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a b s t r a c t 

The increasing emergence of the time-series single-cell RNA sequencing (scRNA-seq) data, inferring developmen- 

tal trajectory by connecting transcriptome similar cell states (i.e., cell types or clusters) has become a major 

challenge. Most existing computational methods are designed for individual cells and do not take into account 

the available time series information. We present IDTI based on the Increment of Diversity for Trajectory Infer- 

ence, which combines time series information and the minimum increment of diversity method to infer cell state 

trajectory of time-series scRNA-seq data. We apply IDTI to simulated and three real diverse tissue development 

datasets, and compare it with six other commonly used trajectory inference methods in terms of topology simi- 

larity and branching accuracy. The results have shown that the IDTI method accurately constructs the cell state 

trajectory without the requirement of starting cells. In the performance test, we further demonstrate that IDTI 

has the advantages of high accuracy and strong robustness. 
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. Introduction 

Cell development and differentiation is a dynamic process, which

s the basis of studying ontogenesis in multicellular organisms [1] . The

cRNA-seq is an excellent technique for studying cell fate, allowing tran-

cription analysis to reveal the underlying developmental dynamics, cell

ommunication, gene regulation and disease development [2] . The anal-

sis of trajectory inference can verify known cell differentiation rela-

ionships and reveal cell development trajectories. In particular, recon-

tructing cell state trajectories between adjacent time points is key to an-

lyzing transcriptional dynamics over time [3 , 4] . At present, it remains

 challenge to accurately infer the cell state trajectory of time-series

cRNA-seq data. 

In recent years, a series of trajectory inference methods based on

cRNA-seq data have been developed [5–9] . In 2014, Trapnell et al.

roposed Monocle to construct Minimum Spanning Tree (MST) based

n transcriptome similarity to infer cell trajectory, which was a pioneer-

ng trajectory inference method [10–12] . La Manno et al. proposed RNA

elocity to infer the direction and speed of cell differentiation based on

he spliced and unspliced mRNAs [13] . Schiebinger et al. developed the

andmark work Waddington-OT based on the principle of using the op-

imal transport framework to model cell development in dynamic pro-
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esses [14] . Setty et al. and Stassen et al. presented Palantir and VIA re-

pectively, both of whom applied Markov chain to single cell pseudotime

nalysis [15 , 16] . Saelens et al. developed Dyno to integrate and evaluate

ore than 70 trajectory inference methods as of 2019 [17] . These com-

utational methods have emerged to meet different needs. However,

ost of the existing trajectory inference methods have been designed

or individual cells, ignoring the importance of cell state trajectory in-

erence, and forgetting the available time series information. In the last

everal years, there have also been approaches to infer cell state trajecto-

ies by combining temporal information. For example, CSHMM utilized

 continuous state Hidden Markov Model (HMM) to reconstruct contin-

ous cell state trajectory [18] . Tempora combined biological pathways

o identify cell types and incorporated temporal information to infer cell

tate trajectories [19] . CStreet constructed k -nearest neighbor connec-

ions of cells within each time point and between adjacent time points,

nd then used force-directed graphs to estimate the connection proba-

ility of cell states [20] . GraphFP is a nonlinear Fokker-Planck equation

ased on graph model and dynamic inference framework, which can

econstruct the cell state transition potential energy landscape [21] . 

Here, we present IDTI, which for the first time utilizes increment

f diversity to cell state trajectory inference. It develops for time-series

cRNA-seq data, so gene expression matrix with time series information
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s used as input. IDTI trajectory inference includes identification of cell

tates, sectionalization data based on time points, calculation of incre-

ent of diversity, determination of the relationship between cell states,

isualization of the inferred trajectory and so on. Through application

nd comparison, we conclude that IDTI method has high accuracy and

obustness. Thus, the trajectories inferred by IDTI can reflect real devel-

pmental relationships and help to understand and explain the process

f cellular identity transformation. 

