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Abstract

Background: Peptide Recognition Domains (PRDs) are commonly found in signaling proteins. They mediate
protein-protein interactions by recognizing and binding short motifs in their ligands. Although a great deal is
known about PRDs and their interactions, prediction of PRD specificities remains largely an unsolved problem.

Results: We present a novel approach to identifying these Specificity Determining Residues (SDRs). Our algorithm
generalizes earlier information theoretic approaches to coevolution analysis, to become applicable to this problem.
It leverages the growing wealth of binding data between PRDs and large numbers of random peptides, and
searches for PRD residues that exhibit strong evolutionary covariation with some positions of the statistical profiles
of bound peptides. The calculations involve only information from sequences, and thus can be applied to PRDs
without crystal structures. We applied the approach to PDZ, SH3 and kinase domains, and evaluated the results
using both residue proximity in co-crystal structures and verified binding specificity maps from mutagenesis
studies.

Discussion: Our predictions were found to be strongly correlated with the physical proximity of residues,
demonstrating the ability of our approach to detect physical interactions of the binding partners. Some high-
scoring pairs were further confirmed to affect binding specificity using previous experimental results. Combining
the covariation results also allowed us to predict binding profiles with higher reliability than two other methods
that do not explicitly take residue covariation into account.

Conclusions: The general applicability of our approach to the three different domain families demonstrated in this
paper suggests its potential in predicting binding targets and assisting the exploration of binding mechanisms.

1 Background
1.1 Protein recognition domains (PRDs) and specificity
determining residues (SDRs)
Peptide recognition domains are key elements on pro-
teins with many roles in central signaling pathways [1].
PRDs are involved in many diseases and are a focus of
drug discovery efforts [2]. Some viruses co-opt host
PRDs via mimicry, emphasizing their relevance to

human diseases [3-5]. Representative PRDs include
PDZ, SH3 and kinase domains. These domains recog-
nize short (usually around seven to ten amino acids
long) motifs in their target proteins. Such motifs often
lie in unstructured regions [6] and hence resemble pep-
tides in their conformational flexibility. In particular,
PDZ domains recognize hydrophobic C-terminal tails,
SH3 domains recognize proline-rich motifs, and kinase
domains bind several different classes of motifs; for
instance, basophilic kinases bind arginine-rich motifs. As
many PRDs are well behaved in solution, they are ideal
model systems for studying protein-protein interactions
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and ligand binding specificity. New approaches, namely
phage display [7], protein or peptide arrays [8-10] and
oriented peptide libraries [11] have greatly facilitated the
measurement of specificities and produced an hitherto
unimaginable wealth of binding data. Despite these
advances, the residues within the domains that deter-
mine their binding specificity have only partly been elu-
cidated. Such specificity determining residues (SDRs)
[12,13] can be identified using dedicated experiments
involving site-directed mutagenesis and subsequent
measurement of specificity. For example, recent studies
have directly tested effects of point mutations in kinases
[14] and PDZ domains [7]. However, because of the size
of the sequence space to be covered, exhaustive experi-
mental search is infeasible. While co-crystal structures
of PRDs with the bound ligand are often used to priori-
tize residues, identification of SDRs remains a complex
problem: on the one hand, close proximity to the ligand
does not necessarily implicate a residue in specificity
determination. On the other hand, a residue that is far
away from the ligand can also affect specificity due to
secondary effects on the binding site [13,15]. Hence,
computational methods are needed to select and priori-
tize the positions to be tested through mutagenesis.
Meanwhile, the aforementioned wealth of specificity
data offers ample resources to be computationally ana-
lyzed for information about SDRs.
Currently, there are two major classes of computational

approaches for SDR identification: first, there are struc-
ture driven approaches, making use of physical properties
from protein structures, such as the hydration site free
energies displaced by ligand atoms upon binding [16].
The second class of approaches adopts a statistical
approach, and identifies SDRs by looking for sites that
are conserved across or within functional groups [17], or
more conserved in orthologs than paralogs [12]. Our
method also takes on a statistical approach, the systema-
tic nature of which enables the potential identification of
non-local interactions between residues that are signifi-
cant for peptide binding. Due to the lack of large-scale
binding data previously, most current statistical methods
attempt to detect SDRs based only on conservation sig-
nals from multiple sequence alignments of the PRDs.
These predictions are noisy as the conservation of a resi-
due could be due to roles other than binding specificity
determination. Hence, these approaches do not make
optimal use of currently available data. Conversely, utiliz-
ing the information about the actual bound peptide pro-
files from the recent large-scale binding datasets has the
potential to boost the power of new predictions. In this
paper we demonstrate how these new datasets can be
incorporated in the search for SDRs. Previously we
explored this idea using a proof-of-principle correlation-
based method as part of a larger experimental study [14].

Here, we develop a new approach that is based on a
novel formalism of mutual information.

