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Abstract: Inorganic glass is a transparent functional material and one of the few materials that
keeps leading innovation. In the last decades, inorganic glass was integrated into opto-electronic
devices such as optical fibers, semiconductors, solar cells, transparent photovoltaic devices, or
photonic crystals and in smart materials applications such as environmental, pharmaceutical, and
medical sensors, reinforcing its influence as an essential material and providing potential growth
opportunities for the market. Moreover, inorganic glass is the only material that is 100% recyclable
and can incorporate other industrial offscourings and/or residues to be used as raw materials. Over
time, inorganic glass experienced an extensive range of fabrication techniques, from traditional
melting-quenching (with an immense diversity of protocols) to chemical vapor deposition (CVD),
physical vapor deposition (PVD), and wet chemistry routes as sol-gel and solvothermal processes.
Additive manufacturing (AM) was recently added to the list. Bulks (3D), thin/thick films (2D),
flexible glass (2D), powders (2D), fibers (1D), and nanoparticles (NPs) (0D) are examples of possible
inorganic glass architectures able to integrate smart materials and opto-electronic devices, leading
to added-value products in a wide range of markets. In this review, selected examples of inorganic
glasses in areas such as: (i) magnetic glass materials, (ii) solar cells and transparent photovoltaic
devices, (iii) photonic crystal, and (iv) smart materials are presented and discussed.

Keywords: inorganic glass; smart materials; opto-electronic devices

1. Introduction

The growth of the world population followed by economic prosperity and rise in
disposable income in emerging economies [1,2] led to a significant increase in the con-
sumption of smart materials and opto-electronic devices, boosting a global inorganic glass
demand [3–7]. Further, the dynamically changing technology landscape encourages con-
sumers to shift to electronics integrated with the latest technologies. This leads to a growth
in the consumer electronics market and demands a rapid reduction in the product lifecycle.

Inorganic glass remains a pivotal material in many scientific and engineering ap-
plications, including optics, photonics, opto-electronics, photovoltaics, hermetic seals,
and is also integrated into microfluidic, microelectromechanical (MEMs), and chemical,
environmental, pharmaceutical, medical, or biological sensors [8,9]. Unmatched optical
transparency paired with outstanding thermal and chemical resistance makes inorganic
glass the first-choice material in many applications in science, industry, and society and a
hard product to beat.
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Traditionally used as a package, hollow inorganic glass soon spanned into architecture
(with flat geometry) as an element that provided cohesion between the inside and the out-
side, and into terrestrial, maritime, and aerospace transport industries offering protection
and security, resistance to thermal shock and to impact from projectiles (as in flat or curved
laminated or tempered security glasses) [10]. Latterly used as thin film or coatings, inor-
ganic glass brings a wide diversity of passive functionalities, namely, chemical resistance,
customizable hydrophilic or hydrophobic surface character, a wide range of wavelengths
control, as well as active functionalities such as bactericidal, self-cleaning, light-emission,
up-conversion, electrical-switching, photonic-crystal, opto-electronic, or photovoltaic prop-
erties, being essential in the smart materials industry [10]. Smart materials are the ones that
respond to an external stimuli such as pH, temperature, Eh, electrical, light, or mechanical
forces [11,12]. The inorganic glass’s ability to incorporate other industrial offscourings
and/or residues as raw materials along with the 100% recyclability place it in the top
position when sustainability is the crucial parameter in design.

Inorganic Glass Technology: Historical Highlights

Egyptian core-forming and successive layers protocols, Mesopotamian millefiori, and
Syrian metallic glass-blow techniques were the first handcrafted melting-quenching tech-
niques. At the beginning of the 19th century, industrialization reached glass production in
hollow and flat geometries, enabling large-scale melting-quenching automatic processes.
Soon after, in the middle of the 20th century, the Pilkington float process was developed.
Recently, Corning® created innovative melting-quenching protocols to produce high me-
chanical resistance glass (Corning®Gorilla® Glass) and transparent ultra-thin flexible glass
(Corning®Willow® Glass), which stand out as the most reliable and most robust glasses
produced thus far for optoelectronic devices and smart materials (Figure 1). Flexible high
mechanical resistance glass is on the way [13]. Gorilla® Glass is a chemical strengthened
glass produced through (thermally activated) ion exchange process. When the (aluminosil-
icate) glass is dipped in a hot bath of molten potassium salt, it heats up and expands. The
high temperature from the bath promotes the lixiviation of the Na+ ions out of the glass
sheet and allows the ion exchange with K+ ions from the bath. Because K+ ions are larger
than Na+, they get packed into the space more tightly. As the glass cools, they get squeezed
together in this now-cramped space, and a layer of compressive stress on the surface of the
glass is formed. Compared with thermally strengthened glass, the stuffing or crowding ef-
fect in chemically strengthened glass results in higher surface compression, making it up to
four times stronger (Figure 1a) [13]. Willow® Glass is lightweight, ultra-thin, conformable
glass at thicknesses of 100 and 200 µm, 1.3 m wide, and up to 300 m in length. Willow®

Glass manufacture relies on Corning®’s fusion down-draw process (100% mechanized).
This melting-quenching process starts with high-quality raw materials, followed by the pro-
duction of high purity molten glass, which is continually down-drawn. Eventually, it may
overflow through an isopipe to form a sheet with a high-quality surface area. No contact
with other solid surfaces in quality area occurs during production (Figure 1b–d) [13].
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overflow fabrication process, and d—Flexible Corning® Willow® Glass product. (b—reprinted 
from [14] © (2010) with permission from Wiley; c—reprinted (adapted) with permission from [15] 
© (2016) American Chemical Society; d—reprinted from [16] © 2021 with permission from Wiley). 
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1300 °C for borate and phosphate, and ~900 °C for fluoride systems. At the melting tem-
perature, the glass mixture needs to stay for at least an hour to ensure complete fusion, 
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The temperature needed to melt the raw materials was one of the 
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Tin opaque and colored glass glazes used in ceramic pieces. 
ex: Ishtar Gate. 

[10,17–20] 

Han dynasty, 
China 206–200 BC 

Glaze, glass bottle 
Lead rich glass glaze (with a low melting point) used in ceramic 

pieces. 
[10,17–20] 

Period 
First Technological Revolu-

tion  
Applications Ref. 

Babylon 3000 BC 
Syria 3000 BC 
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Glass large scale production 
Syrian glassblowing 

Glassblowing utilized an iron blow metallic tube (about one and 
one and a half meters long). Bronze would not serve this purpose due to 
its lower solidus temperature (~850 °C versus 1538 °C for Fe), thus 
glassblowing had to await the iron age for its realization. 

[10,17–20] 

Figure 1. Corning® keeps leading innovation in high-tech glass materials: (a) Corning® Gorilla® Glass fabrication technic;
(b–d) Corning® Willow® Glass, (b)—down-draw fabrication process, (c)—overflow fabrication process, and (d)—Flexible
Corning® Willow® Glass product. ((b)—reprinted from [14] © (2010) with permission from Wiley; (c)—reprinted (adapted)
with permission from [15] © (2016) American Chemical Society; (d)—reprinted from [16] © 2021 with permission from Wiley).
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In these first-generation fabrication methodologies (melting-quenching processes),
quenching follows raw materials fusion (Table 1) [10,17–20]. The melting temperature de-
pends on the system phase diagram, being ~1500 ◦C for aluminosilicate glasses, ~1200–1300 ◦C
for borate and phosphate, and ~900 ◦C for fluoride systems. At the melting temperature,
the glass mixture needs to stay for at least an hour to ensure complete fusion, glass molten
fining, and homogenization.

Table 1. Breakthrough in glass melting-quenching technology (first generation on glass fabrication).

Period Native Glass 1 Applications Ref.

Pre-history
Natural glass: obsidian

(volcanic glass) meteorite
impact glass

Obsidian used in point of lances, arrow
tips, and artwork. [10,17–20]

Period Vitreous Slags Applications Ref.

Ancient Egypt 12,000 BC Glass glaze

Copper opaque and blue-tinted glass
glaze used in ceramic, metal pieces, and
natural rocks. Associated with
high-temperature manufactories—such as
ceramics and metallurgy—glass production
would have emerged accidentally; melting
copper minerals caused opaque and
blue-tinted vitreous slag to form, and heating
the ceramic pieces caused them to vitrify.

[10,17–20]

Ancient Egypt 7000 BC Glass beads
Pyrotechnic experimentations with

silica-clay mixtures eventually led to the
creation of the glass beads.

