hormone (GnRH), kisspeptin (Kiss),

gonadotropin-inhibitory hormone (GnIH), neurokinin B

(NKB), among others (25–35). Half-smooth tongue sole

(Cynoglossus semilaevis) is an economically important marine

flatfish that is widely cultured in China, and this species needs

approximately 3 years of sexual maturation. In nature, the body

length of mature females is twice larger and the body weight is

over six times greater than those of mature males, exhibiting a

sexual dimorphism of growth (36). Genes encoding these key

factors have been cloned in half-smooth tongue sole, namely

gnrh2 (37), gnrh3 (38), kiss2 (39), Kiss2 receptor (kiss2r) (36),

gnih (40), GnIH receptor (gnihr) (41), and tac3 (42).

Furthermore, growth hormone (gh) and three gonadotropin

subunits (gtha, lhb, and fshb) are also available in this species

(43, 44). Previous studies have indicated the existence of SPX1

and SPX2 in half-smooth tongue sole, and SPX1 exerts an action

on the expression levels of brain and pituitary reproductive

genes (20, 45). Herein, this study aimed to further clarify the

possible role of SPX2 in the regulation of reproduction in this

flatfish species.
Materials and methods

Animals

Approximately 2-year-old immature female tongue sole

(body weight (BW), total length (TL) and gonadosomatic

index (GSI) of 772.61 ± 25.69 g, 49.97 ± 0.51 cm and 2.66 ±

0.25%, respectively) were purchased from Haiyang Yellow Sea

Aquatic Product Co., Ltd. (Haiyang, China), and maintained in

an indoor concrete tank with recirculating seawater (water

temperature 21–23°C and dissolved oxygen > 6 mg/L). Fish

specimens were acclimatized for one week under a cyclical light–

dark photoperiod (12 h: 12 h) and fed to satiation twice daily

with commercial dry pellets. The animal study protocol was

approved by the Animal Care and Use Committee of Yellow Sea

Fisheries Research Institute, Chinese Academy of Fishery

Sciences (ID Number: YSFRI-2021025).
Peptide synthesis

The tongue sole SPX2 mature peptide (45) with amidation at

the C-terminus (LNIHWGPQSMMYLKGKY-NH2) was

synthesized by ChinaPeptides Co., Ltd. (Shanghai, China) with

a purity of 95%, as determined by HPLC. The SPX2 peptide was

dissolved in phosphate-buffered saline (PBS) just before the

intraperitoneal injection experiments.
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In vivo effects of SPX2 on the brain-
pituitary reproductive axis

SPX2 in vivo treatment experiments were generally

performed as the previous study on tongue sole SPX1 (20).

After acclimatization for one week as mentioned above, the fish

were divided into three groups, anesthetized with MS222 (Sigma,

200 mg/L), weighed, and injected intraperitoneally with SPX2

peptide at two doses (100 ng/g BW and 1000 ng/g BW) or PBS

alone (n = 8 fish/group). The injection volume of each dosage

varied depending on the body weight of each fish. The whole

brain and pituitary tissues were collected 6 h after the injection,

frozen in liquid nitrogen, and stored at −80°C until use.
RNA extraction, reverse transcription,
and real-time quantitative PCR

All experiments were performed as described previously (46).

Total RNA was isolated using the RNAiso Plus reagent (Takara),
Frontiers in Endocrinology 03
and 1 mg of total RNA was used as a template for the first-strand

cDNA synthesis using the PrimeScript™ RT reagent Kit with

gDNA Eraser (Takara). Real-time quantitative PCR analysis was

performed on the LightCycler® 96 PCR Instrument (Roche) using

TB Green® Premix Ex Taq™ II (Takara) and the specific primers

(Table 1). The thermal cycling profiles were as follows: 95°C for 30

s, and 40 cycles of 95°C for 5 s, 60°C for 20 s, and 72°C for 10 s.

Melting curve analysis was performed in order to confirm the

specificity of each product. 18s ribosomal RNA was used as the

internal reference for data normalization. The relative expression

levels of each gene were normalized against those of the

housekeeping gene and calculated by the comparative Ct method.
Statistical analysis

Data were analyzed by one-way ANOVA followed by

Duncan’s multiple comparison test using SPSS17.0, and are

presented as mean ± SEM. Differences were considered

statistically significant at p < 0.05.
TABLE 1 List of primers for real-time quantitative PCR.