1.2 Traditional and generalized covariation methods
Our approach is based on the notion that SDRs would
covary with the binding specificity. The concept of cov-
ariation has first been used to study internal residue
contacts in proteins [18,19]. It has subsequently been
used in the identification of energetically coupled resi-
dues [20], coevolution of proteins with their interaction
partners [21-25], protein fold [26], functionally or struc-
turally coupled residues within a protein [27,28] and
protein fusion [29]. The basic idea is to look for two
sites in a multiple sequence alignment (MSA), or a pair
of MSAs when studying the interaction between two
proteins, that exhibit coordinated changes. Such covaria-
tion could suggest functional or structural dependency
between the two sites, as there exists evolutionary pres-
sure against their independent evolution. In the context
of SDR identification, the covariation between a residue
in the PRD and a residue in the bound peptide could
imply its role in mediating the binding.
Many computational methods have been proposed for

identifying covarying sites, including correlation scores
[18,30], Statistical Coupling Analysis (SCA) [20,31], like-
lihood methods [32,33], information theoretic methods
[27,34], independence tests [35,36] and Bayesian
approaches [37]. However, these methods cannot be
applied directly to the identification of SDRs, because in
a typical protein-peptide binding dataset [13,38], each
PRD does not bind to only one single peptide sequence.
Instead, a PRD is associated with a binding profile, often
represented in the form of a position weight matrix
(PWM). In other words, instead of having two MSAs as
in a typical covariation study, SDR identification adopts
a more general setting with one MSA of PRDs on the
one hand, and a list of respective PWMs on the other
hand (Figure 1). Furthermore, a multitude of techniques
have been developed in recent studies to handle various
issues in the application of the covariation methods
[34,39-42], such as uneven representation of sequences
in the MSA and overly diverse sites. These techniques
also need to be extended in order to be applied in the
current more generalized setting. In this paper we pre-
sent a novel method to determine SDRs using an infor-
mation theoretic approach. For each site from the MSA
of the PRDs and each site from the aligned peptide
PWMs, the method produces a numeric covariation
score, which can be used as an indicator of the likeli-
hood that the two sites are involved in binding specifi-
city. Aggregating the scores could also suggest which
peptides a PRD is likely to bind. Our approach uses
only information from sequences, and thus can be
applied to PRDs without known crystal structures.
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2 Methods
2.1 Entropy and mutual information
Our method for identifying SDRs is based on an informa-
tion theoretic measure called mutual information, which
has been used in detecting covarying residues in the tra-
ditional setting [27,34]. We first give some general defini-
tions here, and then discuss how they are used in the
identification of SDRs in the next subsection. Given a dis-
crete random variable X with a distribution p(x) over the
domain of X, D(X), the entropy of X is defined as:

H(X) = −
∑

x∈D(X )

p(x) logp(x), (1)

where log 0 is defined as 0, the asymptotic value of
log(x) towards 0. In the general definition of entropy,
the base of the logarithm can be set to any value. In
analyzing protein sequences, where D(X) is the set of 20
amino acid residues, it is convenient to use 20 as the
base so that the entropy value is always between zero
and one [43].
Similarly, if we have two random variables X and Y

with a joint distribution p(x, y), the joint entropy of
them is defined as:

H(X, Y) = −
∑

x∈D(X)

∑

y∈D(Y)

p(x, y)logp(x, y). (2)

                Site

Sequence 1 2 3 4 5 6
I V E T V T A
II E K V I K A
III V K T M E A
IV I E Y A K A

            Site

Residue 1 2 3 4 5
A 0.00 0.13 0.01 0.00 0.12
C 0.00 0.70 0.01 0.00 0.02
D 0.00 0.01 0.01 0.00 0.21
…
Y 0.95 0.01 0.01 0.00 0.02

…

            Site

Residue 1 2 3 4 5
A 0.09 0.00 0.00 0.19 0.00
C 0.02 0.00 0.00 0.01 0.00
D 0.02 0.94 0.00 0.01 0.00
…
Y 0.02 0.00 0.12 0.01 0.96

…

            Site

Residue 1 2 3 4 5
A 0.11 0.20 0.10 0.00 0.00
C 0.00 0.00 0.00 0.78 0.00
D 0.01 0.00 0.00 0.00 0.00
…
Y 0.00 0.04 0.00 0.00 0.00

…

            Site

Residue 1 2 3 4 5
A 0.00 0.13 0.00 0.18 0.01
C 0.00 0.01 0.91 0.01 0.01
D 0.00 0.07 0.00 0.04 0.01
…
Y 0.98 0.01 0.00 0.01 0.04

…

MSA of Peptide Recognition
Domains (PRDs)

PWMs of bound peptides

H(X) – H(X,Y) + H(Y)MI(X,Y) =
UC(X,Y) = MI(X,Y) / H(X)

Figure 1 An illustration of our method for finding specificity determining residues (SDRs). The sequences of the peptide recognition
domains (PRDs) are aligned to form a multiple sequence alignment (MSA). Each PRD has an associated position weight matrix (PWM) of the
peptides that it binds, and the PWMs are also aligned. The entropy of each MSA site X and each PWM site Y is computed and combined to give
the mutual information (MI) and uncertainty coefficient (UC) scores.
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Based on the concepts of entropy and joint entropy,
the mutual information between two random variables
X and Y is defined as follows:

