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Abstract

Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and

other diseases to patients, researches usually attempt to reduce the radiation dose. How-

ever, reduction of the radiation dose associated with CT scans will unavoidably increase the

severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the

outstanding performance of deep neural networks in image processing, in this paper, we

proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks

several successive Competitive Blocks (CB). The carefully handcrafted design of the com-

petitive blocks was inspired by the idea of multi-scale processing and improvement the

network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive

performance of the proposed method in noise suppression, structural preservation, and

lesion detection.

Introduction

With the wider application of X-ray computed tomography (CT) in both clinical intervention

and diagnosis, the potential radiation dose has been a growing public concern [1]. The most

encouraged guide in this field to reduce the radiation dose as low as possible while maintaining

the imaging quality sufficient for diagnostic accuracy. A direct way to achieve this purpose is

to lower the X-ray tube current or voltage. However, since the imaging procedure is an inte-

gration of quantum photons, insufficient photons will unavoidable generate quantum noise

and degrade the quality of reconstructed images from traditional analytic method, i.e. filtered

back-projection (FBP). The existing solutions can be primarily categorized into projection

space filtering, iterative reconstruction and image post-processing. The approaches in all three

categories aim to improve the reconstructed CT images from low-dose scans.

Projection space filtering [2] directly operates on raw projection data or log-transformed

sinogram before FBP is applied. Although this kind of method has low computational cost,

their results may suffer from structure distortion due to the lack of well definition image edges

in projection domain. Iterative reconstruction (IR) [3] models the reconstruction problem as

an objective function with prior constraints. Different priors have been proposed for dealing

PLOS ONE | https://doi.org/10.1371/journal.pone.0190069 December 21, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Du W, Chen H, Wu Z, Sun H, Liao P,

Zhang Y (2017) Stacked competitive networks for

noise reduction in low-dose CT. PLoS ONE 12(12):

e0190069. https://doi.org/10.1371/journal.

pone.0190069

Editor: Yuanquan Wang, Beijing University of

Technology, CHINA

Received: October 18, 2017

Accepted: December 7, 2017

Published: December 21, 2017

Copyright: © 2017 Du et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The resource code of

this work has been released with 0https://github.

com/Wenchao-Du/SCN-for-Image-Denoising0.

Funding: This work was supported in part by the

National Natural Science Foundation of China under

Grants 61671312, 61302028, 61202160, and the

National Key R&D Program of china under Grants

2017YFB0802300.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190069
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190069&domain=pdf&date_stamp=2017-12-21
https://doi.org/10.1371/journal.pone.0190069
https://doi.org/10.1371/journal.pone.0190069
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Wenchao-Du/SCN-for-Image-Denoising
https://github.com/Wenchao-Du/SCN-for-Image-Denoising


with the CT issues of low dose, limited angle and few views, such as nonlocal means (NLM),

total variation (TV) and its variants, and sparse representation [4][5][6][7][8][9][10][11][12]

[13][14]. Despite promising results obtained by this type of method, their wide application is

still circumscribed on account of the difficulty of accessing well-formatted raw data from com-

mercial CT scanners and heavy computational burden. Relatively speaking, post-image pro-

cessing methods can be applied directly on low-dose CT (LDCT) images and are more

convenient to be combined into current CT systems. However, due to the fact that the noise

and artifacts cannot be well determined in image domain, it is very hard to achieve satisfactory

results by directly transplanting current general image denoising methods. In recent years,

extensive attempts based on image post-processing methods have been made to deal with this

problem [15][16]. Most representatively, inspired by the theory of sparse representation, Chen

et al. proposed a patch-based fast dictionary learning approach to suppress both mottled noise

and streak artifacts [16]. Additionally, the block-matching 3D (BM3D) algorithm has demon-

strated to be efficient in several low-level image restoration tasks and was adapted to improve

the quality of LDCT images [17].

Recently, deep learning has received overwhelming concerns due to its superior perfor-

mance in numerous scientific research fields. In the field of medical imaging, several prelimi-

nary researches with this idea were proposed [18][19][20][21][22]. Wang et al. integrated a

CNN-based sparse prior into the IR framework as the regularization term for accelerating

MRI reconstruction [18]. Zhang et al. designed a simple 3-layer convolutional neural network

(CNN) for limited-view tomography [19]. Chen et al. proposed a lightweight CNN method to

estimate the mapping function from LDCT images to their corresponding routine-dose images

[20]. Kang et al. applied the U-Net to the multiscale data of LDCT images after decomposition

by the wavelet transform [21]. By combining the idea of residual encoders into traditional

CNN, Chen et al. attained promising results in LDCT [22].