Name Primer sequence (5'-3') Amplicon size (bp) GenBank accession NO.

gnih-F GGAAATCAGCCTACAGTGACAAAA 120 KU612223

gnih-R GCCTCTCCAAGTCCAAACTCC

gnihr-F GCTTTTCATGTTGTCCTGGTTG 147 KX839491

gnihr-R GGGTTGATGCTTGAGTTGGAG

gnrh2 -F GGAATCTGAACTGGAGAACTGCT 121 KX090947

gnrh2 -R TGGCTGCTCACAACTTTATCAC

gnrh3 -F AGGCAGCAGAGTGATCGTG 92 JQ028869

gnrh3 -R CACCTGGTAGCCATCCATAAGAC

kiss2-F GGCAACTGCTGTGCAACGA 133 KX090946

kiss2-R AAGACAGAAAGCGGGGAGAAC

kiss2r-F AGTTGTGATCGTCCTCCTCTTTG 92 KX685668

kiss2r-R AGTTGGGTTGGTATTTGGGATG

spx1 -F GCTCCTAAGGGTTCGTTCCA 185 MG775238

spx1 -R AGTATGGTGGCTGCCTGGTC

spx2 -F TCGTTAATCGCCTCCCTGTT 137 MH782165

spx2 -R AGTGGTGCCTTGTTGTTCTCCT

tac3-F TCTGGTCCTCGTCGTCAAAC 175 MK336423

tac3-F CGTGTTCCTTCTGCCCATC

gh-F TTATAGACCAGCGGCGTTTC 179 HQ334196

gh-R ATGCTTGTTGTCGGGGATG

gtha-F TTCCCCACTCCTCTAACGACA 116 JQ364953

gtha-R ACCACAATACCAGCCACCACTAC

lhb-F TCCACCTGACACTAACGCTG 191 JQ277934

lhb-R GTTTGGTTCCTTTGTTCTGC

fshb-F TGATGGGTGTCCAGAGGAAG 95 JQ277933

fshb-R CAACAAACCGTCCACAGTCC

18s-F GGTCTGTGATGCCCTTAGATGTC 107 GQ426786

18s-R AGTGGGGTTCAGCGGGTTAC
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Results

Effects of SPX2 peptide on the brain
gene expression

First of all, we studied the in vivo effects of tongue sole SPX2

peptide on the expression levels of gnih and its cognate receptor

gnihr genes in the brain (Figures 1A, B). Intraperitoneal injection of

SPX2 at 1000 ng/g BW significantly inhibited gnih mRNA levels

when compared to the control group (Figure 1A). However, no

apparent variation in gnihr expression was noticed after

administration of SPX2 at any of the two doses (Figure 1B).

Second, to investigate whether the GnRH system is a target

of SPX2 action, brain expression levels of gnrh2 and gnrh3 were

examined after treatment with SPX2 peptide (Figures 1C, D).

Neither gnrh2 nor gnrh3 mRNA transcripts were altered by

administration of SPX2 at the two doses tested (Figures 1C, D).

Third, we further evaluated the central action of SPX2 on the

kisspeptin system (kiss2 and its cognate receptor kiss2r). Similarly,

SPX2 had no significant effects on brain kiss2 and kiss2r mRNA

levels compared to the control group (Figures 1E, F).
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Fourth, to analyze the autocrine regulation of the spexin system,

we examined the brain expression levels of spx1 and spx2 after

administrationof SPX2peptide (Figures 1G,H).Only thefish treated

with SPX2 at 100 ng/g BW showed an evident reduction in spx1

mRNA levels (Figure 1G). However, spx2 mRNA levels were not

modified by the SPX2 peptide at the two doses tested (Figure 1H).