. Materials and methods 

.1. Data collection and preprocessing 

We tested IDTI on simulated and several real time-series scRNA-

eq datasets. The simulated dataset has been generated by Splatter

22] , an R package for the simple simulation of scRNA-seq data.

he real datasets have been available in the Gene Expression Om-

ibus (GEO) database under accession code GSE98150 [23] , GSE90047

24] and GSE107122 [25] , which are mouse early embryonic devel-

pment, mouse hepatoblast differentiation and mouse cerebral cortex

evelopment respectively. The gene expression matrix with time se-

ies information as an input to IDTI needs to be prepared in h5ad

le format. Cell state labels have been given for the datasets used in

ur study; if not, which can be obtained from cell_clusters function of

DTI. The data preprocessing includes: filtering low-count genes and

ells by function sc.pp.filter_genes and sc.pp.filter_cells , and normalizing

ata by function sc.pp.normalize_total and sc.pp.log1p . Here, we have

ried to select different amounts of highly variable genes using func-

ion sc.pp.highly_variable_genes for downstream analysis. Then, the data

ave been normalized by function MinMaxScaler , which was scaled to

 positive value between 0 and 1 to facilitate the calculation of the

ogarithmic function in subsequent analyses. See the code section at

ttps://github.com/hy-1994/IDTI for specific parameters. 

.2. Methods 

.2.1. The measure of diversity 

As early as 1978, Laxton proposed the concept of measure of di-

ersity [26] , which was applied in the geographical distribution of bi-

logical species. For the high-dimensional gene expression space 𝑆 =
𝑋1 , 𝑋2 , ..., 𝑋𝑛 } , which is composed of n cell states. Let 𝑋 ∈ 𝑆, xi de-

otes the sum of gene expression values of ith dimension of cell state X .

he measure of diversity of 𝑋 ∶ [𝑥1 , 𝑥2 , ..., 𝑥𝑚 ] is defined as 

( 𝑋) = 𝑁𝑋 log 𝑏 𝑁𝑋 −
𝑚 ∑

𝑖 = 1 
𝑥𝑖 log 𝑏 𝑥𝑖 (1) 

here 𝑁𝑋 =
∑𝑚 

𝑖 = 1 𝑥𝑖 is sum expression values of each xi in X; b is the

iven base of logarithm, which is e ; if xi = 0, then log 𝑏 𝑥𝑖 = 0 . Similarly,

hen we have another cell state 𝑌 ∶ [𝑦1 , 𝑦2 , ..., 𝑦m ] , D ( Y ) can be defined

s Eq. 2 , where 𝑁𝑌 =
∑𝑚 

𝑖 = 1 𝑦𝑖 is also sum expression values of every yi 

n Y . 

( 𝑌 ) = 𝑁𝑌 log 𝑏 𝑁𝑌 −
𝑚 ∑

𝑖 = 1 
𝑦𝑖 log 𝑏 𝑦𝑖 (2) 

Here, we can see that the measure of diversity is highly similar to in-

ormation entropy [27 , 28] , both are descriptions of state space from the

erspective of information, and the basis of measurement is the logarith-

ic function measured according to information. However, the mean-

ngs between them are different: Information entropy is a description

f state uncertainty or disorder; while the measure of diversity is a de-

cription of the overall uncertainty. Greater information entropy implies

 large degree of uncertainty, but not necessarily a large measure of di-

ersity. Conversely, a higher measure of diversity does not necessarily

ndicate greater disorder. 
771
.2.2. The increment of diversity 

Furthermore, the measure of diversity is extended to the concept of

he increment of diversity (ID), which can quantitatively represent bi-

logical similarity. Subsequently, the ID has been widely used in the

eld of bioinformatics, especially in the study of biological classifica-

ion [29–32] . The ID between 𝑋 ∶ [𝑥1 , 𝑥2 , ..., 𝑥𝑚 ] and 𝑌 ∶ [𝑦1 , 𝑦2 , ..., 𝑦𝑚 ] is
alculated as 

D ( 𝑋, 𝑌 ) = 𝐷( 𝑋 + 𝑌 ) − 𝐷( 𝑋) − 𝐷( 𝑌 ) (3) 