[10,17–20]

Ancient Egypt 3000 BC Glass glaze
Glass bottle

Core-forming technique: bottles (and pots)
were formed by winding glass ribbons around
a mold of compacted sand. After cooling the
glass, the sand was scraped from inside the
bottle, leaving a hollow container with rough,
translucent walls and usually lopsided shapes.
A second glass manufacturing method utilizes
molten glass poured in successive layers into
clay or sand forms, thus creating a vessel of
proper cohesion.
The temperature needed to melt the raw
materials was one of the main obstacles to
glass melting/quenching technology.

[10,17–20]

Babylon 700 BC Glaze, glass bottle
Mosaic glass (millefiori)

Tin opaque and colored glass glazes used
in ceramic pieces.
ex: Ishtar Gate.

[10,17–20]

Han dynasty, China
206–200 BC Glaze, glass bottle Lead rich glass glaze (with a low melting

point) used in ceramic pieces. [10,17–20]
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Table 1. Cont.

Period First Technological
Revolution Applications Ref.

Babylon 3000 BC
Syria 3000 BC

Mesopotamian glassblowing
First written glass protocol

Glass large scale production
Syrian glassblowing

Glassblowing utilized an iron blow metallic tube
(about one and one and a half meters long). Bronze
would not serve this purpose due to its lower solidus
temperature (~850 ◦C versus 1538 ◦C for Fe), thus
glassblowing had to await the iron age for its
realization.
The quality of glassblowing improved dramatically,
and glass-drinking vessels became popular. Colored
glass came into common use, with techniques for the
production of many colors regarded as family secrets
to be passed on from generation to generation of
artisan’s families.

[10,17–20]

Alexandria
3000 BC Alexandrian art of millefiori

Millefiori technique involved the production of
glass canes or rods, known as murine, with
multicolored patterns, which were viewable only from
the cut ends of the cane. A murine rod was heated in a
furnace and pulled until thin while still maintaining
the cross-section’s design. It was then cut into beads
or discs when cooled.

[10,17–20]

Rome Empire Roman flat glass

Flat Glass was used to build high standard
buildings for floors and wall decorations, but it was its
use for windows, replacing mica and shells, where it
contributed most to architecture (e.g., ruined cities of
Pompeii and Herculaneum exhibited numerous traces
of sheets of glass, probably used in the windows of the
public baths).
Imperial Rome’s fall and the instability caused by the
Huns in medieval Europe caused the glass-producing
centers to decline.

[10,17–20]

Europe Middle Age Stained-glass windows

During the European Middle Ages, small
glassmaking centers were established hidden in
forests. This is the reason why sodium carbonate, a
traditional glass modifier, was replaced by potassium
carbonate during this period.
The combination of the discovery of many new
colorants (organic origin) with the glassblowing
eventually led to the magnificent stained-glass
windows of so many of the great cathedrals of Europe
and the Near East.

[10,17–20]

Venice 8th Century
Secretes of glass

manufacturing methods and
techniques

The revival of trade with the Byzantine Empire
led to renewed glass production in Venice.
Under the pretext of protecting Venice from fire,
Venetian artisans were forced to reinstall their kilns in
Murano, where they would remain prisoners of their
art.

[10,17–20]

Period 19th Industrial Revolution 2 Applications Ref.

Europe 19th–20th
Century

(third quarter of the
19th through the first

quarter of the 20th
centuries)

Automatic hollow glass
production

Blow, blow-and-blow, puff-and-blow, and
press-and-blow processes.
Lynch-10, delivering 25–80 pieces/min with bottle
weights of 30–600 g.
Roirant-R-7, delivering 20–80 pieces/min with bottle
weights of 100–1200 g.
Hartford-IS-12, delivering 10 pieces/min.

[10,17–20]

Ceramic glass



Materials 2021, 14, 2926 5 of 29

Table 1. Cont.

Period Second Technological
Revolution

Industrial Revolution allowed the production of
sheets of glass large enough to allow more extensive
use in architecture.

Europe 20th
Century

USA 21st century

Pilkington float glass
production

Corning® Willow® Glass
Corning® Gorilla® Glass

Industrial Revolution allowed the production of
sheets of glass large enough to allow more extensive
use in architecture.
In the float glass process, molten glass flowed from the
melting tank into a bath of molten tin, 3–4 m wide, 50
m long, and about 6 cm deep. The glass surface
flowed and smoothe itself while on the float bath,
taking on the outstanding surface quality of molten tin
and thus requiring no further polishing.
Tin was used as a flotation medium due to its surface
tension (about 0.55 N/m), density (5.9 g/cm3

compared with 2.2–2.5 g/cm3 for glass), and low
melting point (505 K).
A new generation of glass—transparent, ultra-thin,
flexible glass.
A new generation of glass—ultra-thin,
ultra-mechanical resistance glass.

[13]

1 Glass was used even before it was manufactured. Some of the natural phenomena that produced glass include the melting of magma and
meteorite impacts, followed by rapid cooling. Natural glass was used for millennia as a raw material to produce works of art along with
functional objects, such as the point of a lance or as arrow tips, where it competes with silex. Of all natural glass, obsidian was the most
used due to its relative abundance. 2 Until the 19th century Industrial Revolution, glass was a luxury material produced for an aristocratic,
royal, or priestly market. Most of the pieces were found in temples, palaces, or tombs rather than private homes.

CVD [21–23] and PVD [21,24,25] processes appeared as a second-generation in inor-
ganic glass fabrication. However, until the 1970s, melting-quenching was the dominant
glass making procedure. Yet, inorganic glass was manufactured in academia and in-
dustry, such as with mimetite nature colloidal chemistry processes [26–28]. Sol-gel and
solvothermal methodologies are two of those examples from the third-generation fabrica-
tion methodologies [29–60].

Particularly, sol-gel is used to synthesize glasses and amorphous materials at relatively
low processing temperatures (Table 2). This process is developed by preparing a colloidal
suspension (sol), followed by gelation of the sol, and finally removing the liquid existing in
fine interconnected channels within the gel (colloidal route). Alternatively, a polymeric
route, the most common sol-gel process, undergoes hydrolysis of metallic salts, metal
alkoxides, or another complex organometallic and polycondensation to form the gel. The
gel is then dried at a low temperature, for instance, ~100 ◦C. Because the dry gel is still
porous, it must be sintered at a temperature around the glass transition (Tg) when a thick
glass is produced [26–28]. Sol-gel is particularly suitable for the deposition of coatings,
but it can also be used to fabricate glasses in bulk, NPs, powder, or fiber forms, which
have a structure identical to those melt-quenched glasses with the same compositions. The
advantages of the sol-gel methodologies over melting-quenching techniques are vast since
a highly pure and homogeneous (at a molecular level) product, processed at low temper-
atures, is easily obtained. The ability to shape the final product into different topologies,
such as monolithic blocks (3D), thin/thick films (2D), flexible glass (2D), powders (2D),
fibers (1D), or NPs (0D), allows the covering of different challenging areas from electronics,
bio- and medical technology, energy, and environment.
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Table 2. Breakthrough in sol-gel glass methodologies adapted from [24] (third generation on glass fabrication).

Year Sol-Gel Applications Ref.

1640 Van Helmont, Newman Water glass, sodium silicate suspension by melting sand
with excess alkali; on acidification, silica gel is obtained [29,30]

1845 Ebelmen Transparent glass following atmospheric exposure of a
silane obtained from SiCl4 and ethanol [31,32]

1913 Patrick Quick and cheap method of making silica gel in large
quantities [33]

1931 Kistler Aerogel by supercritical drying [34]
1939 Geffcken and Berger Single sol-gel method for preparing single oxide coating [35]
1968 Nicolaon and Teichner Alkoxide route to aerogels [36]
1968 Stöber Alkoxide route to NPs [37]
1984 Avnir Doped sol-gel materials [38]
1985 Schott Antireflective Amiran® glasses [39]
1985 Schmidt ORganic MOdified SILicates (ORMOSIL) [40]
1989 Carturan Immobilization of living organisms within silica [41,42]
1990 Avnir Immobilization of enzymes within silica [43]
1994 Brinker, Prakash ORMOSIL aerogels bypassing supercritical drying [44,45]

1998 Bright First low-cost O2 optical sensor based on Ru-doped
luminescent material [46]

1998 Toshiba Sol-gel optical coatings for TV screens [47]
1999 Ozin Periodic mesoporous organosilicas [48,49]
1999 De Vos and Verweij Long-lasting ORMOSIL-based membranes [50]

2000 Hench Sol-gel derived bioglass as third-generation tissue
regeneration materials [51]

2003 Cabot Corp. Production of silica aerogels under ambient conditions [52]

2007 Gonçalves et al. Sol-gel photonic crystals (direct, infiltrated, inverse opals)
Flexible photonic crystals for strain sensing [53]

2012 Warren and Wiesner Silica gels doped with high amounts of metal NPs of
unprecedented conductivity [54]

2012 Gonçalves Hollow or dense silica/titania NPs for biomedical
applications [55]

2015 Gonçalves
Silica/ORMOSIL/superparamagnetic iron oxide

nanoparticles (SPIONs) as efficient
nuclear magnetic resonance (NMR) contrast agent

[56]

2018 Gonçalves Sol-gel monophasic hybrid silica/titania-cellulose acetate
membranes [57–59]

2020 Gonçalves, Cauda Titania as US sensitizer in cancer treatment [60]

Recently, AM, commonly known as 3D printing, emerged as a novel technology able
to deliver structures created in a computer-assisted design program with little human inter-
vention. Regarding glass technology, two main AM approaches are under development—a
high temperature method, which is based on traditional melting-quenching techniques,
and a low-temperature route that is supported basically on sol-gel methodologies, both
integrating the fourth-generation fabrication technologies (Table 3) [61–74].