MI(X, Y) = H(X) + H(Y) − H(X, Y). (3)

2.2 Adapting mutual information to the identification of
SDRs
Suppose we are given an MSA A with n rows and m
columns. Each row corresponds to a PRD sequence and
each column corresponds to a site of the alignment. We
use Aij to denote the residue at site j of sequence i. The
residues at a site can be viewed as a sample drawn from
a distribution of residues specific to the site. Let Aj be a
random variable for the residues at site j. Using Formula
1, we can calculate the entropy of Aj by replacing p(x)
with the sample distribution, pj (x), defined by the fre-
quency of each residue at the site:

pj(x) =

∑n
i=1 1(Aij = x)

n
, (4)

where 1 is the indicator function with 1(true) = 1 and
1(false) = 0.
The entropy can be interpreted as the uncertainty of

which residue we would encounter at the site if we ran-
domly draw a sequence from the MSA, where uncertainty
here is mathematically quantified by the number of bits
needed to encode the information on average. A comple-
tely conserved site has an entropy of zero, and indeed
there is no uncertainty as the residue being drawn must
always be the same. A site with equal probability of all 20
residues has the maximum possible entropy of one. In
general, a more diverse site has a larger entropy.
Similarly, suppose we are given a set of n aligned

PWMs W each with w sites. The ith PWM represents the
peptides bound by the ith PRD in the MSA (Figure 1).
Denote Wik (y) as the probability of residue y at the kth
site of the ith PWM. Let Wk be a random variable for the
residues at site k. Again, we can calculate the entropy of
Wk using Formula 1 by replacing p(x) with the expected
probability of y in the different PWMs, pk (y), assuming a
uniform distribution of the observed sequences:

pk(y) =

∑n
i=1 Wik(y)

n
. (5)

Now, we can compute the joint entropy of site j in the
MSA and site k in the PWMs using Formula 2, based
on the sample distribution of Aj and the probabilities
Wik (y):

pj,k(x, y) =

∑n
i=1 1(Aij = x)Wij(y)

n
. (6)

The joint entropy measures the uncertainty of which
two residues we would encounter at MSA site j and
PWM site k if we randomly draw a sequence from the
MSA and get its corresponding PWM.
Finally, we can compute the mutual information

between MSA site j and PWM site k using Formula 3.
Since H (X, Y) is the uncertainty of the two sites that per-
sists even when we consider them together, subtracting it
from H (X) + H (Y) gives the uncertainty that is elimi-
nated by considering the two sites together. In other
words, mutual information measures the information
shared by the two sites. A larger mutual information indi-
cates a stronger dependency between them. This could
indicate a functional or structural relationship between
the two sites. For example, it could suggest that the two
sites coevolve in the sense that when the residue at the
MSA site is changed, binding strength is restored by hav-
ing a corresponding change at the PWM site.

2.3 Handling uneven sequence representation
In many cases, the input MSA for studying residue covar-
iation has an uneven representation of sequences from
different clades. For example, it is common to have more
sequences from model organisms or species that are bet-
ter studied, and fewer sequences from other species. As a
result, the MSA could contain many sequences that are
highly similar, and few that are significantly different.
Each of the highly similar sequences contributes little
additional information, but still has an equal amount of
influence on the calculation of mutual information under
the assumption of a uniform distribution of the observed
sequences. Consequently, they could mask the novel
information from low abundance sequences. To counter-
act this effect, we associate weights with the sequences so
that the more unique ones receive higher weights. Statis-
tically, it is equivalent to placing a prior distribution to
the observed sequences if the weights are normalized to
take values between zero and one and have a sum of one.
Here we assume there is an external procedure for deter-
mining the weights. For instance, one possible way is to
construct a phylogenetic tree from the sequences in the
MSA, and then recursively distribute the total weight to
different branches of the tree, so that each sequence in
the crowded branches will receive a smaller share of
weights [44]. Suppose the procedure assigns ai as the
weight of sequence i, we can redefine pj (x), pk (y) and pj,k
(x, y) as follows:

pj(x) =

∑n
i=1 1(Aij = x)αi∑n

i=1 αi
, (7)

pk(y) =

∑n
i=1 αiWik(y)
∑n

i=1 αi

, (8)
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pj,k(x, y) =

∑n
i=1 1(Aij = x)αiWik(y)

∑n
i=1 αi

. (9)

Entropy, joint-entropy and mutual information can
then be calculated using these new definitions of
probabilities.