The smaller the value of ID ( 𝑋, 𝑌 ) , the higher the similarity between

 and Y. D ( X + Y ) can be calculated as 

( 𝑋 + 𝑌 ) =
(
𝑁𝑋 + 𝑁𝑌 

)
log 𝑏 

(
𝑁𝑋 + 𝑁𝑌 

)
−

𝑚 ∑
𝑖 = 1 

(
𝑥𝑖 + 𝑦𝑖 

)
log 𝑏 

(
𝑥𝑖 + 𝑦𝑖 

)
(4) 

We then apply ID to cell state trajectory inference of time-series

cRNA-seq data, on the premise that we need to determine standard

ources. Given the available time information, we always regard cell

tates at the previous moment as the standard sources of cell states at

he later moment. For example, there are standard sources STDk ( k = 1,

, …, K ) at time point Ti , where K is the number of standard sources,

hen the relationship between standard sources and cell states 𝑍 ∈ 𝑆 at

ime point Ti + 1 is determined by the minimum increment of diversity

lgorithm, and the decision principle is 

D ( 𝑍, STD 𝑘 ) = 𝑚𝑖𝑛 {ID ( 𝑍 , STD 1 ) , ID ( 𝑍 , STD 2 ) , ..., ID ( 𝑍, STD 𝐾 )} (5)

.2.3. Calculation of graph edit distance and F1 score 

Here, we evaluate IDTI by comparing its inferred trajectory to known

rajectory manually curated from the literature. Two approaches are

sed to evaluate the topology similarity and branching accuracy be-

ween trajectories: graph edit distance (GED) score and F1 score. 

The GED score is degree of similarity between two graphs G1 and G2 

33] , which is defined as follows: 

ED (𝐺1 , 𝐺2 ) = 𝑚𝑖𝑛

⎧ ⎪ ⎨ ⎪ ⎩ 
∑

𝑒𝑗 ∈𝛾(𝐺1 ,𝐺2 ) 
𝑐(𝑒𝑗 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 
(6)

here 𝛾(𝐺1 , 𝐺2 ) denotes all the complete edit paths from graph G1 to

2 , and 𝑐(𝑒𝑗 ) denotes the edit cost of the edit operation 𝑒𝑗 . The deletion

f nodes V and edges E , and the substitution of nodes V constitute a

omplete edit path 𝛾𝑖 , and the score of each edit operation is defined

s 1. If the sum of the cost values of this path is the smallest, this cost

s the edit distance between graphs. The GED score is calculated using

he function nx.graph_edit_distance ( G1 , G2 ) in NetworkX [34] . The closer

he GED score between two trajectories is to 0, the higher the similarity

etween them. 

The F1 score is the harmonic mean of precision and recall of tra-

ectory directed edge identification [35 , 36] . A true positive (TP)/false

ositive (FP) edge in the inferred trajectory is an edge that actually ex-

sts/does not exist in the gold trajectory. A False Negative (FN) edge in

he inferred trajectory is when there is an edge in the gold trajectory be-

ween cell states that is absent in the inferred trajectory. The precision

s calculated as the ratio of the number of TP edges to the total number

f predicted edges (the sum of TP edges and FP edges). The recall is cal-

ulated as the ratio of the number of TP edges to the number of all real

dges (the sum of TP edges and FN edges) [37] . The range of F1 score

s [0, 1], and the higher the F1 score between two trajectories indicates

he higher branching accuracy. 

1 = 2 × 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
(7)

rec ision = TP 
TP + FP 

(8) 

ecall = TP 
TP + FN 

(9) 

https://github.com/hy-1994/IDTI
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Fig. 1. The workflow of IDTI . 
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. Results and discussion 

.1. Overview of IDTI 

IDTI infers the cell state trajectory from the expression matrix of

ime-series scRNA-seq data. IDTI first performs the identification of cell

tates and then sectionalizes the data based on available time informa-

ion. Most importantly, the calculation of the ID and the inference of

evelopmental relationships between cell states. We calculate the ID

etween cell states at adjacent time points to represent the similarity

etween cell states, and then determine the development trajectory by

he minimum increment of diversity algorithm. In the end, we visual-

ze trajectories through Uniform Manifold Approximation and Projec-

ion (UMAP) plot and directed graph, of which the UMAP shows the

elationships between cell states in the form of individual cells, and the

irected graph shows the hierarchical structure of evolutionary relation-

hips ( Fig. 1 ). 