Inorganic glass is extremely versatile, as it can be molded, formed, blown, plated, sin-
tered, or deposited, thus hitting an ever-growing range of applications in all technological
fields. Such processes can take place in a wide range of temperature (down to 100 ◦C)
or can even include AM strategies (Figure 2). The chosen production technique and its
particularities dictate the final glass properties and composition.
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Table 3. Breakthrough in AM glass technologies (fourth generation on glass fabrication).

Year 3D Printing Applications Ref.

2015 Fateri 3D printing through selective laser sintering (SLS) to white, porous (yet
translucent) glass components [61]

2011 Marchelli 3D inkjet printing of glass powders to white, porous (yet translucent) glass
components [62]

2015 Klein

First AM approaches to produce inorganic glass are based on fused deposition
modeling standard for printing), although processes result in coarse glass

structures and demand special expensive printing equipment due to
high-temperature processing

[63]

2014 Luo
On laser beam molten glass fibers (processes result in coarse glass structures and

demand special expensive printing equipment due to high-temperature
processing)

[64]

2016 Kotz
Low-temperature glass printing methods come up. The first low-temperature

glass printing process uses silica nanocomposite inks (to be cured by ultra-violet
(UV) light) through stereolithography.

[65–67]

2017 Nguyen, Cooperstein,
Destino and Dudukovik A second approach used colloidal silica suspensions as ink writing material [68–72]

2020 Sasan The third one developed stereolithography of photocurable sol-gel precursors. [73]

2020 Massachusetts Institute of
Technology (MIT)

Developed by a team comprising the MIT Media Lab’s Mediated Matter Group,
the MIT mechanical engineering department, the MIT Glass Lab, and the Wyss

Institute at Havard University. The additive manufacturing platform G3DP◦

(glass 3D printing) can print glass in a variety of shapes, profiles, and colors and
subsequently different optical properties and degrees of opacity

(https://www.architectmagazine.com/ (accessed on 30 April 2021)).

[74]
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Figure 2. Examples of different glass fabrication methodologies. Melting-quenching: (a) glassblowing; (b) Lalique glass;
(c) float chamber, credits by Saint-Gobain® Glass Portugal; (d) Louvre Museum entrance, Saint-Gobain®; (e) overflow
fabrication process (reprinted (adapted) with permission from [15] © (2016) American Chemical Society); (f) Apple®

Willow® glass watch; coatings and substrates; (g) SiO2/TiO2 Sol-gel coating on a standard glass substrate; (h) coated glass,
Saint-Gobain, Paris, Valode & Pistre Architects, credits by Saint-Gobain® Glass Portugal; (i,j) TFT backplane fabricated
on flexible glass and flexible glass AMLCD prototype (reprinted from [75] © 2021 with permission from IEEE; Additive
Manufacturing—Hollow Glass); (k) glass 3-D printing process by Steven Keating, MIT CC BY-NC-ND 3.0 available at [74],
(l) by Andy Ryan, MIT CC BY-NC-ND 3.0 available at [74].
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Today, inorganic glass may be the key material in a growing benefit market addressed
to smart materials and optoelectronic devices. From academic start-ups to mature glass
manufacturers, a large industrial community is developing novel, unexpected inorganic
glass products, taking advantage of the large spectra of inorganic glass compositions and
technological methodologies (Tables 4 and 5). High-tech glass manufacturers, regardless
of the employed technology, face challenges of reducing their product development time
and time to market to sustain the highly competitive demand. The present work illustrates
some of the most recent and unexpected inorganic glass applications on smart materials
and optoelectronic devices.

Table 4. Industrial directories for high-end materials in different applications.

(i) Magnetic Glass Materials Website (accessed on 30 April 2021)

Tyndall National Institute https://www.tyndall.ie/
Hitachi Ltd. https://www.hitachi.eu/pt-pt

IBM Corporation https://www.ibm.com/pt-en

(ii) Solar Cells and Transparent Photovoltaic Devices website

ENF Solar—Solar Companies and Products https://www.enfsolar.com
Solar Energy Directory https://dir.list.solar/

Standford Energy Corporate Affiliates https://seca.stanford.edu/research/solar-research-directory
Clean Energy Authority https://www.cleanenergyauthority.com/

European Directory of Sustainable and Energy Efficient
Building 1999 Eds. 2013 ISBN 978-1-873936-93-I (pbk)

ITRS-International Technology Roadmap for Semiconductors http://www.itrs2.net/
International Roadmap for Devices and Systems (IRDS™) 2020

Edition https://irds.ieee.org/editions

CompInfo—The Computer Information Centre https://www.compinfo-center.com/
BoogarLists|Directory of Semiconductor Manufacturers BoogarLists/Directory of Semiconductor Manufacturers tml

Global Semiconductor Glass Wafer Market 2018–2022 (Report) https://www.researchandmarkets.com/research/kxqdv4
/global?w=4

Glass Substrate in Semiconductor Market—Global Industry
Analysis, Size, Share, Growth, Trends, and Forecast 2017—2025

(Report)

https://www.transparencymarketresearch.com/glass-
substrate-semiconductor-market.html

What is driving the Growth of the Glass Material Market in
Semiconductor Manufacturing? By Yole Development

https://www.i-micronews.com/products/biomems-market-
and-technology-2020/

Solar Energy Directory https://dir.list.solar/c/solar-panels/thin-film/flexible/
Texas Instruments https://www.ti.com/

Murata https://www.murata.com/en-us
Metrix http://www.metrixvibration.com/

Dytran Instruments https://www.dytran.com/
Wika https://www.wika.com/en-en/startpage.WIKA

(iii) Photonic Crystals website

Europe’s Age of Light (Roadmap)
https:

//www.photonics21.org/download/ppp-services/photonics-
downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf

Towards 2020 -Photonics Driving Economic Growth in Europe.
Multiannual Strategy Roadmap 2014-2020

https://www.photonics21.org/download/about-us/
photonics-ppp/photonics-roadmap.pdf?m=1513605711&

European Photonics Industry Consortium (EPIC) https://www.epic-assoc.com/database/
Synopsys https://www.synopsys.com

Washington Information Directory ISNB 978-1-5443-0075-7 ISSN 0887-8064
vlcphotonics https://www.vlcphotonics.com

Synopsys https://www.synopsys.com

Holland NanoRoasmap
https://www.hollandhightech.nl/sites/www.

hollandhightech.nl/files/inline-files/Roadmap-
Nanotechnology-HTSM-March-2018.pdf

SPIE https://spie.org

https://www.tyndall.ie/
https://www.hitachi.eu/pt-pt
https://www.ibm.com/pt-en
https://www.enfsolar.com
https://dir.list.solar/
https://seca.stanford.edu/research/solar-research-directory
https://www.cleanenergyauthority.com/
http://www.itrs2.net/
https://irds.ieee.org/editions
https://www.compinfo-center.com/
https://www.researchandmarkets.com/research/kxqdv4/global?w=4
https://www.researchandmarkets.com/research/kxqdv4/global?w=4
https://www.transparencymarketresearch.com/glass-substrate-semiconductor-market.html
https://www.transparencymarketresearch.com/glass-substrate-semiconductor-market.html
https://www.i-micronews.com/products/biomems-market-and-technology-2020/
https://www.i-micronews.com/products/biomems-market-and-technology-2020/
https://dir.list.solar/c/solar-panels/thin-film/flexible/
https://www.ti.com/
https://www.murata.com/en-us
http://www.metrixvibration.com/
https://www.dytran.com/
https://www.wika.com/en-en/startpage.WIKA
https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf
https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf
https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf
https://www.photonics21.org/download/about-us/photonics-ppp/photonics-roadmap.pdf?m=1513605711&
https://www.photonics21.org/download/about-us/photonics-ppp/photonics-roadmap.pdf?m=1513605711&
https://www.epic-assoc.com/database/
https://www.synopsys.com
https://www.vlcphotonics.com
https://www.synopsys.com
https://www.hollandhightech.nl/sites/www.hollandhightech.nl/files/inline-files/Roadmap-Nanotechnology-HTSM-March-2018.pdf
https://www.hollandhightech.nl/sites/www.hollandhightech.nl/files/inline-files/Roadmap-Nanotechnology-HTSM-March-2018.pdf
https://www.hollandhightech.nl/sites/www.hollandhightech.nl/files/inline-files/Roadmap-Nanotechnology-HTSM-March-2018.pdf
https://spie.org
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Table 5. Leading key players of the global high-tech glass market.