In spite of some preliminary results achieved by deep learning for LDCT, the power of a

deeper and wider network has not been fully explored. Several studies in the field of computer

vision have made considerable progress on constructing deep architecture [23][24][25]. How-

ever, to prevent from discard of meaningful structural details, most neural network models for

image restoration, which is considered a low-level task, had limited the depth of network. This

property is different from high-level tasks in computer vision, e.g. classification or detection

[26][27], in which max-pooling operation is extensively used to capture high-level features.

In this paper, we expand the frontier of CT analysis by adopting a deep network for process-

ing the complex nonlinearity in LDCT. Inspired by the work of [23], we introduce a new archi-

tecture named Stacked Competitive Network (SCN), which is illustrated in Fig 1, into the

traditional CNN. Instead of a single stacked CNN, our SCN is comprised of several successive

Competitive Blocks (CB). Each CB introduces a multi-scale processing mechanism by

Fig 1. An overview of the proposed architecture SCN.

https://doi.org/10.1371/journal.pone.0190069.g001
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increasing the width of the network, which can further improve the ability of the traditional

CNN. In the second section, the proposed SCN model is elaborated. In the third section, quali-

tative and quantitative experiments were performed to evaluate the proposed SCN model.

Finally, the conclusion was drawn.

Method

Single competitive block

The main idea of the single competitive block is to optimize the local structure in a CB with a

certain sparsity, which can be approximately obtained by possible dense components. It is

noteworthy that assuming shift-invariant means the proposed network can be constructed

from stacked blocks. For this purpose, what we need to do is to identify the optimal sparse

structure and repeat it spatially.

We assume that each feature map from the previous layer relates to regions of the input

image, and these feature maps are clustered into different filter banks. However, single-scale

filters cannot adequately capture low-level features and texture patterns simultaneously, espe-

cially in LDCT images.

Inspired by the work of [23], convolutional filters with different scales were utilized, which

means that multi-scale texture and structural features could be captured in the same image

region. Furthermore, because pooling layers will result in the loss of spatial information, all of

the pooling operations are discarded in our blocks.

Although multi-scale filters can capture richer information of original images, they have

shortcomings. First, many redundant feature maps are used repeatedly, which inevitably

increases the computational burden. In addition, the introduction of a CB significantly boosts

network parameters, which increases the difficult of training.

To solve these problems, a Combination Function (CF) is designed for each block. A feature

map is generated as the input of the next layer in the network. The CF can be formulated as fol-

lows:

ai ¼ Fðai� 1Þ; ð1Þ

and

Fðai� 1Þ ¼ sðW1
i ai� 1 þ b1

i Þ � sðW3
i ai� 1 þ b3

i Þ � � � � �

� � � � � � � sðWk
i ai� 1 þ bk

i Þ . . .� sðWK
i ai� 1 þ bK

i Þ; k 2 f1; 3; . . . ;Kg;
ð2Þ

where σ(�) is the ReLU function; ai-1 is the feature representation of the (i-1)th layer; k repre-

sents the scale kernel size of the ith layer;� is the element-wise max operation; F can be viewed

as a competitive combination function, which can be implemented using the element-wise

max operation in the network; and ai is the new feature map constructed by CF, which is used

as the input of the next layer. The structure of a single competitive block is shown in Fig 2.

Stacked competitive networks

Since the CNN-based approaches are immune to the impact of the statistical distribution of

the artifacts and noise, we model the noise reduction problem for LDCT as follows. Letting

X2Fm×n be an LDCT image, and letting Yg2Fm×n be the corresponding normal-dose image,

the noise-reduction problem can be transformed into the problem of learning a mapping

SCN for noise reduction in LDCT
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function R directly from the LDCT to NDCT as follows:

R : X ! Yg : ð3Þ

Generally, R is nonlinear and complicated. To achieve this aim, k single Competitive Blocks

(CBs) are stacked as a deep CNN to transform the LDCT image to its corresponding NDCT

image. The noise reduction problem can be formulated as the minimization of the following

loss function:

LðYÞ ¼


YgðxÞ � FkðFk� 1ð. . . F1ðxÞÞÞ





2

2

; ð4Þ

where Fi is the competitive mapping function of the ith layer in the proposed SCN and Θ
denotes the parameters of the network. Nonlinear mapping is imposed into the first k−1 blocks

to represent the nonlinear relationship between the LDCT and NDCT image features. The

competitive block in the last layer, namely, Fk, reconstructs the estimated NDCT image Yr.

