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Aims/Hypothesis. The role of microRNAs (miRNAs) in type 1 diabetes (T1D) pathogenesis and progression has been described
but remains elusive. Objectives. To evaluate the potential biological involvement of miRNA expression in the immune response
and beta cell function in T1D. Methods.We screened 377 serum miRNAs of 110 subjects divided into four groups: healthy
individuals (control group) and patients at different stages of T1D progression, from the initial immunological manifestation
presenting islet autoantibodies (AbP group) until partial and strong beta cell damage in the recent (recent T1D group) and
long-term T1D, with 2 to 5 years of disease (T1D 2-5y group).Results. The results revealed 69 differentially expressed miRNAs
(DEMs) in relation to controls. Several miRNAs were correlated with islet autoantibodies (IA2A, GADA, and Znt8A), age, and
C-peptide levels, mainly from AbP, and recent T1D groups pointing these miRNAs as relevant to T1D pathogenesis and
progression. Several miRNAs were related to metabolic derangements, inflammatory pathways, and several other autoimmune
diseases. Pathway analysis of putative DEM targets revealed an enrichment in pathways related to metabolic syndrome,
inflammatory response, apoptosis and insulin signaling pathways, metabolic derangements, and decreased immunomodulation.
One of the miRNAs’ gene targets was DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2), which is an
autoantigen targeted by an antibody in T1D. ROC curve analysis showed hsa-miR-16 and hsa-miR-200a-3p with AUCs greater
than for glucose levels, with discriminating power for T1D prediction greater than glucose levels. Conclusions/Interpretation.
Our data suggests a potential influence of DEMs on disease progression from the initial autoimmune lesion up to severe beta
cell dysfunction and the role of miRNAs hsa-miR-16 and hsa-miR-200a-3p as biomarkers of T1D progression.

1. Introduction

miRNAs are small noncoding RNAs functioning as post-
transcriptional regulators of gene expression, affecting cell

proliferation, differentiation, apoptosis, metabolism, and
immunity. They can be released actively by cells or during
tissue damage and have been used as biomarkers of destruc-
tion or regeneration of beta cells and of altered
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immunological activity, revealing mechanisms underlying
the pathophysiology of type 1 diabetes [1–3]. A previous
work from our group revealed the potential role of circulat-
ing miR-101 in its pathogenesis [4]. However, there are still
contradictory data comparing miRNA profiles from individ-
uals at different stages of diabetes, from preclinical to recent
and long-duration T1D. Furthermore, the same miRNAs
were shown to be up- or downregulated in the same phase
of the disease and to be protective or at risk for diabetes.
There is no clear definition about the effects of age, diabetes
duration, and glucose levels, considering that metabolic
derangements caused by glucolipotoxicity and inflammatory
cytokines can change the miRNA milieu and interfere with
the results [5–7]. Here we investigated whether there is a dif-
ferential profile of serum miRNAs at different stages of T1D,
which could suggest their participation in its pathogenesis
considering these variables. We covered the phases of the
highly active autoimmune process and those subject to glu-
colipotoxicity effects, e.g., from the first autoimmune mani-
festations (islet autoantibodies) without diabetes to recent
and long-duration T1D. Additional information can come
from the admixed populations of Brazil, expressing different
frequencies of genetic markers of T1D [8].

2. Methods

The study was approved by the Ethical Committee of Hospi-
tal das Clinicas, Faculdade de Medicina, Universidade de São
Paulo (Cappesq 11601), and followed the guidelines of the
Declaration of Helsinki. Informed consent was obtained
from all patients. Collected serum samples were stored at
−80°C until use. Hemolyzed samples were excluded.

2.1. Experimental Design. We screened 377 serum miRNAs
of 110 subjects divided into four groups according to ADA
criteria [9]: individuals with islet autoantibodies without dia-
betes (AbP group; n = 25), newly diagnosed patients with
T1D with duration ≤6 months (recent T1D group; n = 30),
patients with T1D with 2 to 5 years of duration (T1D 2-5y
group; n = 26), and islet autoantibody negative healthy indi-
viduals (control group; n = 29). Exclusion criteria comprised
other types of diabetes, use of medications except insulin, a
febrile state within 10 days prior to blood collection, and
individuals with liver, kidney, thyroid, and inflammatory/
autoimmune diseases.