Company Country Website (accessed on 30 April 2021)

Schott Glaswerke AG Germany www.schott.com
Heliatek Gmb Germany https://www.heliatek.com/de/

Physee European https://www.physee.eu/
Corning USA www.corning.com

Crystran Ltd. USA www.crystal-gmbh.com
Sterling Precision Optics USA http://www.sterlingprecision.com

Ohara Corporation USA https://www.oharacorp.com
Precision Optical Inc USA https://www.precisionoptical.com

Tesla USA https://www.tesla.com
Ubiquitous Energy USA https://ubiquitous.energy/

Brite Solar USA https://www.sungoldsolar.com/
OAG Werk Optik Ukraine http://ritmindustry.com/

Nikon Corporation Japan www.nikon.com
Edmund Optics Japan https://www.edmundoptics.jp

Sumita Optical Glass Japan https://www.sumita-opt.co.jp
Hoya Corporation Japan https://www.hoya.jp

China South Industries Group
Corporation Glass (CDGM) China http://cdgmglass.com

Hubei New Huaguang China http://www.hbnhg.com
Changchun Boxin
Photoelectric Co China http://www.bxoptic.com/

2. Glass in Smart Materials and Opto-Electronic Devices
2.1. Magnetic Glass Materials

A magnet can be classified as a permanent (hard) or soft material. Permanent magnets
have a large coercive field, Hc, (>1000 A/m) and high magnetic remanence, Mr, that
allows them to retain a large magnetization after being magnetized and consequently
to attract and repel other magnets or to magnetize other materials. They can find wide
industrial applications such as permanent magnets for motors, manufacturing ultrahigh-
density magnetic recording media, and magnetic separation. However, for the inductive
applications found, for instance, in power electronics and electrical machines, permanent
magnets are not useful. Instead, these applications require soft magnetic materials with
lower Hc (<1000 A/m) and Mr, thus they can be easily magnetized and demagnetized.
They are suitable for read-write components of magnetic memory devices and cores of
transformers and magnetic amplifiers [76].

The global soft magnetic materials market reached a volume of one million USD in
2019, and it will attend a compound annual growth rate (CAGR) of over 10% between 2020
and 2026 (Figure 3).
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Inorganic magnetic glasses are a particular class of soft magnetic materials. They usu-
ally consist of a glassy matrix in which a magnetic phase crystallizes. This crystalline phase
is obtained by controlled crystallization, induced by nucleating agents, of a parent glass
containing magnetic ions. The magnetic characterization is usually performed by static
(DC magnetization) and dynamic (AC susceptibility) techniques. The theory behind their
magnetic properties is briefly referenced with the definition of the key magnetic parameters.

2.1.1. Magnetic Properties

The magnetic moment is usually associated with the orbital motion and/or the spin
motion of the charged particles in the material and is a measure of the magnetic field
generated by the sample itself.

A magnetic field is a force field such as gravitational and electrical fields characterized
by a potential source and expressed by lines that form a contoured sphere. The density of
these lines is called magnetic flux density, B. In a vacuum, the magnetic field H is related
with B by the permeability of free space, µ0. When a material is placed in a magnetic
field, it can alter the lines of force and therefore modify the flux density, as expressed
in Equation (1):

B = µ0(H + M) (1)

The magnetic behavior of a given material reflects its response to an external magnetic
field in its magnetization, M. M is the sum of all the magnetic moments of a given material
per unit of volume or mass. Magnetization depends on size of these magnetic moments
and the degree to which they are aligned with respect to each other. The magnetic property
that provides a quantitative measure of such response is the magnetic susceptibility, χ,
defined as:

χ =
M
H

(2)

In general, the magnetic susceptibility depends on the electrons that constitute a given
system. There are essentially two main contributions for the magnetic susceptibility. The
first is diamagnetism, a property inherent to all materials. Diamagnetism reduces the lines
of force within the material, which is equivalent to say that it produces a flux opposite to
the applied magnetic field that is causing it. The diamagnetic susceptibility is therefore
negative, and it does not depend on the field strength or the temperature. Its contribution
usually is several orders of magnitude lower than other magnetic contributions.

Second, when there are unpaired electrons in the system, the resulting magnetic
moment arises from the spinning and the orbiting of those electrons. If these spins do not
interact and are randomly oriented, the application of an external magnetic field tends
to align them along the field’s direction. In this sense, a paramagnet concentrates the
lines of force, thus increasing the magnetic flux. Since both diamagnetic and paramagnetic
materials only exhibit magnetization in the presence of an external field, they are considered
as nonmagnetic.

The strength of paramagnetic interactions is temperature dependent. Generally, the
bulk magnetic behavior of a material can be described considering how adjacent magnetic
moments would interact with each other near zero temperature since, at high temperatures
(depending on the composition), all the materials behave as paramagnets due to the
effective paramagnetic behavior above their critical temperatures.

When the magnitude of such interactions is significantly higher and propagates in
the whole material, it results in a spontaneous magnetization, which is due to the strong
exchange interaction between the electron spins throughout the solid. In such cases, a long-
range magnetic ordering can occur below a specific temperature and the magnetic transition
classified as ferromagnetic (FM) if neighboring spins align parallel, with a characteristic
Curie temperature, TC, or antiferromagnetic if neighboring spins align antiparallel with a
characteristic Néel temperature, TN. There is also the ferrimagnetic (FIM) behavior that
occurs when the spins are aligned, as in an antiferromagnetic ordering, but with different
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magnitudes, resulting in a net magnetic moment. A scheme representing these different
behaviors is shown in Figure 4.
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of domains growing in a ferromagnet at: (e) zero magnetic field; (f) weak magnetic field; (g) strong magnetic field.

Ferromagnetic or ferrimagnetic materials exhibit a permanent magnetic moment in the
absence of an external field. This spontaneous magnetization is not apparent in materials
that are not exposed to an external field due to the presence of small regions called magnetic
domains in which the magnetization is in a uniform direction, namely with their spins
aligned in the same direction. The magnetization of different domains may point in differ-
ent directions. Under an external magnetic field, these domains can gradually grow at the
expense of the next near domains in a partially reversible process. The boundaries between
adjacent magnetic domains are called domain walls. The resulting domain structure is
responsible for the characteristic magnetic behavior of such materials. Since the sponta-
neous magnetization may be several orders of magnitude greater than the applied field,
ferromagnetic materials have very high permeabilities, up to 106. When the applied field is
removed, a part of the induced domain alignment may be preserved so that the body acts
as a permanent magnet. In the case of ferrimagnets, there is an antiferromagnetic coupling
between cations occupying different crystallographic sites, and the magnetization of one
sublattice is antiparallel to that of another sublattice (Figure 4d). The two magnetizations
are of unequal strength, resulting in a net spontaneous magnetization.

In a bulk material, the magnetic field dependence of the magnetization can show
hysteresis, as shown in Figure 5b. Hysteresis is observed for ferromagnetic or ferrimagnetic
materials below their critical temperature and usually arises from the rearrangement of
domain walls within the material.

Consider a sample with randomly aligned domains. By applying an external magnetic
field H, the magnetic moments tend to orient in its direction, and as the field increases,
the magnetization also increases until it reaches a maximum value, namely magnetic
saturation, Ms, that corresponds to the alignment of all the spins in the sample. As the
magnetic field decreases, the magnetization also decreases, but the system retains a degree
of magnetization, and the observation of hysteresis appears. The magnetization that
remains after all external field is removed is called magnetic remanence, Mr. The strength
of the opposing field required to remove a sample’s magnetization after saturation is the
coercive field, Hc. Repeating the cycle in the opposite direction, from negative to positive
magnetic field values, leads to the complete hysteresis loop, as shown in Figure 5a.