.2. Application of IDTI on simulated dataset 

We used function splatsimulatePath in Splatter to generate the sim-

lated time-series scRNA-seq data with continuous trajectory. We have

otten a simulated dataset including 600 cells and 10,000 genes at three

ime points (T1 , T2 , T3 ). These cells can be classified into seven cate-

ories, of which the T1 stage contains the cell type Clu1A , the T2 stage

ontains two cell types Clu2A and Clu2B , and the T3 stage contains four

ell types Clu3A, Clu3B, Clu3C and Clu3D ( Fig. 2 a). The known develop-

ent trajectories are Clu1A–Clu2A–Clu3A, Clu1A–Clu2A–Clu3B, Clu1A–

lu2B–Clu3C, Clu1A–Clu2B–Clu3D , and we manually draw the trajec-

ories ( Fig. 2 b). As shown in UMAP plot and directed graph, the IDTI

an accurately reconstruct the four developmental trajectories for the

imulated data, which are same as the developmental trajectory of the

imulation ( Fig. 2 c,d). 

.3. Application of IDTI on real time-series scRNA-seq datasets 

First, we applied IDTI on the time-series scRNA-seq dataset of mouse

arly embryonic development, which contains 40 single cells from
772
ight stages on embryos from MII Oocyte to embryonic day 6.6 (E6.6),

nd we manually mapped the gold standard developmental trajectory

 Fig. 3 a). IDTI was able to successfully predict the different trajecto-

ies of trophoblast ectoderm (TE) and inner cell mass (ICM), and the

CM continued to gradually differentiate into extraembryonic ectoderm

Exe) and epiblast (Epi) ( Fig. 3 b,c). 

Next, we applied IDTI on the time-series scRNA-seq dataset of mouse

epatoblast differentiation, consisting of 447 single cells collected at

mbryos (E10.5-E17.5). Here, we used the strategy proposed by Yang,

t al. [24] to annotate the cells, labeling as “hepatoblast ” at early time

oints (E10.5, E11.5), “hepatoblast/hepatocyte ” at intermediate time

oints (E12.5, E13.5, E14.5), “hepatocyte ” and “cholangiocyte ” at late

ime points (E15.5, E17.5). We also manually mapped the gold stan-

ard developmental trajectory ( Fig. 3 d). IDTI also successfully inferred

evelopmental trajectories of hepatoblast differentiation through inter-

ediate cells into hepatocyte and cholangiocyte cells ( Fig. 3 e,f). 

Finally, in order to evaluate the performance of IDTI with multiple

ell states at each time point, we applied IDTI to the time-series scRNA-

eq dataset during mouse cerebral cortex development, which contains

316 cells collected at E11.5, E13.5, E15.5 and E17.5. These cells have

overed a wide range of neuronal development, from early precursors

apical precursors (APs) and radial precursors (RPs)) to intermediate

recursors (IPs) and differentiated cortical neurons. Tran et al. [19] used

SVA and the marker genes of APs, RPs, IPs, young neurons and neurons

o automatically annotate the seven clusters. Meanwhile, we manually

apped the gold standard developmental trajectory through literature

earch [21] ( Fig. 3 g). IDTI inferred two trajectories rooted in APs/RPs,

ne trajectory branching into young neuron cells and neuron cells via

Ps, and the other trajectory converging in the cluster of neuron cells.

nfortunately, it was not able to infer trajectories of APs/RPs to young

euron cells and neuron cells to young neuron cells ( Fig. 3 h,i). 

.4. Comparison of IDTI with other trajectory inference methods 

Here, we compared IDTI with six other trajectory inference meth-

ds (i.e., Monocle 2, TSCAN [38] , Slingshot [39] , PAGA [40] , Tempora

nd CStreet) on the simulated dataset, the mouse early embryonic de-
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Fig. 2. IDTI analysis of the simulated dataset . (a) Scatter plot showing the visualization of Principal Component Analysis (PCA) dimensional reduction of the 

simulated data. Different cell states are plotted by different colors. (b) The gold trajectory of the simulated data is used to evaluate the accuracy of the inferred 

trajectories. (c) UMAP plot showing the cell state trajectory inferred from the simulated dataset using IDTI. Each node represents a single cell, and which are colored 

by cell states. The black nodes indicate the center of cell states, and the arrows connecting them represent the cell state trajectory. (d) Directed graph showing the 

hierarchy of cell state trajectory of the simulated dataset using IDTI. The timeline on the left represents developmental stages or time points. Circles represent cell 

states, of which the relative size represents cell population and the relative color depth represents the increment of diversity between the cell states at adjacent time 

points. 