2.4 Handling uneven site conservation
A potential issue of the mutual information measure is
that a pair of unrelated sites could have even higher
mutual information than a pair of truly covarying sites if
the unrelated sites are individually much more diverse
than the covarying sites. This is illustrated by the
hypothetical example shown in Table 1. For simplicity,
suppose the sequences all have equal weights and the
base of logarithms is two. Sites 1 and 2 are truly covary-
ing. When site 1 changes from the non-polar residue
alanine in sequences I and II to the polar residue threo-
nine in sequences III and IV, site 2 simultaneously
changes from the non-polar residue valine to the polar
residue tyrosine. The entropy of each of the two sites is
one and the mutual information between them is also
one, the maximum possible value given the two indivi-
dual entropy values. On the other hand, sites 3 and 4
are random, unrelated sites. The entropy values of them
are 2 and 1.5, respectively, and their mutual information
is 1.5, which is higher than the mutual information
between sites 1 and 2 due to larger entropy values of
sites 3 and 4.
To deal with this problem, various kinds of normaliza-

tion have been proposed to penalize overly diverse sites
[34]. We will focus on the uncertainty coefficient [45],
which was found to be one of the best normalized
mutual information scores in our preliminary study. For
an MSA site Aj and a PWM site Wk, the uncertainty
coefficient is defined as follows:

UC(Aj, Wk) =
MI(Aj, Wk)

H(Aj)
. (10)

We have also tried handling the problem using a sta-
tistical test. Specifically, we used mutual information as
the test statistic to calculate how unlikely it is to get a

mutual information at least as large as the observed one
under the null hypothesis that the two sites are indepen-
dent. The distribution of mutual information can be
obtained by permuting the residues of a site, or by using
a chi-square approximation. It was shown that when n
is large, (2 ln 2n)MI(X, Y) tends to have a chi-square
distribution with (|D(X )| − 1)2(|D(Y)| − 1)2 degrees of
freedom [46,47]. It turns out that the results based on
this statistical test were not better than using the simple
normalization approach. We thus focus on the use of
the uncertainty coefficient measure in handling uneven
site conservation in the remaining of this paper.
Table 1 also demonstrates the tradeoff between the

mutual information between two sites and their indivi-
dual conservation, both of which are indicators of their
functional importance. One may try to derive a measure
that takes both into account, similar to what the
Sequence Harmony method handles both the conserva-
tion and similarity of two groups of residues simulta-
neously, for the problem of identifying important
residues that determine the functional differences of
protein subfamilies [48]. We leave the derivation of a
new covariation measure to a future study.

2.5 Predicting the PWMs of bound peptides
One important use of the covariation scores is to contri-
bute towards predicting the PWMs of bound peptides.
This can be done by aggregating the detected covaria-
tion signals. Suppose we are given a new PRD sequence
(the (n + 1)th sequence) of the MSA M without the cor-
responding PWM of its bound peptides. We would like
to predict the PWM based on the n + 1 sequences in
the MSA and the n known PWMs. We investigate the
use of the covariation scores in this problem by compar-
ing a prediction method that considers site covariation
with two methods that do not.
A simple prediction method that does not take site

covariation into account is to perform a weighted aver-
aged of the known PWMs, where the weights are based
on the similarity of the new PRD sequence and the ori-
ginal ones. Specifically, the probability of finding residue
y at site k of the bound peptides of the new PRD is pre-
dicted by the following formula:

Ŵ(n+1)k(y) =

∑n
i=1 s(i, n + 1)Wik(y)∑n

i=1 s(i, n + 1)
, (11)

where s(i, i’) is a similarity between sequences i and i’
in the MSA, such as their sequence identity:

s(i, i′) =

∑m
j=1 1(Mij = Mi′j)

m
. (12)

Using the covariation scores, we propose an alterna-
tive way to define the similarity function. Each MSA site

Table 1 A hypothetical example MSA that illustrates the
problem of uneven site conservation.

Sequence/Site 1 2 3 4

I A V A C

II A V C D

III T Y D E

IV T Y E C

Sites 1 and 2 are truly covarying, while sites 3 and 4 are random and
unrelated. However, as sites 3 and 4 have higher entropy values than sites 1
and 2, the resulting mutual information between sites 3 and 4 is also higher
than that between sites 1 and 2 (see main text for the calculations).
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receives a different weight in the calculation, where the
weight depends on the covariation score between the
site and the target PWM site k. In other words, the
similarity score s(i, i’) is replaced with a new score sk (i,
i’) that is specific to k:

Ŵ(n+1)k(y) =

∑n
i=1 sk(i, n + 1)Wik(y)∑n

i=1 sk(i, n + 1)
, (13)

sk(i, i′) =

∑m
j=1 1(Mij = Mi′ j)UC(Aj, Wk)

∑m
j=1 UC(Aj, Wk)

, (14)

where the uncertainty coefficient UC(Aj, Wk) is com-
puted based on the n original sequences.
We also investigated if prediction accuracy can be

improved by using a more complex model. Specifically,
we treated each MSA site as a categorical attribute and
trained a regression tree model for each probability
value in the PWM. The models were then applied to
the new sequence to predict the PWM of its bound pep-
tides. We implemented this method using REPTree of
the Weka package [49].
To evaluate the effectiveness of the different meth-

ods, we performed left-out validation as follows. Each
time, we drew a random sample of PRDs to form the
testing set. Each sequence in the testing set took turn
to take the role of the (n + 1)th sequence. The
sequences not included in the sample formed the
training set. These sequences were used to compute
covariation scores and train prediction models. The
procedure was repeated 1,000 times for PDZ and SH3
and 50 times for kinase (due to the long running time)
with different random training-testing splits, and the
average performance of the trained models on the test-
ing sets was recorded. To eliminate near-identical
sequences in the training and testing sets, for
sequences with 90% or more identity, we kept only
one of them in the dataset before making the training-
testing splits. As most of the synthetic PDZ sequences
(described below) are highly similar, we excluded this
dataset from this part of study.
Each predicted PWM was compared to the actual