The shape of the hysteresis loop depends on how freely the domains walls can rear-
range and consequently on physical and chemical properties of the materials (Figure 5b).
Materials with large coercive field firmly retain the saturation field when the driving field
is removed. These materials, called hard magnets, also exhibit high Mr showing a memory
effect. On the other hand, soft materials show narrower hysteresis loops.
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Figure 5. Hysteresis loop and domain growth of: (a) ferromagnet; (b) soft and hard magnetic
materials hysteresis loop, respectively; (c) magnetic field dependence of the magnetization of a
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The thermal behavior of the magnetization of a ferromagnet can also depend on the
magnetic field history. If the magnetization does not saturate at a constant value with the
applied magnetic field, to determine if the process is irreversible, a set of measurements
with the temperature dependence of the magnetization can be performed using zero-
field cooling (ZFC) and field cooling (FC). It consists of cooling the sample with H = 0,
then applying the desired magnetic field and measuring the magnetization as a function
of temperature on heating (ZFC) followed by the same procedure but with an applied
magnetic field (FC). The irreversibility of both curves indicates that, below this temperature
value, the material behaves as a ferromagnet.

At the nanoscale, ferromagnetic or ferrimagnetic materials with particle size smaller
than a specific critical diameter (typically between 3–50 nm) can exhibit different mag-
netic properties than materials with larger particles since they can randomly change their
directions of the magnetization with temperature/time fluctuations below their Curie
point. The average magnetization value of such systems in absence of an external magnetic
field is close to zero, but in presence of an external magnetic field, nanoparticles align
following the magnetic field direction as for paramagnetic materials. However, due to their
ferro/ferri-magnetic origin, such nanomaterials show very high magnetic susceptibility,
larger than common paramagnetic materials, i.e., they exhibit “super”paramagnetism
(SPM) and absence of hysteresis (coercive fields close to zero and very low remanent
magnetization, Figure 5c.
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In the temperature dependence of the magnetization curves, the presence of a blocking
temperature, TB, appears at the point of irreversibility of both ZFC and FC curves [79].
Below this value, the magnetic moments are blocked, and the material shows FM or
FIM behavior. Above TB, the particles behave as superparamagnets. After removing the
external field, the magnetic moments of each NPs remain randomly oriented so that the
total moment is zero. These thermal and size dependent responses of free NPs are due
to the competition of the magnetic anisotropy energy with the thermal energy, thus there
is a minimum volume at which the particle remains blocked. Equation (3) represents the
Néel-Arrhenius model, where τN, the Néel relaxation time, is the average time between
two flips, τN can take values of nano-seconds or even years, τ0 is the time period (takes
values of 10−9 or 10−10 s), K represents the magnetic anisotropy of the particle, V the
volume of the particle, T the temperature, and kB the Boltzmann constant.

τN = τ0e(
KV
kBT ) (3)

When the magnetization measurement time is less than τN, the magnetization assumes
the magnetic moment values of the particles, and the blocked state occurs. On the other
hand, when measurement time is much greater than τN, the average value of the measured
magnetization appears to be zero, meaning that they are in the superparamagnetic (SPM)
state [80]. Typical examples of superparamagnetic NPs are the two common phases of iron
oxides, magnetite (Fe3O4) and maghemite (γ-Fe2O3).

In real systems of interacting particles, the calculation of the superparamagnetic re-
laxation time is an extremely complex problem, even in the limit of weak interactions.
However, the magnetic dynamics of SPM systems can properly be studied by AC suscep-
tibility measurements. The measurement time is typically 1–100 s for DC measurements
and is the inverse of the measurement frequency for AC measurements. The utility of AC
susceptibility for superparamagnetism stems from the ability to probe different values of
τ by varying the measurement frequency. AC susceptibility, χ, yields two quantities: the
magnitude of the susceptibility, χ, and the phase shift, φ (relative to the drive signal). Al-
ternately, one can consider the AC susceptibility as having an in-phase, or real, component,
χ′ = χ cos φ, and an out-of-phase, or imaginary, component χ” = χ sin φ. The real χ′ has
a plateau in the low frequency regime and equals the initial magnetic susceptibility from
the DC magnetization curve without hysteresis. As the frequency of the alternating field
increases, the magnetization of the particles is not able to keep up with the alternating
field, and χ′ decreases. At the TB, χ” shows a maximum at the characteristic relaxation
frequency, where a given angular frequencyω, is equivalent to τN = 2πω−1.

2.1.2. Case Studies

During the last decades, magnetic nano-glass ceramics attracted great attention as
promising candidates to a great diversity of applications, depending on their soft or hard
characteristics [81]. Promising applications are emerging in areas such as adsorption,
catalysis, ferrofluid technology, or magnetic resonance imaging (MRI) along with smart
materials applications such as environmental, chemical, biomedical, and pharmaceutical
sensors [82–94].

The need for improved soft magnets is continuously capturing the attention of re-
searchers. The nanocrystalline and the amorphous materials are still being refined in order
to increase Ms with the introduction of alloys that are more amenable to the fabrication of
large-scale parts. Powder cores opened the door for nanoparticle-based composites, which
can be produced with both top-down and bottom-up approaches.

As soft magnets, nano-glass ceramics are mostly based on cubic spinel ferrites, such as
magnetite (Fe3O4) and zinc ferrites (ZnFe2O4). They can show ferromagnetism or ferrimag-
netism combined with superparamagnetism exhibiting narrow hysteresis loops with small
coercive fields, and their solid solutions can generate high amounts of heat. Hence, they can
be found in biomedical applications, such hyperthermia and drug targeting, diagnostics
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applications, such magnetic resonance imaging (MRI), and separation/selection processes,
but also in information storage systems, ferrofluid technology, and magnetocaloric refriger-
ation [81,95].

Two primary synthesis methodologies are currently used to produce inorganic soft
magnetic glasses: melt-quenching and sol-gel. Although recent, sol-gel methodology
allows more straightforward and more accurate control over the glass structure and/or the
glass morphology, which is outstanding in the production of glasses with a well-defined
magnetic response.

Ferreira da Silva et al. [96] used sol-gel to synthesize inorganic nanocomposites with
ZnO-Fe2O3-SiO2 amorphous matrix dispersion of crystalline zinc ferrite NPs. The nanocom-
posite system exhibited ferro- or ferrimagnetic interactions and superparamagnetism with
a blocking temperature of −259 ◦C. The annealing causes partial dissolution of the zinc
ferrite NPs and precipitation of hematite NPs, in all the studied compositions.

Graça et al. [97] studied AC and DC conductivities in 88SiO2-6Li2O-6Nb2O5 (mole
percent) sol-gel glasses heat-treated at different temperatures from 500 ◦C up to 800 ◦C.
LiNbO3 crystals precipitated during heat treatments ~500 ◦C, SiO2, Li2Si2O5, and Li3NbO4
at ~700 ◦C. σdc decreased with the concentration of the precipitated crystalline phases due
to the decrease of charge carriers.

Ferreira da Silva et al. [98] synthesized MgFe2O4 spinels (where x varies from 1.25
to 10 mol% in the basic composition xFe2O3-5MgO-(95-x)SiO2) by sol-gel to be deposited
over glass substrates. The effects of heat treatments at 500 ◦C and 1000 ◦C for 1 h were
studied. For the amorphous compositions, heat treatments at lower temperatures revealed
paramagnetic behavior associated with ferrimagnetic interactions inside the NPs and
paramagnetic interactions between them. At the highest temperature, a combination of
ferro- or ferrimagnetic behavior with superparamagnetism was revealed. The blocking
temperature was below 60 K for samples with x ≤ 5 and around 160 K for the sample
with x = 10.

Lithium ferrites exhibit great interest for applications in magnetic recordings, mi-
crowave systems, and computer memory chips. Nevertheless, their high volatility stays a
major drawback. To overcome this obstacle, Graça et al. [99] proposed a sol-gel synthesis of
88SiO2-2Li2O-10Fe2O3 (percent mole). The sol-gel products were heat-treated at different
temperatures, from 250 ◦C up to 1000 ◦C, for 4 h. At the lowest temperature, the sample
presented a paramagnetic behavior, although an enhancement of ferrimagnetic behavior as
temperatures raised was observed, reaching the highest value at 1000 ◦C.