Demographic characteristics, such as age, self-reported
skin color, and sex were similar between groups (Table 1).
Patients with T1D (both recent and lasting 2-5 years) were
similar to each other and differed from the control group
by higher values of glucose, HbA1c, islet autoantibody, and
lower C-peptide levels (p < 0:05). AbP group presented
intermediate characteristics (lower HbA1c and IA2A and
higher C-peptide levels than both groups with T1D) and dif-
fered from the controls by higher IAA and GADA levels.
HLA high-risk alleles for diabetes (DR3/DR4; DQ2/DQ8)
were less frequent in the control group (p < 0:05).

2.2. RNA Analysis. RNA/miRNAs were isolated from 200μL
serum samples using the miRNeasy Serum/Plasma kit (Qia-
gen, Hilden, Germany), and the reverse transcription reac-
tion was performed using Megaplex™ RT Human Pool A
(Thermo Fisher, USA), TaqMan® MicroRNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, California,
USA), according to manufacturer’s instructions. The RT
products were preamplified according to the manufacturer’s

Table 1: Expression of serum miRNAs of AbP, recent T1D, and T1D 2-5y groups in relation to the control group.

Control group AbP group Recent T1D group T1D 2-5y group p value

Number 29 25 30 26

Age (years) 14.5 (10.0-18.9) 11.7 (9.0-19.0) 13.0 (9.9-18.6) 13.3 (10.7-18.7) 0.5226

Ethnicity (white) % 68.9 62.5 86.2 76.9 0.2213

Female % 58.6 44 50 42.3 0.6150

Glucose levels (mg/dL) 81 (76.5-88.0) 86 (78.2-90.7) £ 113.5 (82-193)# 189 (121-287.5) § <0.0001
Age at diagnosis (years) 12.8 (9.0-18.2) 10.5 (6.7-15.2)

Diabetes duration (years) 0.25 (0.09-0.33) 3.8 (2.9-4.6)

HbA1c (mmol/mol) 33.3 (30.1-35.5) 32.2 (27.9-35.5) £¥ 56.3 (49.7-76.0) # 66.1 (60.7-72.7) § <0.0001
HbA1c (%) 5.2 (4.9-5.4) 5.1 (4.7-5.4) £¥ 7.3 (6.7-9.1) # 8.2 (7.7-8.8) § <0.0001
IAA (nU/mL) 0.0 (0.0-19.7) 69.5 (24.7-75.3)∗ — — <0.0001
GADA (Ul/mL) 0.0 (0.0-2.0) 64 (22.2-335)∗ 161.5 (48-477)# 46.0 (11.3-642.5) § <0.0001
Anti-ZnT8 (Ul/mL) 1.0 (0.0-6.0) 5.5 (3.0-412.6) ¥ 645 (222-1.127) # 48 (5.50-520.0) § <0.0001
IA2-A (Ul/mL) 0.0 (0.0-12.5) 12.0 (0.0-152.5) ¥£ 812.0 (267.3-2.365) # 206 (34-638) § <0.0001
C-peptide (ng/mL) 2.2 (1.8-3.0) 2.2 (1.3-3.0) £¥∗ 0.65 (0.4-1.1) # 0.2 (0.1-0.4) § <0.0001
HLA-DR3 or DR4 alleles (%) 10.3 57.1∗£¥ 92.9 # 96 § <0.0001
HLA-DQ2 or DQ8 alleles (%) 13.8 75∗ 89.3 # 92 § <0.0001
AbP group (individuals without diabetes expressing islet autoantibody), recent T1D group (newly diagnosed patients with type 1 diabetes with duration ≤6
months), T1D 2-5y group (patients with type 1 diabetes with 2 to 5 years of duration), and health control group, IAA: insulin autoantibody; GADA: glutamic
acid decarboxylase antibody; IA-2A: tyrosine phosphatase autoantibody; ZnT8A: zinc transport 8 autoantibody; # (recent T1D × Control); § (T1D 2-5y ×
control); ∗(AbP × control); £ (AbP × T1D 2-5); ¥ (AbP × recent T1D).
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protocol—Megaplex™ pool for microRNA Expression Anal-
ysis (Thermo Fisher, USA). Real-Time RT-PCR was per-
formed using the TLDA TaqMan® Low Density Array-
Card A v2.0 for humans (384 microRNAs), according to
manufacturer’s instructions, on the QuantStudio12K Flex
(Applied Biosystems, Foster City, California, USA).