Table 1 

Comparison between IDTI and other methods on the topology similarity . 

Methods GED score 

Simulated data Mouse Embryo 

data 

Mouse 

Hepatoblast data 

Mouse Cerebral 

Cortex data 

IDTI 0 0 0 2 

Monocle 2 5 8 2 4 

TSCAN 2 9 0 3 

Slingshot 5 10 - a 2 

PAGA 5 9 2 3 

Tempora - a - a 2 1 

CStreet 1 - a 0 0 

a - represents that the result of the corresponding method is not available. 
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a  
elopment dataset, the mouse hepatoblast differentiation dataset and

he mouse cerebral cortex development dataset. In order to facilitate

omparison, we formalized all the inferred trajectories to graph (or net-

ork), of which nodes represent cell states and edges represent the rela-

ionship between two cell states. In addition to IDTI and CStreet, other

ethods need to manually determine the starting cells of the trajectory.

ere, we evaluated the results using two metrics: the GED score, which

as used to evaluate the similarity between the inferred trajectory and

he gold trajectory, and the F1 score, which was used to evaluate the

ranching accuracy between the inferred trajectory and the gold trajec-

ory. 
773
On the simulated dataset, IDTI can accurately infer all the four de-

elopment trajectories ( Fig. 2 c,d). Here, we assigned Clu1A as the tra-

ectory starting cells for the other methods. Monocle 2 inferred pseu-

otime trajectories based on individual cells, but its cells showed con-

usion ( Fig. 4 a). TSCAN can infer two main trajectories, unable to

orrectly infer the development trajectory of the terminal cell states

 Fig. 4 b). Slingshot cannot construct the real bifurcated trajectory, only

inear trajectory ( Fig. 4 c). However, PAGA constructed a coarse-grained

iagram, which contains six connections, and the results couldn’t con-

truct the main development trajectory ( Fig. 4 d). CStreet was relatively

ccurate, except that the trajectory Clu1A–Clu2A cannot be inferred
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Fig. 3. IDTI applies of the real time-series scRNA-seq datasets . The mouse early embryonic development time-series scRNA-seq dataset: (a) the gold trajectory 

(b) UMAP plot and (c) directed graph showing cell state trajectory inferred by IDTI. The mouse hepatoblast differentiation time-series scRNA-seq dataset: (d) the 

gold trajectory (e) UMAP plot and (f) directed graph showing cell state trajectory inferred by IDTI. The mouse cerebral cortex development time-series scRNA-seq 

dataset: (g) the gold trajectory (h) UMAP plot and ( i ) directed graph showing cell state trajectory inferred by IDTI. 
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 Fig. 4 e). Tempora was not used for simulated data because pathway

nformation is required. The trajectory inferred by the IDTI method was

xactly the same as the gold trajectory, of which GED score is 0 and F1 

core is 1. In conclusion, the results on the simulated dataset showed

hat IDTI outperforms all other methods in the topology and branching

ccuracy, followed by CStreet, TSCAN, and finally PAGA, Monocle 2,

lingshot ( Tables 1 , 2 ). 

Similarly, we also made comparisons on the three real datasets. On

he mouse early embryonic development time-series scRNA-seq dataset,

e assigned MII Oocyte as the starting cells for other methods. The com-

arison results showed that CStreet and Tempora failed to complete the

rajectory construction, and the other methods IDTI did best ( Figs. 3 c,

1). Hepatoblast was considered as the starting cells on the mouse hep-

toblast differentiation time-series scRNA-seq dataset, IDTI, TSCAN and

Street could accurately infer the real trajectory, in which Slingshot

ailed to infer the trajectory ( Figs. 3 f, S2). On the mouse cerebral cor-

ex time-series scRNA-seq dataset, we assigned Aps/RPs as the starting

ells. The results displayed that CStreet outperformed optimally, and

empora failed to infer the trajectory of young neuron cells to neuron
774
ells. The performance of IDTI was second only to CStreet and Tempora,

here GED score of IDTI is 2 and F1 score is 0.8, unable to infer from

Ps to neuron cells and young neuron cells to neuron cells ( Figs. 3 i, S3).