PWM, and a prediction error was computed as the
root-mean-square difference between their distributions
per site:

e(Ŵ(n+1), W̃(n+1)) =

∑w
k=1

∑
y [Ŵ(n+1)k(y) − W̃(n+1)k(y)]2

w
, (15)

where Ŵ(n+1) and W̃(n+1) are the predicted and actual
PWMs for the bound peptides of the testing sequence,
respectively, and the inner summation is taken over all
20 amino acid residues.

3 Results
3.1 Application of the method to PDZ, SH3 and kinase
domains
3.1.1 Natural PDZ domains
We obtained 33 class I human and worm PDZ domains
from a recent large-scale study on the specificity map of
PDZ domains [13]. Class I PDZ domains were defined
by two positions on the ligand, with the pattern X[T/S]
XjCOOH, where X and j represent a residue and a
hydrophobe, respectively. In the same study, a number
of SDRs were experimentally determined, allowing us to
validate our prediction results. We focused on only one
class of domains as the sequences in different classes
are difficult to align due to divergence. The pairwise
sequence identity ranges from 0.13 to 0.87, with an
average of 0.28.
The binding profile of each domain, in the form of a

PWM, was obtained from phage display experiments
that expressed a random library of C-terminal peptides
[13]. The domains were then aligned to form an MSA
using ClustalW [50] followed by manual corrections of
some obvious errors. A phylogenetic tree of the MSA
sequences was constructed using Biopython’s Nexus
module [51], and the tree was used to produce sequence
weights according to a described algorithm [44]. The
uncertainty coefficient between each MSA site and each
site of the peptide PWMs was computed. To reduce
noise and eliminate highly conserved sites that provide
little information about covariation, we considered only
sites with no gaps [52] and the most frequent residue
occupying no more than half of the total sequence
weights. This filtering was also applied to the other
domain families described below.
The remaining unfiltered site pairs were then evalu-

ated in two ways. First, their uncertainty coefficients
were compared to their physical distances in the co-
crystal structure 2H2C of ligand-bound human ZO-1
PDZ1 domain [53] in PDB [54]. Although proximity
does not necessarily mean functional or structural
dependency, it is usually used as a quick check in covar-
iation studies [18,27,29,33]. It also provides a complete
and unbiased alternative to the more costly experimen-
tal validations.
Second, we examined the top-scoring site pairs, and

compared them with known SDRs from a mutagenesis
study [13] in which ten sites of the ERBB2IP-1 domain
were mutated and the corresponding changes of peptide
specificity reported. This comparison provides direct
evaluation of our SDR identification procedure on the
subset of sites that were tested in the assay.
3.1.2 Synthetic PDZ domains
In a recent study, the mutagenesis study in Tonikian et
al. [13] was extended. A large amount of mutations
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were introduced at the ten sites, resulting in 61 varia-
tions of the Erbin domain that are functional in recog-
nizing some C-terminal heptapeptides [55]. As with the
natural PDZ domains, we compared the uncertainty
coefficients with the physical distances in the 2H2C
PDB structure. Since the synthetic PDZ domains are
100% conserved at sites other than the ten selected
ones, and have a specific set of mutations at the ten
sites introduced by the mutagenesis experiments, their
MSA exhibits some statistical properties different from
those of the natural PDZ domains.
3.1.3 SH3 domains
We obtained 23 yeast SH3 domains and the correspond-
ing PWMs of the bound peptides from phage display
experiments from a recent study [38]. We aligned the
PRDs based on a published structural alignment [15],
and aligned the peptide PWMs based on both the gen-
eral PxxP pattern and some published alignments
[15,56]. The pairwise sequence identity ranges from 0.07
to 0.79, with an average of 0.24.
We applied the same prediction and evaluation proce-

dures as in the case of PDZ, except that in this case we
did not have large-scale mutagenesis data, and therefore
the prediction results were only evaluated against the
physical distances calculated from the crystal structure
1N5Z in PDB, which contains the yeast Pex13 SH3
domain bound to a Pex14 peptide [57], and the findings
of some previous studies.
3.1.4 Kinase domains
We also obtained 149 serine/threonine protein kinase
domains from four species (S. cerevisiae, H. sapiens, S.
pombe and D. discoideum) and the PWMs of their cor-
responding bound peptides [14]. The MSA was made
using MUSCLE [58] followed by some manual correc-
tions. The prediction results were evaluated against dis-
tances calculated from the crystal structure 1ATP of
mouse catalytic subunit of cAMP-dependent protein
kinase complexed with Mn-ATP and a peptide inhibitor
[59] in PDB, and some findings in previous studies. The
pairwise sequence identity ranges from 0.09 to 0.92,
with an average of 0.23.