Finally, we detected the effects of SPX2 on the expression levels of

tac3expressed inthebrain(Figure1I).OnlySPX2at thedoseof100ng/

gBWexerted an inhibitory actionon tac3 expression levels (Figure1I).
Effects of SPX2 peptide on the pituitary
gene expression

As shown in Figure 2A, gh mRNA levels were not

significantly altered by SPX2 at the two doses tested when

compared to the control group. For gtha and lhb, a significant

suppression in their mRNA levels was observed by SPX2 at 1000

ng/g BW (Figures 2B, C). In contrast, SPX2 markedly stimulated

fshb mRNA levels with the lower dose of 100 ng/g BW when

compared to the control group (Figure 2D).
B

C

D

E

F

G

H

IA

FIGURE 1

Effects of intraperitoneal injection of SXP2 peptide on brain gnih (A), gnihr (B), gnrh2 (C), gnrh3 (D), kiss2 (E), kiss2r (F), spx1 (G), spx2 (H) and tac3 (I)
transcript levels in tongue sole. Data are presented as mean ± SEM (n = 7-8). Different letters indicate significant differences between groups (p < 0.05).
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Discussion

SPX, which was first discovered by bioinformatics tools, is a

newly described neuropeptide with pleiotropic functions in

mammals (3, 4). Two SPX orthologs (SPX1 and SPX2) have

been reported in some non-mammalian species, while the

physiological functions of SPX are still largely unknown and
Frontiers in Endocrinology 05
remain to be investigated in this group of vertebrates. In bony

fish, SPX1 exerts an inhibitory effect on reproduction (12, 14) and

food intake (15, 16). However, no information exists about the

potential biological functions of SPX2 in any vertebrate (3, 4). In

the current study, therefore, half-smooth tongue sole was used as a

model to investigate the in vivo actions of SPX2 on expression

levels of reproductive genes in the brain-pituitary axis.
A

B

D

C

FIGURE 2

Effects of intraperitoneal injection of SXP2 peptide on pituitary gh (A), gtha (B), lhb (C) and fshb (D) transcript levels in tongue sole. Data are
presented as mean ± SEM (n = 6-8). Different letters indicate significant differences between groups (p < 0.05).
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There is compelling evidence supporting that GnIH plays a

critical role in the regulation of reproduction by acting at three

levels of the BPG axis from fish to humans via its cognate

receptor GnIHR (25, 27, 47). Our previous studies also have

revealed that GnIH1 and GnIH2 peptides encoded by the same

precursor exert a direct action on mRNA levels of pituitary

hormones through the PKA and PKC signaling pathways in

half-smooth tongue sole (41, 46). Results obtained in the present

study indicated that intraperitoneal injection of SPX2 reduced

gnih mRNA levels, without any effect on gnihr expression. In

contrast, administration of SPX1 provoked an increase of gnih

mRNA levels in immature females of the same species (20).

Overall, these data suggest that SPX2 is implicated in the control

of reproduction, while SPX1 and SPX2 may have different

biological roles in half-smooth tongue sole. It is worth

mentioning that Galr2 is an alternative endogenous receptor

for SPX in zebrafish and Nile tilapia (11, 12). However, the

morphological relationship between SPX and GnIH neurons is

very limited in fish, thus much more studies need to be done to

unveil whether Galr2 exists in GnIH neurons of half-smooth

tongue sole and other species.

GnRH has been well demonstrated to be a master stimulator

of the reproductive axis in vertebrates, and two or three distinct

GnRH isoforms (GnRH1, GnRH2, and GnRH3) exist in all

teleosts investigated so far. The brain distribution and

physiological functions of these three GnRH variants are quite

different. In a teleost species possessing all three GnRH types,

GnRH1 is the main hypophysiotropic hormone regulating the

BPG axis. However, GnRH3 takes over the role of GnRH1 in other

teleost species that have GnRH2 and GnRH3 only (28, 29). One of

the other key hypothalamic neuropeptides established in the

control of reproduction is kisspeptin, which can exhibit potent

action on pituitary directly or on GnRH neurons indirectly to

regulate LH and FSH synthesis and secretion (30, 32, 33). In this

study, none of gnrh2, gnrh3, kiss2 or kiss2r expression levels were

altered by SPX2 injection, indicating that the GnRH and

kisspeptin systems may be not the central targets of SPX2

action on reproduction. Similarly, there is no significant effect of

SPX1 on gnrh1 and gnrh2mRNA levels in orange-spotted grouper

(17) and immature females of half-smooth tongue sole (20),

respectively. However, gnrh3 expression is evidently elevated

after SPX1 administration in the latter (20). Therefore, SPX1

and SPX2 might regulate different aspects of fish physiology.