he results on real datasets show that IDTI performs best in topology

imilarity and branching accuracy on the mouse early embryonic devel-

pment dataset, and the mouse hepatoblast development dataset, and

nly performs slightly worse on the mouse cerebral cortex dataset, but

t is still acceptable ( Tables 1 , 2 ). 

In summary, the IDTI is the first to utilize the increment of diversity

o infer the trajectory for time-series scRNA-seq data, and which can

econstruct relatively accurate trajectories without the need to define

he starting cells. 

.5. Evaluation of IDTI performances 

To further evaluate the robustness of IDTI, we randomly perturbed

he simulated dataset in two ways: different cell sampling rates and dif-

erent gene dropout rates. Among them, the cell sampling rates had been

et at 90%, 80% and 70% respectively, and the selection was performed
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Fig. 4. Comparison of IDTI with other trajectory inference methods on the simulated dataset . (a) Monocle 2 (b) TSCAN (c) Slingshot (d) PAGA (e) CStreet. 

Table 2 

Comparison between IDTI and other methods on the branching accuracy . 

Methods F1 score 

Simulated data Mouse Embryo data Mouse Hepatoblast data Mouse Cerebral Cortex data 

IDTI 1.00 1.00 1.00 0.80 

Monocle 2 0.00 0.17 0.67 0.50 

TSCAN 0.80 0.31 1.00 0.67 

Slingshot 0.00 0.00 - a 0.80 

PAGA 0.22 0.15 0.67 0.67 

Tempora - a - a 0.80 0.91 

CStreet 0.91 - a 1.00 1.00 

a - represents that the result of the corresponding method is not available and all values are reserved to two 

decimal places. 
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h

 times with different random seeds for each number. The gene dropout

ates had been set at 10%, 20%, 30%, 40% and 50% respectively, and

he selection was performed 3 times with different random seeds for

ach number. Therefore, we generated a total of 30 perturbed datasets,

nd constructed trajectories using IDTI. As a result, there are no differ-

nces between the trajectories constructed by IDTI on the perturbed and

riginal datasets. Specifically, IDTI still showed reliable results when the

ell sampling rate was as low as 70% or the gene dropout rate was as

igh as 50%. Therefore, changes in cell number and gene dropout rate

ithin a certain range have no effect on IDTI trajectory inference. To

um up, the IDTI is also reliable on datasets with small cell numbers

nd high gene dropout rates, indicating that the IDTI has high robust-

ess. 

. Conclusion 

With the development of sequencing technology, many computa-

ional methods of trajectory inference have been proposed. Meanwhile,

ime series experiments provide available temporal information to tra-

ectory inference. We present IDTI, which makes full use of the time se-

ies information, and utilizes increment of diversity for cell state trajec-
775
ory inference. The IDTI is an effective trajectory reconstruction method,

hich can reproduce the process of cell state transformation. 

The time series information is very important to the performance

f IDTI, which provides direction for the trajectory. The IDTI analy-

es the time-series scRNA-seq data at the level of cell states, not at

he individual cell. Compared with inferred trajectories based on sin-

le cells, the advantage of cell state trajectory inference is to avoid sin-

le cells in the same cell state, and assign to different branches. The

DTI also performs well compared with other six commonly used trajec-

ory inference methods in simulated and real datasets, and IDTI doesn’t

eed to assign the starting cells. Furthermore, the IDTI is highly ro-

ust over datasets with different sampling rates and different dropout

ates. In summary, the IDTI is a computational method for cell trajec-

ory inference using time-series scRNA-seq data, which provides an easy

nd accurate way to understand and interpret transition process of cell

dentity. 

vailability 

IDTI is written in python and freely available at https://github.com/

y-1994/IDTI . 

https://github.com/hy-1994/IDTI
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