3.2 Covariation score correlates with physical proximity
and reconfirms previous findings
The covariation score between two sites is found to cor-
relate negatively with the physical distance between
them, regardless of the exact definition of the distance
measure [see Additional file 1 Figure S1, Additional file
2 Figure S2 and Additional file 3 Figure S3 for the
results] when the distance between residue centers,
alpha carbon atoms and closest atoms minus their van
der Waals’ radii were used, respectively. All P-values
were computed using Fisher transformation [60]. For
PDZ, we have also compared the correlations based on

several other PDZ structures, and observed similar pat-
terns [Additional file 4 Figure S4].
Since low-scoring pairs are more subject to noise, here

for each PRD site, we focus on the peptide site that
gives the highest uncertainty coefficient with it (Figure
2). The site pairs with the highest covariation scores are
listed in Table 2.
For natural PDZ domains, the highest-scoring pair

(circled) is between Leu60 (b3:a1-1, structural nomen-
clature from [53]) of the PDZ domain in 2H2C and
position -1 of the binding motif on the bound peptide.
These residues are in physical contact in the dimer
structure (Figure 3, all visualization produced using
VMD [61]). Interestingly, it has been reported that the
side chain at b3:a1-1 can contribute to the recognition
of the -1 position of the motif [53], and in the crystal
structure from Shank1, a salt bridge is observed between
Asp(b3:a1-1) of the PDZ domain and Arg(-1) of the
ligand [62]. Our covariation analysis has thus identified
these verified SDRs of the PDZ domains in silico.
For SH3 domains, the highest-scoring pair is between

Asn71 of the SH3 domain and Leu7 (P+2 residue) of
the ligand in 1N5Z. These residues are in close physical
proximity in the crystal structure (Figure 4). Interest-
ingly, we found that the MSA residues in the first
(Asn71), third (Ile73) and fourth (Tyr72) top-scoring
pairs are consecutive in the protein sequence, and two
of them are close to Leu7 of the ligand. In a previous
study [63], the corresponding residue of Tyr72 on
P53BP2, which is an unusual leucine, was hypothesized
to cause the protein to bind a peptide very different
from its usual ligands. However, mutating the leucine to
tyrosine did not affect recognition specificity. As the
corresponding residue of Ile73 on P53BP2 is also
mutated from the class consensus, and the covariation
scores for Asn71 and Ile73 are also high, the three resi-
dues may have some combined effects in affecting
recognition specificity.
It is also known that the residue corresponding to

Glu31 in the RT loop of SH3 domains is a major deter-
minant of the identity of the P-3 residue of the ligand
[64,65]. Since the P-3 residue does not exist in the
1N5Z structure, it is not included in the correlation
plots. However, when we checked the covariation scores,
indeed the ligand residue having the highest score with
Glu31 is the P-3 residue. This observation illustrates the
potential of our method to identify SDRs when struc-
tural information is not available.
For protein kinases, the top-scoring pair between

Tyr229 of the kinase domain in 1ATP and position +1
of the binding motif in the bound peptide is not physi-
cally close. However, the next two pairs (between
Leu205 and position +1, and between Leu198 and posi-
tion +1) are both close in proximity (Figure 5). Both
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Figure 2 Correlation between covariation score and physical proximity between each PRD site and its highest-scoring peptide PWM
position for the four types of PRDs. Selected top-scoring pairs discussed in the text are circled. The correlation for synthetic PDZ was not
statistically significant due to the small number of data points involved.

Table 2 Site pairs with the highest covariation scores.

Domain family Ref. PDB Structure rank Natural 2H2C Synthetic
PDZ 2H2C

SH3
1N5Z

Kinase
1ATP

PRD Peptide PRD Peptide PRD Peptide PRD Peptide

1 Leu60 Trp119 His88 Thr118 Asn71 Leu7 Tyr229 Ile22

2 Val55 Thr117 Ala37 Thr117 Leu34 Leu7 Leu205 Ile22

3 Ala76 Thr117 Ser39 Thr117 Ile73 Leu7 Leu198 Ile22

4 Pro30 Trp119 Leu60 Thr117 Tyr72 Leu7 Lys189 Ile22

5 Ser98 Trp119 Val92 Thr118 Lys35 Leu7 Phe129 Ile22

6 Ala89 Thr117 Ser57 Thr117 Ser44 Leu7 Glu230 Ile22

7 Gln93 Trp119 Asp58 Thr117 Lys61 Leu7 Glu203 Ile22

8 Asp58 Thr117 Phe34 Thr118 Ile68 Leu7 Ile180 Ile22

9 Ala37 Thr117 Leu20 Leu7 Phe187 Arg19

10 Lys103 Trp119 Ala17 Leu7 Cys199 Ile22

For each site on the PRD, only the site on the peptide with the highest score is shown. For synthetic PDZ domains, only ten sites have variations and among
them two were filtered, leaving only eight valid sites. All sites are indexed according to their residue numbers in the reference PDB structures.
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Leu198 and Leu205 were previously found to have hydro-
phobic interactions with position +1 of the peptide
[66,67]. They are two of the three residues (the third being
Pro202, which has the highest covariation score with posi-
tion +1 as compared to other peptide positions) that form
the binding pocket for position +1 of the peptide, and con-
tributes to the positioning of a significant portion (-3 to +1
positions) of the bound peptide [67].