To avoid over-fitting, a regularization term
Xk

i¼1
kWik

2

F (a weight decay term) is intro-

duced, which forces to reduce the magnitudes of the weights. The objective function is re-for-

mulated as follows:

LðYÞ ¼


YgðxÞ � FkðFk� 1ð. . . F1ðxÞÞÞ





2

2

þ a
Xk

i¼1
kWik

2

F: ð5Þ

Due to the large number of parameters, the optimization of L tends to fall into a local mini-

mum. To avoid this situation, first, an unsupervised pre-training process was utilized to initial-

ize the first k−1 layers in a stacked strategy, and we randomly initialize the kth layer; second, we

fine-tuned the whole network in a supervised way. The output of this single-hidden-layer net-

work ai = Fi(ai-1) is used as the input of the next layer. The original LDCT image is used as the

input of the first layer, i.e., a0 = x. After initialization, all of the layers were fine-turned with

(Eq 5). As a result, the front layers of a stacked competitive block attempt to catch the low-level

features, such as texture patterns in LDCT images, while the higher layers try to seize higher-

level features that contain context information from low-level features.

Owing to the SCN is an end-to-end architecture, once the network is configured, the set of

the parameters, Θ should be estimated to build the mapping function R. The estimation can be

achieved by minimizing the loss function L(Θ) between the estimated CT images X and the

reference NDCT images Yg. Given a set of paired patches P = {(X1,Y1),(X2,Y2),. . .,(XT,YT)}

where {Xt} and {Yt} denote LDCT and NDCT image patches respectively, and T is the total

number of training samples. In the training stage, the loss function was first optimized by

Adam [28] and later by SGD [29] optimization.

Fig 2. Single competitive block model.

https://doi.org/10.1371/journal.pone.0190069.g002
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Experimental design and results

For evaluation purpose, we compared our method with five different state-of-the-art

approaches: TV-POCS [10], K-SVD [16], BM3D [17], SSCN [20], and KAIST-Net [21].

K-SVD and BM3D are the two powerful image restoration algorithms, which have been suc-

cessfully employed by LDCT. TV-POCS is a classical IR method constrained by a sparse gradi-

ent prior. SSCN is a first CNN-based LDCT image restoration model, which only has single-

scale convolutional kernel, e.g., 5×5. We also compared to a recently presented deep CNN

model, called KAIST-Net. It can be treated as an advanced variant of the SSCN model aided by

multi-scale residual learning. In all the cases, the parameters in TV-POCS, KSVD and BM3D

were adjusted to achieve the best result.

Three metrics, including, peak signal-to-noise ratio (PSNR), root mean square error

(RMSE), and structural similarity index measure (SSIM), were chosen for quantitative assess-

ment. All experiments were implemented in MATLAB 2017a on a PC (Inter i7-4970 CPU, 32

G RAM and GTX 980TI graphics card). The codes of this project have been released in web

page (https://github.com/Wenchao-Du/SCN-for-Image-Denoising).

Data source

Simulated data. TCIA Dataset: This dataset included 7015 NDCT images from 165

patients, which were obtained from The Cancer Imaging Archive (TCIA, https://imaging.nci.

nih.gov/ncia/). The image samples were 256×256 pixels. Several representative slices are

shown in Fig 3. It can be seen that different body parts were involved to maintain the diversity

of data source. The corresponding LDCT images were simulated by introducing Poisson noise

into the projection data from the NDCT images. Under the assumption of monoenergetic

source, the projection data obey the Poisson distribution that can be formulated as

zi � Poisson
n

bie
� li þ ri

o
; i ¼ 1; . . . ::; I; ð6Þ

where zi is the measurement along the ith X-ray path, bi is the blank scan factor, ri denotes the

electronic noise, and li is the integral of the X-ray attenuation coefficients. In our simulations,

the noise level can be easily controlled with different bi. In the initial experiments, bi was uni-

formly set to 105 photons and denoted as b0 = bi = 105, i = 1,. . . ..,I. The Siddon ray-driven

algorithm was utilized to produce the projection data with a fan-beam geometry. The

Fig 3. Typical LDCT images for training.

https://doi.org/10.1371/journal.pone.0190069.g003
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detector-to-rotation center distance was 400 mm and the rotation center-to-source distance

was 400 mm. The physical size of image was 200 mm×200 mm. The length of detector was 413

mm and the detector had 512 bins. Over a 360˚ range, 1024 projections were uniformly

sampled.