Alternatively, Baikousi et al. [100] synthesized the CaO-SiO2-P2O5 glassy matrix by
sol-gel and then homogeneously dispersed SPIONs within. This nanocomposite mate-
rial showed both bioactive and magnetic performance as well as high stability towards
crystallization, even at high temperatures (~800 ◦C).

Talaat et al. [101] proposed a new spinel composition, Fe71.7Si11B13.4Nb3Ni0.9, syn-
thesized through the modified Taylor-Ulitovsky technique for hyperthermia cancer treat-
ment. The first main goal was to overcome some of the SPIONs drawbacks such as high
aggregation tendency, relatively low saturation magnetization, and moderate heating ef-
ficiency. This work successfully proved that using single or multi-microwires possessed
considerable heat response to be used in cancer treatment. To address the same issue,
Baino et al. [102] synthesized inorganic glass and glass-ceramic materials (on SiO2-CaO-
Fe2O3 based-system) by sol-gel and evaluated their hyperthermia performance. Three
compositions were studied—60SiO2-40CaO, 60SiO2-38CaO-2Fe2O3, and 60SiO2-30CaO-
10Fe2O3. The sample with the high amount of Fe2O3 showed the best hyperthermia
performance, while future biocompatibility studies will determine its commercial interest.

Ponsot et al. [103] incorporated waste, borosilicate glass residues, and iron-rich slags
to produce glass-ceramics through the melting-quenching technique. Pollutants presented
in the residues were stabilized in mixtures up to 75–50% from the glass and 25–50% from
the iron-rich slags. Melting temperature was in the range of 900 ◦C up to 1000 ◦C. Fur-
thermore, magnetite was formed during the melting process, exhibiting an intense heating
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when under a magnetic field. This result proved to be very interesting for hyperthermia
treatments, since the product is biocompatible.

As hard magnetic materials, most of the nano-glass applications deal with M-type
barium (BaFe12O19) [104,105] and strontium hexaferrites (SrFe12O19) [106,107] with small
sizes, from 5 to 10 nm, to produce high-coercive permanent magnets of several kOe, since
they can show large uniaxial magnetic and shape anisotropies, which prevail over the
superparamagnetic behavior [108]. Such magnetic glasses are usually present in electric
motors, ultrahigh-density magnetic recording media, approaching several TB cm−2, and
magnetic separation processes [107,109].

More recently, works related to the magnetic properties of inorganic glasses are scarce,
as is the search for its potential applications. Those applications usually demand soft
magnetic materials, such as iron-based amorphous alloys. In order to fill this gap, our team
is currently trying to expand knowledge on magnetic silica-titania flexible glasses obtained
by sol-gel.

2.2. Solar Cells and Transparent Photovoltaic Devices

Solar photovoltaic (SPV) cells stand up as a critical player in the global renewable
energy sector. SPV cell technology is a promising, clean, and sustainable energy source
developed rapidly in recent years [110,111]. However, its efficiency loss may range as high
as 25–30%, and a lifetime can be compromised.

Lately, transparent photovoltaic glasses emerge as the most cutting-edge new solar
panel technology that promises to be a game-changer in expanding solar scope. These trans-
parent solar panels (that resemble regular glass) can generate electricity from windows—in
offices, homes, car sunroofs, or even smartphones. Some of these promising technolo-
gies are already in the advanced stages of development and could hit the market soon.
Researchers at Michigan State University estimate these fully transparent solar panels’
efficiencies to be as high as 8% [112]. Their lower efficiency is bound to be overcompensated
by their potential scale of deployment. Today, there are approximately 24 models of SPV
technologies made from different materials and methods [113,114].

2.2.1. Solar Photovoltaic (SPV) Cells

SPV cells are semiconductor devices that convert sunlight into electricity through
the photovoltaic effect. The semiconductor material (as silicon) has the property to eject
electrons after absorbing photons (hν) from sunlight (leaving holes that are filled by sur-
rounding electrons). Then, SPV cell directs the electrons in one direction, forming an
electrical current (Figure 6) that is proportional to the number of hν absorbed.
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Until recently, the bunch of flexible materials disposed for electronic applications was
limited to plastics, polymers, and composite membranes. Glass emerges as an unexpected
flexible material opening the door for novel highly resilient flexible-electronic devices.
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Corning® Willow® Glass is a thin flexible glass already in the market, which first potential
application is for solar energy production.

2.2.2. Transparent Solar Photovoltaic (TSPV) Cells

A transparent solar photovoltaic cell (TSPV) is a new solar cell concept. Here, the
absorbed h(ν) are also converted into electricity, while the visible range of the electromag-
netic spectrum is transmitted through the glass cell. To implement this idea, two main
strategies were developed: (i) visible light absorption, in which light in the visible region is
partially absorbed and transmitted, and (ii) luminescent solar concentrator (LSC) technol-
ogy (using luminescent materials), where the absorption range is moved from visible into
UV or infrared (IR) range through LSC. LSC is composed of organic salts that are designed
to absorb specific UV and/or IR light and to transform it into another wavelength out
of visible range. This new wavelength is then guided to the edge of the window, being
converted into electricity by thin SPV cell strips [116].

Between SPV and TSPV, there is plenty of room for intermediate solutions. The
German manufacturer Heliatek Gmb, for example, developed a partially transparent
SPV cell, which can absorb about 60% of the sunlight it receives [117]. Compared to the
conventional SPV cells, the partially transparent solar panels have lower efficiency at 7.2%.
However, solar power generation can be increased by adjusting the balance between the
transmitted and absorbed sunlight.

2.2.3. Case Studies

In the semiconductor market (remember SPV and TSPV are semiconductor devices),
glass is making serious inroads (Tables 4 and 5). Used either as a permanent or a temporary
material within the semiconductor manufacturing processes, inorganic glass plays a key
role in the semiconductor industry either as IR cut filter for complementary metal-oxide-
semiconductors (CMOs), image sensor technology (CIS), microfluidics devices, actuators,
and sensors. Nevertheless, its ultimate quest comes with flexible glass substrates for
solar energy production and flexible glass packaging in electronic systems. In MEMs and
electronics applications, glass wafers are used in wafer packaging of sensitive components
due to their superior functionality and extreme reliability over time and in the face of
harsh environments. As a carrier substrate, glass is chosen due to qualities such as thermal
stability and chemical resistance, and, in both cases, mismatch needs to be avoided.

Peng et al. [118] used Corning® Willow® Glass substrate for (sequential sputtering)
flexible thin films of Cu, Sn, Zn, and S. The deposition process occurred at room temper-
ature. The films showed a good efficiency (in solar cells) in the horizontal position but a
reduced efficiency when in bent positions of 50 mm radius (3.08–2.41% respectively). This
works opens the possibility to apply flexible glasses effectively for solar energy. In another
application for the same glass substrate, Sheehan et al. [119] produced a dye-sensitized
solar cell (DSSC). The work showed a higher power conversion efficiency (7.42%) for the
fluorine-coated glass when compared with two commercial flexible glasses, both based
on tin oxide modified with indium and fluorine but with a different technique (screen-
printing) and material (TiO2 electrodes). The result relies on the stability of this oxide
properties (ohmic resistance and optical transmission) even after a heat treatment at 500 ◦C.
Nevertheless, the Willow® Glass, if coated with fluorine, should increase its efficiency,
showing a promising outcome.

Despite SPV cell recognition, the degradation of their conversion efficiency overtime
stays a significant drawback. Dust, grime, organic particulate matter, and other inorganic
pollutant deposition, particularly in plateau geometries, either industrial or urban, con-
tribute to the SPV cell’s lifetime reduction. Further, periodic cleaning of the SPV panels is
often restricted by water/workforce budgets. The development of novel SPV cell surfaces
through micro-and/or nano-engineered coatings opened a new approach towards the
fabrication of self-cleaning panels’ covers. The top layer of silicon solar cells, the SPV cell
with wider commercial use, is a cover glass having different functions [120]:
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(i) reducing the high reflection coefficient of silicon to improve cell efficiency;
(ii) acting as a radiation barrier and optical coupling element;
(iii) protection against debris and aggressive agents present in the air. Surface fouling,

particularly in cities and when limited periodic cleaning is possible, remains an issue.