We found that the pair between Tyr229 and position
+1, besides being the top-scoring pair when uncertainty
coefficient was used as the covariation score, was also
consistently one of the highest-scoring pairs when cov-
ariation was measured by other normalized forms of
mutual information. These consistent results made us
hypothesize that Tyr229 is also involved in determining
binding specificity of the kinase domain, and has long-
range coupling with position +1 of the bound peptide.
In a previous study, this residue was predicted to be
involved in linking nucleotide binding and peptide bind-
ing in protein kinases [68]. Interestingly, in the study
Tyr229 and Leu205 are predicted to belong to the same
special network (termed the θ-shaped network) of
related residues. It thus might be the case that Tyr229
acts through the residues in the network to affect the
recognition of the +1 position of the peptide.

3.3 PDZ predictions are consistent with mutagenesis
results
We further validated our predictions with the natural
PDZ domains by using a mutagenesis dataset from a
domain specificity study [13] as described in the Materi-
als and Methods section.

Figure 3 Top-scoring residue pair for the natural PDZ domain.
The PDZ domain (orange) and the ligand (green) in the biological
assembly (dimer) of the PDB structure 2H2C are shown. The top-
scoring residue pair between Leu60 (red) on the domain and
position -1 of the binding motif on the ligand (blue) are in physical
contact.

Figure 4 Top-scoring residue pair for the SH3 domain. The SH3 domain (orange) and the ligand (green) in the PDB structure 1N5Z are
shown. The top-scoring residue pair between Asn71 (red) on the domain and Leu7 of the ligand (blue) is in close physical proximity. Also
shown are the MSA residues in the third (Ile73) and fourth (Tyr72) top-scoring pairs.
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In our covariation calculation, among the ten
mutated sites, four were filtered as they were too con-
served (Ile36 [b2-1], Ile38 [b2-3], His88 [a2-1] and
Val92 [a2-5]). Interestingly, in the mutagenesis study,
indeed no significant changes to the peptide PWM
could be observed for Ile36 and Ile38. The high con-
servation of them is thus probably caused by a struc-
tural or functional role that is independent of peptide
binding.
For the remaining six sites, we examined their max-

imum-scoring peptide residues. Four out of the six
had significant changes of the PWM at the predicted
positions in the mutagenesis study (Table 3), includ-
ing the top-scoring pair among all predictions,
between Leu60 and position -1. For the remaining
two, changes were also observed, albeit with lower
statistical significance.
The predicted pair between Phe34 and position -3 has

a distance of 15.0 Å in the PDB structure 2H2C. If the
SDRs of different class I PDZ domains are similar, this
predicted pair is another example that suggests our cov-
ariation method could potentially identify physically dis-
tant SDR pairs.

3.4 Covariation scores improve prediction of bound
peptide profiles
As described in the Materials and Methods section, we
compared three different methods for predicting the
profiles of bound peptides. The prediction results are
shown in Figure 6.
In general, the prediction error is lower with a smaller

fraction of PRDs left out for testing. This is expected, as
having more PRDs in the training set allows for more
accurate computation of covariation scores and the con-
struction of more informative prediction models.
In all cases, the weighted average method using covar-

iation scores outperformed regression tree and the
weighted average method using uniform scoring. This
suggests that the covariation score provided a meaning-
ful way to weight useful features (that is, PRD sites) for
predicting residue distributions of the bound peptides.
Interestingly, while the regression tree method also per-
formed feature weighting, in general it performed worse
than both weighted average methods. The low perfor-
mance could be due to over-fitting, as the regression
trees are rich in expressive power while the numbers of
PRDs in the datasets are small.

Figure 5 Top-scoring residue pair for the kinase domain. The kinase domain (orange) and the ligand (green) in the PDB structure 1ATP are
shown. The second top-scoring residue pair between Leu205 (red) on the domain and position 1 of the binding motif on the ligand (blue), as
well as the third top-scoring residue pair between Leu198 (purple) and position 1 of the ligand motif, are in close proximity. The MSA residue
Tyr229 involved in the top-scoring pair is also shown (cyan).
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4 Discussion
We present a novel way to use underutilized data. Our
method is a valuable tool for exploring the specificity
space of PRDs. Moreover, as the amount of specificity
data is increasing swiftly, also due to the advent of next-
generation sequencing and its applications to phage dis-
play [69], our method will prove even more valuable to
make optimal use of this kind of data.
We think our covariation approach can be used in