Since directly processing the complete image is knotty, SCN was applied on image patches

instead. Usually, deep neural networks require amount of training samples, which will be diffi-

cult to obtain in the medical field due to the limitations of patient privacy. Extracting image

patches with overlapped sliding windows is an efficient way to enlarge the training set.

In our experiments, 200 NDCT and corresponding simulated LDCT image pairs were ran-

domly chosen for training and 100 images pairs were randomly chosen for testing. The test

data is chosen from a different subject than the training set.

Clinical data. Mayo Clinical Dataset: This dataset included 2378 3-mm-thickness routine-

and quarter-dose CT images from ten patients. The usage of Mayo dataset was provided by

Low Dose CT Grand Challenge (http://www.aapm.org/GrandChallenge/LowDoseCT/). The

training set composed of a portion of routine- and quarter-dose image pairs. The testing set

contained the rest of the image pairs. For comparison, 10-fold cross validation was used in the

testing stage: the images from nine patients were involved in the training stage and the rest

one was used as testing samples.

Parameter selection

The training data consist of pairs of image patches with size of 100×100 that were extracted

from LDCT images with a sliding distance of four pixels. After extracting image patches, the

number of training samples reached 106. The network was implemented with Caffe. In our

experiments, we evaluated several parameter combinations and finalized the parameter setting

as follows. The learning rate was initialized to 10−2 and gradually decayed to 10−5. The convo-

lutional kernels were initialized with random Gaussian distributions with zero mean and stan-

dard deviation 0.01. The numbers of filters in the layers were 96 except the last layer, which

was set to 1. To avoid patch-alignment issues and heavy computational burden, the competi-

tive blocks were restricted to 3 filters with sizes of 5×5, 3×3 and 1×1. Due to the flexibility of

CNN, the proposed SCN can perform on patches with arbitrary size. All of the testing samples

were fitted into the network directly without any pre-processing operations.

Experimental results

Simulated data. In order to evaluate the performance of the proposed SCN, two typical

slices, which were from thorax and abdomen, were selected. Due the difference of scan proto-

cols between two slices, the noise and artifacts in both images appeared in different degrees.

Fig 4 demonstrates the thoracic image processed by different methods. In Fig 4(b), it is obvious

that the LDCT image has severe streak artifacts and noise, especially close to the tissues with

high attenuation coefficients, e.g. bones. All the approaches showed different abilities on noise

and artifact reduction. In Fig 4(c), it is noticed that TV-POCS smoothed some small details in

the pulmonary lobes due to its notorious blocky effect. K-SVD and BM3D had a better perfor-

mance on detail preservation than TV-POCS, but the artifacts radiated from the bones were

still obvious. SSCN, KAIST-Net and SCN removed most artifacts and noise and the structural

information were maintained better than other methods. In addition, SCN better distin-

guished the low-contrast regions. Fig 5 shows the magnified the region from different meth-

ods, which was indicated by the green box. Obviously, the parts pointed by the blue arrow

were blurred in Fig 5(c). The other methods can discriminate these details to various degrees.

SCN for noise reduction in LDCT
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In Fig 5(h), the details were well preserved without blurring. In Fig 5(d) and 5(e), the streak

artifacts can be observed adjacent to the bones, which are indicated by the red arrow.

Four ROIs, which are indicated by red dotted rectangles in Fig 4(a), were selected for quan-

titative assessment. The magnified ROIs are shown in Fig 6. It can be noticed that the quantita-

tive results had coherent trend to visual effect. The SCN had the best values in all the metrics

for all the ROIs.