Several techniques were developed and implemented to achieve large-scale self-
cleaning coatings on SPV cell systems (with extremely high wettability contact angle
~150◦). Wet chemical methods include NPs coatings using a suitable binder, layer-by-
layer assembly, and sol-gel processes. Sol-gel methodologies, namely, spray-coating,
dip-coating, and aerosol-assisted vapor-deposition, stand out by their simplicity and
high efficiency. Such coatings should help to keep the photovoltaic (PV) modules clean
without compromising their light transparency. Most importantly, such self-cleaning
glazing structures became very useful in diverse fields of solar energy application areas,
such as solar radiation transmission, building integrated photovoltaics (BIPV), solar panels,
and concentrated solar power (CSP) systems.

One of the authors developed a sol-gel-based, highly transparent, self-cleaning coating
with tunable wetting property by synthesizing single component silane-modified base
and acid-catalyzed silica sol [121]. A dip-coating approach was used. A static contact
angle (WCA) as high as 150◦ and contact angle hysteresis (CAH) of ~2◦ was achieved with
these coatings. Glass’s maximum transmission used in solar glass cover was found to
increase from 91.8% to 95.5%, and concomitantly minimum reflectance was found to reduce
from 8.7% to 3.2%. Such antireflection behavior was further investigated by conducting
ellipsometry studies, where the refractive index of the coating was found to be 1.35 with
film thickness 103.54 nm.

Lim et al. [122] studied the use of thin films, hydrogenated, amorphous silicon, and
silicon-germanium cells to use as semi-transparent solar cells. The fabrication technique
used for that purpose was radiofrequency (rf)-plasma-enhanced chemical vapor deposition
working at 250 ◦C and 1.6 Pa. Their results proved that, related to transparency and
efficiency of the cell, the transparent conductive oxides thickness should be superior to
300 nm. The combination of Si:Ge also showed better efficiency.

Nam et al. [123] explored a sacrificial layer approach to produce thin-film solar cells.
Most of these layers require etching processes, strong acids that are not very specific and
can damage metal electrodes. Therefore, they studied the application of a water-soluble
sacrificial layer based on germanium oxide produced by dry oxidation at 510 ◦C for 45 min.
This kind of sacrificial layer could also be used to manufacture other solar cell types.

On behalf of transparent solar cells, Sutha and collaborators [124] worked on the
fabrication of a solar panel based on aluminum oxide coatings. They were able to reach
levels of 95% transmittance. In another work at the same object of interest, Patel et al. [125]
investigated the use of ZnO/NiO in a multi-functional transparent photoelectric device.
Their solar cell demonstrated efficiency of 6% and a transmittance of 69.6%.

More recently, Wang and co-workers [126] developed a fully inorganic solar cell made
with CsPbI2Br/CuBr2. Their device showed an efficiency of 16.15% and high stability,
maintaining 95% after a month.

2.3. Photonic Crystals

A new class of optical materials known as photonic crystals (PCs), or photonic bandgap
materials (PBGs), holds promise for transfer the full functionality of semiconductor devices
into the optical field, combining high integration with high-speed processing and quantum
computing [127–130]. Novel types of waveguides and optical fibers, new filters, high-speed
switches, low-threshold micro-lasers, high-performance LEDs (light-emitting diode), pho-
tonic for VLSI (very large scale integration), along with smart materials applications such
as environmental, security, energy, transport, biological, and chemical sensors are among
the new opportunities in scientific and industrial areas such as information and communi-
cation, industrial manufacturing and quality, life sciences and health, emerging lighting,
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electronics and displays, security, metrology and sensors, design and manufacturing of
components and systems, agriculture and food, and automotive and transport [3].

The growing demand for photonic crystal provided a significant boost to the global
photonic crystal market as more people are shifting their preferences to this growing sector.
The European photonics market is projected to grow at a CAGR of 8.4% leading up to
2022, being the critical enablers for the future mega-markets such as Internet of Things
(loT), cybersecurity, quantum technologies, healthcare, and additive manufacturing, among
others (Figure 7).
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PBGs or PCs are structures whose refractive index, n, or dielectric constant, e, are
periodic on a length scale of the order of optical wavelengths, which prevents light from
propagating through the structure due to Bragg reflection [134]. Depending on the dimen-
sionality of this periodicity, one can have PBGs in one, two, or three dimensions (1D, 2D,
or 3D). Distributed Bragg reflectors (DBR), also called Bragg mirrors, are examples of 1D
PBGs. Their overall reflectivity can be very high, even higher than that of metallic mirrors,
and it is due to Bragg reflection. The construction of 3D PBGs, on the other hand, poses
several difficulties. A wide range of techniques were used to fabricate 3D PBGs, sol-gel
being the most promising ones.

Case Studies

The 1D PBGs consist of an alternating, high, and low refractive index dielectric multi-
layer stack, where the optical thickness, nx, of each layer equals k/4, k being the vacuum
wavelength for which Bragg reflection occurs, n the refractive index of the materials, and x
the layer thickness. An essential application of PBGs is made possible by the controlled
introduction of defects, along which light may propagate within the stop band in a manner
similar to the impurity levels of doped semiconductors. For a 1D structure, an example is
the Fabry–Perot microcavity [135–137], which may be achieved by introducing an extra
layer or the suppression of a layer within a multilayer stack. The cavity layer may also be
doped with rare-earth ions [135], leading to exciting changes in their photoluminescence
behavior. While spontaneous emission is inhibited within the stop band, where there are
no photon modes available [134], within the cavity passband, the photoluminescence is
enhanced by a factor of the order of the quality factor of the cavity.

Concerning 3D PCs, a variety of methods, such as gravity sedimentation [138–141],
electrostatic repulsion [142–147], capillary forces induced convective self-assembly [148–151],



Materials 2021, 14, 2926 19 of 29

and electric field-induced assembly [152–155], were developed. In this context, one of the
main obstacles for putting into practice the interesting optical and structural properties
of colloidal crystals actual devices is the incompatibility of the time-consuming and the
unclean self-assembly crystallization techniques commonly used to make colloidal crystals
with fast and dirt-free technology required to fabricate devices. A new approach to colloidal
crystallization of submicrometer diameter spheres that overcomes some of the obstacles
mentioned above was proposed by Jiang and McFarland [156]. In fact, it was shown that
it is possible to obtain ordered colloidal structures by spin-coating technique, reducing
the deposition time sensitively. Particularly, in these studies, the attention was focused
on finding the best conditions (nanoparticles concentration—solution and velocity of spin
rotation) to obtain large self-assembled areas using silica spheres.

Thus far, the 3D structures prepared by sol-gel are of artificial opal or inverse opal
types. The process of colloidal crystallization was extensively studied by one of the authors,
leading to the development of several methods to make colloidal crystals with fewer
crystalline defects [136,156–161] and a smart material application such as flexible photonic
crystal for strain sensing [53].

2.4. Smart Materials
2.4.1. Smart Materials and Internet of Things (IoT)

Smart materials that can respond to external stimuli were explored in recent years,
and once this market is continuously growing, new avenues and applications will start to
open for them to be used. More recently, smart materials were inserted on the concept of
Internet of Things. This concept is in close relation with the project and the idealization of
smart cities, where everything is connected, providing to each individual the possibility
to control, monitor, and manage devices remotely [162]. Not only that, IoT also finds
important application further automating the line of production in industries such as:
automotive, enabling the vehicles to be smarter and safer; healthcare, giving the possibility
of accurate and quicker examinations and providing instant data to the doctors; retail
and logistics, which can involve the use of less man power and consequently less man
interaction; security, by creating even more precise and sensitive security systems; and
agriculture, by developing more productive ways of treating and harvesting the crops.

The energy transduction principles that are employed for chemical and biological
sensing involve radiant, electrical, mechanical, and thermal types of energy. Specific
sensing concepts are further implemented with each energy transduction. Sensors based
on transduction’s radiant energy can employ intensity, wavelength, polarization, phase,
or time resolution detection. Sensors based on the electrical energy of transduction can
employ conductometric, potentiometric, or amperometric detection. Sensors based on
the mechanical energy of transduction can employ gravimetric or viscoelastic detection.
Sensors based on thermal energy of transduction can employ calorimetric or pyroelectric
detection [163].

2.4.2. Case Studies

Water quality, water distribution, greenhouse gasses emission, and use of pesticides
in agriculture are some of the topics guiding many efforts from scientists all over the globe.
Almeida et al. [164] prepared an aluminum-silicate mesoporous glass (Si1−xAlxNaxO2
(0.1 < x < 0.33)) by using a simple and low temperature synthesis. This material showed
a promising result related to pH dependence since no difference was observed in its
effectiveness. However, even theoretically, this composition presents a higher capacity
to make ion exchange than other commercial products used for comparison; practically,
their sorption efficiency was much lower. They also proved that, with multiple exchanges
and combustion cycles, this drawback is feasible to overcome. On the plus side, their
material proved to have many reuse cycles until sodium content reaches its exhaustion.
Moreover, the material can be customized for different applications in media depending
on Na:Si ratio.
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Silicon wafer fabrication produces glass substrates used in a variety of biotechnology
applications. Borosilicate glass, a quality option in glass for medical devices, offers superior
resistance to high levels of heat and energy as well as radiation exposure, such as within
X-ray equipment.