conjunction with other methods to improve SDR predic-
tions. Since most current approaches are based on force
fields and structural methods, our method opens up a
new perspective for improvement. As shown in the
recent PRD specificity prediction challenge of the
DREAM4 competition [70], most likely a combination
of structural and statistical methods will be most suc-
cessful at predicting specificities.
One limitation of our approach is that it does not

consider possible relationships between different residue
pairs. As multiple PRD residues could simultaneously
interact with a peptide residue and multiple peptide
residues could simultaneously interact with a PRD resi-
due [71], binding specificity could be more accurately
modeled by considering covariation signals between resi-
due groups. Furthermore, since a residue could have an
indirect covariation signal with another residue through
an intermediate residue [42], performing residue group
analysis could help filter out these non-SDR intermedi-
ates that have relatively high covariation signals.
Another limitation of our approach is that it fails to

identity SDRs that are highly conserved. Indeed we have
observed that in PDZ, some highly conserved residues
(for example a2-1) are physically close to the peptide and
have been experimentally shown to affect binding specifi-
city when mutated [13] [Additional file 5 Figure S5]. On
the other hand, some SDRs are not highly conserved, but
exhibit strong covariation patterns with peptide residues
(for example b3:a1-1). Future approaches could improve
upon our current method by combining information
about conservation with covariation to identity SDRs.

There are also PRD residues that determine binding
but not binding specificity in that if they are mutated,
the resulting effect on binding cannot be restored by a
second mutation. For instance, if a residue is critical to
the protein structure, mutating it could seriously affect
the stability of the protein, which in turn affects pep-
tide binding. These residues are likely to be very con-
served, and thus would not be ranked high by our
method.
A third limitation of our approach, and more gener-

ally of all covariation analysis methods based on a
multiple sequence alignment, is the dependency on the
alignment quality. Different alignments could give very
different results, especially for alignments with many
gaps. To cope with this issue, we have used a pub-
lished alignment for SH3, and made some manual cor-
rections to the PDZ and kinase alignments generated
by computer programs. Future approaches should try
to minimize the effect of alignment quality on the ana-
lysis results.
While we have attempted to predict peptide PWMs, it

is also possible to predict interactions given a PRD and
a peptide. This problem has recently been studied using
some large-scale datasets [9,52]. It would be interesting
to study how the concept of covariation can be incorpo-
rated into these prediction methods.

Conclusions
We have presented a novel approach that utilizes an
as of yet underused source of data. We have shown
that the covariation scores are consistent with pre-
vious findings from both a large-scale study, and other
individual experiments. In addition, we have identified
a number of candidate SDRs in a ranked list for future
experimental validation. In particular, with the top-
scoring pairs from natural PDZ domains and kinase
domains both verified in previous work, the SH3 top-
scoring pairs are good candidates for testing their
roles in determining the binding specificity of SH3
domains.

Table 3 Validation results of our PDZ predictions.

PDZ site in 2H2C Structure-based
nomenclature [53]

Ligand position Uncertainty coefficient Distance (Å) Specificity change

Phe34 b1:b2-7 -3 0.16 15.0 Significant

Ala37 b2-2 -3 0.20 6.4 Significant

Ser39 b2-4 -1 0.16 9.5 Significant

Ser57 b3-4 -3 0.18 7.2 Observed

Asp58 b3-5 -3 0.21 9.1 Observed

Leu60 b3:a1-1 -1 0.24 7.0 Significant

The six sites validated in Tonikian et al. [13] that were not filtered in our calculation are shown, along with their highest-scoring peptide PWM positions.
Significant changes of the predicted PWM positions after mutating the PDZ sites were reported for four cases, while in the remaining two cases some changes
were also observed.
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Figure 6 Results of predicting PWMs of bound peptides. Three methods for predicting PWMs of bound peptides were compared using data
from (top) natural PDZ domains, (middle) SH3 domains and (bottom) kinase domains.
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Additional material

Additional file 1: Correlation between covariation score and
physical proximity between each PRD site and each PWM position
for the three types of PRDs when distances are computed between
residue centers. Figure S1.

Additional file 2: Correlation between covariation score and
physical proximity between each PRD site and each PWM position
for the three types of PRDs when distances are computed between
alpha carbon atoms. Figure S2.

Additional file 3: Correlation between covariation score and
physical proximity between each PRD site and each PWM position
for the three types of PRDs when distances are computed between
the closest atoms minus their van der Waal’s radii. Figure S3

Additional file 4: Correlation between covariation score and
physical proximity between each PRD site of a PDZ domain and
each PWM position when distances are computed between alpha
carbon atoms in four different PDB structures. Figure S4

Additional file 5: Conservation and distance to the closest peptide
residue of each PDZ domain site. For each site on the domain, we
computed the total sequence weight of the sequences having a
particular amino acid at the site. The conservation of the site is
defined by the maximum of such total weights normalized by the
total sequence weight of all sequences in the MSA. Figure S5.

Abbreviations
MI: mutual information; MSA: multiple sequence alignment; PRDs: peptide
recognition domains; PWM: position weight matrix; SCA: statistical coupling
analysis; SDRs: specificity determining residues; UC: uncertainty coefficient.
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