Fig 7 gives the abdominal image processed by different methods. Since the routine-dose

abdominal image (Fig 7(a)) is noisier than routine-dose thoracic image (Fig 4(a)), it will be

much more difficult to distinguish the structures due to the severe deterioration in low-dose

abdominal image (Fig 7(b)). TV-POCS and K-SVD had limited performance in recovering the

details as shown in Fig 7(c) and 7(d). The result in Fig 7(c) is still contaminated by blocky

effect. Although BM3D suppressed most noise, the artifacts near the vertebral column are evi-

dent. SSCN, KAIST-Net and SCN eliminated most of the artifacts and noise, but the results in

Fig 7(f) and 7(g) suffered from mild blurring and this drawback was also mentioned in our

previous work [14]. Several regions with detectable structure differences are marked by the red

Fig 4. The thoracic image processed by different methods for comparison. (a) NDCT, (b) LDCT, (c)

TV-POCS (λ = 0.08), (d) K-SVD (σ = 4, n = 80000, block_size = 8), (e) BM3D (σ = 9.5), (f) SSCN, (g)

KAIST-Net, and (h) SCN. The green box denotes the region that is magnified in Fig 5. Several ROIs were

defined by red rectangles.

https://doi.org/10.1371/journal.pone.0190069.g004

Fig 5. Magnified part marked by a green box in Fig 4(a). (a) NDCT, (b) LDCT, (c) TV_POCS, (d) K-SVD,

(e) BM3D, (f) SSCN, (g) KAIST-Net, and (h) SCN ((a)-(h) from Fig 4(a)–4(h)). The arrows mark two locations

with visible differences.

https://doi.org/10.1371/journal.pone.0190069.g005
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arrows. The red arrow in the middle of the liver point to a structural detail, which was well

retained by SCN in Fig 8. Other tissues, such as vertebral column and bones were best main-

tained in the results of SCN as well.

The quantitative results for the abdominal image processed by different approaches are

shown in Table 1. It can be seen that SCN achieved an impressive result on all indices. Table 2

shows the statistical results for all the 100 images in the testing set. The proposed SCN outper-

formed other competing methods in all of the metrics.

Clinical data. To further evaluate the performance of SCN, a representative slice from

Mayo clinical dataset was selected and Fig 9 shows the results. It is easy to be observed that

SCN obtained the superior capability of detail reservation and noise reduction. In Fig 10,

SCN yielded the best image quality for detail recovery and structure preservation, as

highlighted by the red circles in the magnified parts. Extra artifacts were introduced by K-SVD

and TV-POCS. BM3D over-smoothed the details. Only CNN based methods can differentiate

Fig 6. Statistical result from different methods over the ROIs indicated in Fig 4(a) in terms of the

specific metrics.

https://doi.org/10.1371/journal.pone.0190069.g006
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the contrast-enhanced intercostal vein, which is indicated by the red arrowhead in Fig 10.

Although KAIST-Net and SSCN achieved similar performances to SCN, the texture and struc-

tural details were better retained in Fig 10(h).

The coronal and sagittal images of the results are demonstrated in Figs 11 and 12. Red cir-

cles indicate the regions with visual differences. It is clear that comparing with other methods,

SCN can remove most of the noise while maintaining more structure information.

Table 3 summarizes the quantitative results of Figs 9 and 10. SCN outperformed the other

methods in all the metrics. Table 4 shows the quantitative results of 10-fold cross validation in

terms of MEANS±SDs.

Investigation of competitive blocks in SCN. As the proposed SCN model composed of

several successive CBs, the impact of CB was investigated. We constructed convolutional

Fig 7. The abdominal image processed by different methods for comparison. (a) NDCT, (b) LDCT, (c)

TV-POCS (λ = 0.08), (d) K-SVD (σ = 4, n = 80000, block_size = 8), (e) BM3D (σ = 9.5), (f) SSCN, (g)

KAIST-Net, and (h) SCN. The arrows indicate three locations in which the visible differences can be observed.

https://doi.org/10.1371/journal.pone.0190069.g007

Fig 8. Magnified part marked by a green box in Fig 7(a). (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD,

(e) BM3D, (f) SSCN, (g) KAIST-Net, and (h) SCN ((a)-(h) from Fig 7(a)–7(h)). The arrows point to two

locations with structural information that were recovered differently by the competing methods.

https://doi.org/10.1371/journal.pone.0190069.g008
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networks with the same structure but instead used the convolution operation with single-scale

5�5 and 3�3 convolutional kernels; these CNNs are denoted as CNN-5 and CNN-3, respec-

tively. The experiments were performed on TCIA dataset.