In the present study, we evaluated the effects of SPX2 on the

autocrine and paracrine regulation of spexin system. Peripheral

injection of SPX2 suppressed spx1 expression, without any effect

on spx2 mRNA levels. It has been demonstrated that SPX1 is

involved in feeding, reproduction, and other functions in fish (3,

4), and these data indicate that SPX2 may participate in these

physiological processes via SPX1 indirectly. Whether SPX1 has

any effect on spx2 expression is still unknown, which warrants

further studies in various vertebrates. On the other hand, NKB

encoded by the tac3 gene has emerged as a key regulator of
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reproduction in mammals (34) and several teleost species,

including zebrafish (48, 49), Nile tilapia (50), goldfish (51, 52),

striped bass (53), European eel (54), and half-smooth tongue

sole (42). Results obtained in this study indicated that SPX2 can

reduce brain tac3 mRNA levels, suggesting the regulation of

reproduction by SPX2 via NKB indirectly.

In addition to its effects on brain functions, SPX can also

modulate the synthesis and release of pituitary hormones. On

one hand, both gtha and lhb expression were down-regulated

after intraperitoneal injection of SPX2, whereas fshb mRNA

levels were up-regulated in half-smooth tongue sole. On the

other hand, SPX1 suppressed the expression levels of gtha and

fshb, without affecting lhb expression in immature females of the

same species (20). Neither lhb nor fshb transcripts were modified

after SPX1 treatment in orange-spotted grouper (17). For

hormone secretion, an inhibitory action of SPX1 on the

plasma LH level was observed in goldfish and Nile tilapia (12,

14) along with a reduction of plasma FSH level in the latter.

Interestingly, SPX1 evoked a decrease in the serum LH level, but

an increase in the serum FSH level in mature female rats (55). Of

note, SPX2 had no effect on gh expression in this study.

However, SPX1 reduced gh mRNA levels in orange-spotted

grouper and half-smooth tongue sole immature females (17,

20). It is worth mentioning that sexually immature female

specimens were used in this study, and sexual maturity could

be a contributing factor influencing the obtained results.

Accordingly, further studies in sexually mature females during

the seasonal reproductive cycle will contribute to a more

complete picture of these two SPX peptides in this species.

Taken together, SPX2 can modulate the reproduction of half-

smooth tongue sole through actions on the expression of the

components of brain-pituitary reproductive axis, and SPX1 and

SPX2 seem to have divergent roles in the same species.

Despite its functional significance, the molecular

mechanisms of SPX actions are incipient in vertebrates. A

ligand-receptor interaction study has revealed that both SPX1

and SPX2 could increase SRE-luc activity in HEK293 cells

expressing zebrafish Galr2a and Galr2b (11). Both SRE-luc

and cAMP-response element luciferase (CRE-luc) activities are

significantly elevated after SPX1a or SPX1b treatment in COS-7

cells expressing tilapia Galr2b (12). These data indicate that

SPXs are a functional agonist for Galr2, and both PKC and PKA

pathways mediate SPX functions. It is worth mentioning that

clarifying the intricate web of intracellular pathways in response

to SPX and its interaction with GnRH (28, 56), GnIH (57, 58),

and kisspeptin (32, 35), is a promising area for future research

not only in fish but also in other vertebrates.
Conclusions

In summary, this study provides preliminary evidence for

the involvement of SPX2 in the regulation of reproduction in
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vertebrates by acting at the brain and pituitary levels. Combined

with previous studies on SPX1, it appears that some functional

divergences exist between SPX1 and SPX2 peptides, perhaps due

to the differences in their structures and binding affinity to their

cognate receptors. Further studies on the molecular mechanisms

involved in SPX actions on the target cells would contribute to

the knowledge of the functional significance and divergence of

this emerging neuropeptide in vertebrate species.
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