Wafers are also used in microfluidic chip production using nanoimprint lithography,
where glass acts as a substrate. Glass offers the clear optical transparency required in many
biotechnology applications, making it a common choice for use as a capping layer over
devices made from silicon. Wafer bonding processes such as anodic and thermal bonding
create a hermetic seal.

Silica and titania glasses are often used to produce solutions for medical and biological
issues thanks to their easy customization and inertness to the human body and their chemi-
cal and physical properties, which provide several different kinds of applications [165–168].
One of the most popular usages is as a bactericidal agent. Akhavan and Ghaderi [169]
immobilized CuO nanoparticles in a silica film made by sol-gel technique at room tem-
perature with dip-coating to be applied against Escherichia coli bacteria. On their tests, the
greater the temperature was, the better was the inactivation of the bacteria at the surface of
the film, demonstrating that Cu nanoparticles are much better photocatalysts than CuO
nanoparticles. Additionally, all the results were better in the presence of light irradiation
than in the dark.

One of the most explored potentials of silica and titania materials in the medical
field is drug delivery, mainly because of their controlled release kinetics property. For
that purpose, Bhattacharyya et al. [170] studied sol-gel silica films coating Ti roads and
wires with two drugs: farnesol and vancomycin to treat methicillin-resistant Staphylococcus
aureus, a dangerous and resilient bacterium most found in implants. Their results proved
a fair use of the films for titanium implants once they had the capacity to associate with
the medicaments and release them entirely in five days. Combining both gave the best
outcome by killing almost 100% of the bacterium.

Our team studied the use of amorphous titania NPs as a new route for cancer treatment
by using photo or sono-dynamics therapy, and the results showed a promising application
of the synthesized NPs due to their response to ultrasound stimulation [60,171].

Related to implants, Catauro et al. [171] used sol-gel and dip-coating to evaluate
improvements on bioactivity and compatibility of SiO2 and CaO films coating Ti plaques.
Many different proportions of SiO2 and CaO were applied in the tests with simulated body
fluid, and the best results were obtained for 0.3 and 0.4 CaO, with 0.7 and 0.6 of SiO2,
respectively. Nevertheless, coated Ti plaques were more biocompatible and activable than
uncoated ones, promoting the use of coating for these applications in the medical field.

Hydroxyapatite is an important material for implants but can be also used as sorption
material, and by mixing it with titania, for example, it can potentially enhance photo-
catalysis, degradation of pollutants, and inhibit bacteria activity. Kaviyarasu et al. [172]
synthesized a hydroxyapatite and TiO2 composite (3:1) by the sol-gel method at room
temperature. The tests used Rhodamine-B related to photocatalysis and degradation for
anti-microbial test Bacillus spp. and E. coli. According to their results, this device had an
excellent growing inhibition for both bacteria.

Thermistors are devices with resistance that depends on temperature. They can be
positive or negative, meaning that resistance grows with higher temperature (positive) or
decreases with higher temperature (negative). Such devices have many applications, such
as industrial, medical, and energy related. One of the gaps is that they can be expensive
and fragile. Sohal et al. [173] worked in a tin oxide thermistor device production using a
low-cost precipitation method at room temperature. They proved with thermal resistance
tests that their devices can be used as human body temperature monitoring devices.

Amperometric sensors are susceptible devices used to detect trace elements in dif-
ferent fields, such as medical diagnosis, food safety, and environmental monitoring.
Fan et al. [174] manifested an easy way of producing these sensors over Willow® Glass us-
ing Ag/AgCl and carbon graphite inks to detect hydrogen peroxide. Their results showed
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a very linear response of both sensors being more rapid and sensitive. They also tested
the capacity after bending stress, and after 100 times, both lost 50% of the signal intensity.
These results are promising but still require much work and effort to extend their usage and
permit more customization of their application without prejudice in the device response.

3. Prospective Areas and Closing Remarks

An interesting and growing area is related to electronics implants. For that mat-
ter, Melzer et al. [175], Choi et al. [176], Bermúdez et al. [177,178], Ota et al. [179], and
Hua et al. [180] produced high-end electronics implants using polyethylene terephthalate
(PET), MoS2-graphene, polyimide layers, polydimethylsiloxane (PDMS) coated glass slides,
polyethylene naphthalate (PEN), and Kapton HN film (DuPont), respectively, as supports
for their materials. Solely one among these recent researchers used glass as support for
the electronic implant, which indicates that glass still fails to be a plausible choice. One
of the main reasons for that is the obstacle of having highly foldable glass practically
and easily. Moreover, obtaining thin films with a smooth and continuous surface is not
always possible, as such kinds of devices demand. Notwithstanding, we saw eagerness
and growth, as reported early in this review article, of foldable glass being used in the
phone market, virtual reality devices, and even cars with an automatic pilot. Hence, it is
expected that we could have an accession of the use of glass and glass-ceramic materials in
this field in the future.

Other great fields of inorganic flexible glass application that are yet to be explored
are those of field effect transistors (FET) and organic field effect transistors (OFET). There
are several papers published in this area using graphene, polymers, and even cellulose to
give flexible characteristics to the devices [181–196]. Among all, only one, Zocco et. al.,
reported the use of Willow® Glass and compared the efficiency between the inorganic glass
substrates with the flexible paper [196].

Encapsulating materials is a very interesting area that inorganic flexible glass could
also enter due to the characteristics discussed in this paper. This field is important with
the contribution of polymers and graphene [197–207], although inorganic flexible glass
materials also permeated the area with Willow® Glass and thin glass/polymer composition
using roll-to-roll processing [115,208–210]. However, there is still plenty of room for the
inorganic glass influence to grow.

Other possible substrates, such as plastic substrate and stretchable elastomers, are
recently appearing as alternatives to glass in the production of flexible displays and stretch-
able electronic devices. The performance of their displays are being compared taking
into account parameters such as surface quality, transmission, and thermal and dimen-
sional stability. These soft substrates are usually natural rubber (NR), styrene butadiene
rubber (SBR), ethylene-propylene-diene monomer (EPDM), polyurethane (PU), thermo-
plastic polyurethane (TPU), predominant poly(dimethylsiloxane) (PDMS), etc., which can
reversibly endure high deformations (>200%) [211]. However, the use of such materials
often results in low electrical mobility and high electrical resistivity of electronic devices
and mainly to a reduction in the working temperature.

Devices with good flexibility or stretchability based on a silicon membrane, single-
walled carbon nanotubes, or poly(ethylene naphthalate) film were prepared and fabricated
by standard methods on a carrier substrate such as a Si wafer or a glass plate [212] or even
directly on the flexible/elastic substrate, including low-temperature deposition, solution
processing, nano-/micromolding, and electrospinning. Currently being explored as an
emerging technology is the use of transfer printing in the fabrication process of flexible and
stretchable electronic devices. One example is the integration of small crystalline-silicon cir-
cuits (chiplets) in the active-matrix organic light-emitting-diode (OLED) displays [201,213].
Studies showed that these chiplets could be transfer-printed on the glass substrate via an
elastomeric stamp to help build the integrated circuits. The OLED display is then formed
and connected to the chiplets, demonstrating an exceptional performance and highlighting
the effectiveness of the transfer printing method.
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Another example that compares the properties of different substrate materials deals
with OLEDs and amorphous Si thin film (α-Si) transistors (TFTs) on both flexible glass
and thin stainless steel sheets. These studies revealed that the yield of OLEDs on stainless
steel foil substrates was lower than that on glass because of the surface roughness of
stainless steel [214].

The cost involved in manufacturing such smart materials is of utmost importance
for developing and realizing practical applications. Therefore, the design of different
materials and devices and the fabrication processes for implementing such a strategy
remain challenges.

From ancient Egypt to AM technology, from simply hollow glass to foldable or multi-
layered morphologies, inorganic glass became an unavoidable material in opto-electronic
devices and smart materials applications. After millennia of compositional and technologi-
cal developments challenging new applications and/or structures, there is plenty of room
for improvement. Hopefully, this review inspires researchers and specialists to develop
new applications of this outstanding material, leading to innovation.
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