Meanwhile, to evaluate the robustness of SCN, training and testing data with different noise

levels were generated to produce the quantitative results, which are shown in Table 5. In this

table, the training set of CNN-5, CNN-3 and SCN was randomly mixed with various noise lev-

els for b0 = 105, b0 = 5×105 and b0 = 5×104. It can be noticed that SCN still achieved the best

Table 1. Quantitative results associated with different algorithms for the abdominal image.

PSNR RMSE SSIM

LDCT 32.4435 0.0239 0.7416

TV-POCS 38.8888 0.0114 0.9054

K-SVD 36.7985 0.0145 0.8904

BM3D 38.7910 0.0115 0.9294

KAIST-Net 40.9523 0.0090 0.9572

SSCN 41.5981 0.0083 0.9622

SCN 41.8059 0.0081 0.9625

https://doi.org/10.1371/journal.pone.0190069.t001

Table 2. Quantitative results (mean±std) associated with different algorithms for the images in the

testing dataset.

PSNR RMSE SSIM

LDCT 36.3975±2.5430 0.0158±0.0050 0.8635±0.0659

TV_POCS 41.5021±2.3344 0.0087±0.0024 0.9430±0.2241

K-SVD 40.8445±2.7059 0.0096±0.0036 0.9497±0.0380

BM3D 41.5358±2.6471 0.0088±0.0033 0.9597±0.0292

KAIST-Net 43.1295±2.1453 0.0072±0.0019 0.9742±0.0120

SSCN 43.6658±2.0257 0.0067±0.0017 0.9774±0.0123

SCN 43.9120±2.0828 0.0066±0.0017 0.9777±0.0105

https://doi.org/10.1371/journal.pone.0190069.t002

Fig 9. The thoracic image processed by different methods for comparison. (a) NDCT, (b) LDCT, (c)

TV-POCS (λ = 0.08), (d) K-SVD (σ = 4, n = 80000, block_size = 8), (e) BM3D (σ = 9.5), (f) KAIST-Net, (g)

SSCN, (h) SCN.

https://doi.org/10.1371/journal.pone.0190069.g009
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performance, which is a powerful evidence for the merit originated from the introduction of

CBs. The robustness of SCN for different noise levels is also can be confirmed.

We examined the impact of the number of convolutional kernels contained in a single CB.

Several SCN networks were constructed and different numbers of convolutional kernels were

included in a single CB. These networks are denoted as SCN-2, SCN-3 and SCN-4 respectively.

The CBs in SCN-2 contains both 1×1 and 3×3 kernels; the CBs in SCN-3 contain 1×1, 3×3 and

5×5 kernels; the CBs of SCN-4 contains 1×1, 3×3, 5×5 and 7×7 kernels. The experiments were

performed on TCIA dataset.

Fig 10. Magnified part marked by a red rectangle in Fig 9(a). (a) NDCT, (b) LDCT, (c) TV-POCS, (d)

K-SVD, (e) BM3D, (f) KAIST-Net, (g) SSCN, (h) SCN. The circle denotes the spinal cord area and the red

arrowhead located the contrast-enhanced intercostal vein.

https://doi.org/10.1371/journal.pone.0190069.g010

Fig 11. Coronal images processed by different methods for comparison. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D,

(f) KAIST-Net, (g) SSCN, (h) SCN.

https://doi.org/10.1371/journal.pone.0190069.g011
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Fig 12. Sagittal images processed by different methods for comparison. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D,

(f) KAIST-Net, (g) SSCN, (h) SCN.

https://doi.org/10.1371/journal.pone.0190069.g012

Table 3. Quantitative results associated with different algorithms for Figs 9 and 10.

Fig 9 Fig 10

PSNR RMSE SSIM PSNR RMSE SSIM

LDCT 36.1320 0.0156 0.8646 33.6506 0.0208 0.8637

TV-POCS 38.3537 0.0121 0.9258 35.1303 0.0175 0.9170

K-SVD 39.1203 0.0111 0.9263 35.7178 0.0164 0.9212

BM3D 39.5289 0.0106 0.9292 36.0610 0.0157 0.9235

KAIST-Net 39.6314 0.0104 0.9337 36.5035 0.0150 0.9311

SSCN 39.9666 0.0100 0.9442 36.3006 0.0153 0.9290

SCN 40.1022 0.0099 0.9443 36.7345 0.0146 0.9328

https://doi.org/10.1371/journal.pone.0190069.t003

Table 4. Quantitative results (MEANS±SDs) associated with different algorithms on cross-validation.

PSNR RMSE SSIM

LDCT 37.5499±1.9246 0.1358±0.0030 0.8786±0.0413

TV-POCS 40.1523±1.6217 0.0100±0.0019 0.9372±0.0194

K-SVD 40.8753±2.1900 0.0093±0.0025 0.9359±0.0250

BM3D 41.1705±1.7350 0.0089±0.0020 0.9412±0.0177

KAIST-Net 41.3048±1.6877 0.0088±0.0017 0.9436±0.0180

SSCN 41.8338±1.8018 0.0083±0.0017 0.9524±0.0169

SCN 41.9175±1.8708 0.0082±0.0018 0.9525±0.0170

https://doi.org/10.1371/journal.pone.0190069.t004

SCN for noise reduction in LDCT

PLOS ONE | https://doi.org/10.1371/journal.pone.0190069 December 21, 2017 12 / 15

https://doi.org/10.1371/journal.pone.0190069.g012
https://doi.org/10.1371/journal.pone.0190069.t003
https://doi.org/10.1371/journal.pone.0190069.t004
https://doi.org/10.1371/journal.pone.0190069


Table 6 shows the quantitative results. In Table 6, the training and testing sets were same as

Table 5 for SCN-2, SCN-3 and SCN-4. It can be observed that SCN-4 obtained better perfor-

mance, which confirmed the effectiveness of multi-scale convolutional kernels and more scales

can further improve the performance. However, adding more convolutional kernels will

unavoidably increase the training time. To balance the computational cost and performance,

we believed that 3 kernels in a single CB was a reasonable choice.

Conclusions

We proposed a novel network structure, aided by stacked competitive blocks, for LDCT

image restoration. The primary advantage of this method is the introduction of multi-scale

processing. Based on two public databases, our proposed SCN achieved the best performance

compared with other competing methods, in terms of noise suppression and structural preser-

vation. Next, we are planning to optimize SCN ulteriorly and try to apply it to the wider range

of medical imaging tasks.
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Table 5. Quantitative results (mean) associated with different algorithms for combinations of noise levels.

Noise level of testing data TV-POCS K-SVD BM3D KAIST-Net CNN-5 CNN-3 SCN

b0 = 5×105 PSNR 44.8030 44.0576 44.2798 44.9645 45.2609 45.2998 45.6102

RMSE 0.0061 0.0064 0.0063 0.0058 0.0056 0.0056 0.0054

SSIM 0.9735 0.9778 0.9796 0.9827 0.9835 0.9829 0.9837

b0 = 1×105 PSNR 41.5021 40.8445 41.5358 43.88781 43.392 43.4035 43.6498

RMSE 0.0087 0.0096 0.0088 0.0075 0.0070 0.0070 0.0068

SSIM 0.9498 0.9447 0.9509 0.9765 0.9768 0.9760 0.9770

b0 = 5×104 PSNR 39.7729 38.9090 39.8928 41.8451 42.1944 42.1828 42.4149

RMSE 0.0106 0.0121 0.0121 0.0084 0.0090 0.0080 0.0078

SSIM 0.9221 0.9296 0.9296 0.9688 0.9714 0.9702 0.9717

https://doi.org/10.1371/journal.pone.0190069.t005

Table 6. Quantitative results (mean) associated with different numbers of convolutional kernels in CBs for combinations of noise levels.

Noise level of testing data SCN-2 SCN-3 SCN-4

b0 = 5×105 PSNR 45.3385 45.5520 45.7072

RMSE 0.0055 0.0054 0.0053

SSIM 0.9824 0.9836 0.9837

b0 = 1×105 PSNR 42.0861 42.2169 42.6289

RMSE 0.0081 0.0080 0.0076

SSIM 0.9687 0.9698 0.9725

b0 = 5×104 PSNR 40.7229 41.2028 41.4025

RMSE 0.0096 0.0090 0.0088

SSIM 0.9592 0.9642 0.9655

https://doi.org/10.1371/journal.pone.0190069.t006
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