2.3. MiRNAs Target Prediction and Pathway Analyses. The
potential targets of the differentially expressed miRNAs
(DEMs) were predicted using miRWalk v2.0, 2018 (http://
zmf.umm.uni-heidelberg.de/mirwalk2), TargetScan Human
v7.2, 2018 (https://www.targetscan.org/vert_72/), and IPA
software (Ingenuity® Pathways Analysis-5.0; Ingenuity Sys-
tems, Qiagen, USA). Pathway enrichment analysis was per-
formed using IPA and KEGG database (https://www
.genome.jp/kegg/tool/map_pathway1.html), considering
only experimentally validated DEM targets and prioritized
targets related to beta cell function and autoimmune
manifestations.

2.4. Glucose, HbA1c, C-Peptide, and Autoantibody Levels.
Fasting glucose levels were determined by enzymatic colori-
metric assay (LABTEST GOD-ANA, SP, Brazil), HbA1c by
HPLC, and C-peptide levels by radioimmunoassay
(HCP20K, Millipore Corporation, Billerica, MA, USA; nor-
mal values>0.5 ng/mL; intra- and interassay CVs: 4.5% and
9.3%, respectively). IAA, GADA, and IA2A levels were
determined by radioimmunoassay (RSR limited, High Ben-
tham, Lancaster, UK; CV<7%). The normal values for 700
healthy controls (3 SD) were <100nU/mL, <25 IU/mL, and
<125 IU/mL, respectively. ZnT8A levels were measured by
ELISA (KR770-96; Kronus, Boise, Idaho, USA; CV<7%).
The normal value in 321 healthy controls was ≤16 IU/mL
(3 SD).

2.5. Statistical Analysis. The analysis of miRNAs expression
used the Cloud program (Thermo Fisher Scientific, Wal-
tham, MA, USA), an online data analysis software of the
Cτ comparative method [10]. The threshold was manually
aligned. The chosen criteria for the validation of qRT-PCR
reactions were exponential and plateau amplification curves.
miRNAs with Ct up to 35 were selected. The relative expres-
sion of miRNAs was obtained by the comparative method of
Ct (2-ΔΔCt), using global normalization and Benjamini and
Hochberg’s false discovery rate method, and represented as
fold change (FC) in relation to controls. Values >1 were con-
sidered increased and < 1 decreased. Variable distributions
were verified by the Shapiro–Wilk normality test. Numerical
variables with parametric and nonparametric distributions
were analyzed by ANOVA and Kruskal–Wallis with Tukey’s
or Dunn’s multiple comparisons posttest, respectively. Cor-
relations were performed using the Spearman correlation
test. Qualitative variables were compared using chi-square
test or Fisher’s exact test (statistical package GraphPad
Prism, La Jolla, CA, USA). Data were considered significant
at p < 0:05. Fisher exact test and the Benjamini and Hoch-
berg’s false discovery method were applied to obtain the tar-
get pathways in IPA analysis.

2.6. Results of miRNA Profiling. We performed miRNA pro-
filing from 110 subjects divided into four groups (workflow
in Figure 1). The number of miRNAs detected in each group
sample was similar. The analysis of 135 miRNAs expressed
in 20% or more of each group evidenced 69 DEMs across
the recent T1D, AbP, and T1D 2-5y groups in comparison
to control group. Figure 2 shows a volcano plot representa-
tion of the DEMs comparing each group versus control, rep-
resented as blue dots for downregulation and red dots for
upregulation. The T1D 2-5y group had the highest number

Control

Islet auto Ab+

Recent-onset
T1D

2-5 years
T1D

miRNA
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Figure 1: Progression of type 1 diabetes and experimental design.
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of DEMs with 51 upregulated and 13 downregulated,
followed by the AbP group (10 upregulated and 6 downreg-
ulated) and the recent T1D group (3 upregulated and 1
downregulated DEMs) (Table 2).

We observed two different profiles. The 18 miRNAs con-
sistently deregulated in AbP or recent T1D groups (13 of
them also deregulated in T1D 2-5y) (Table 2) comprising
the cluster A (12 up- and 6 downregulated) were analyzed

separately from the miRNAs deregulated only in the T1D
2-5y group (cluster B: 40 up- and 11 downregulated miR-
NAs) (Table 3 and Figure 2).

We observed that T1D progression leads to a predomi-
nance of miRNAs upregulation in serum when compared
to controls. The most upregulated DEMs were miR-200a-
3p, in both the AbP and recent T1D groups and miR-346
in T1D 2-5y group, respectively. The downregulated miR-
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16 was the only miRNA that differed from controls simulta-
neously in the three groups.

Receiver operating characteristic (ROC) curve analysis
revealed that miR-16-5p and miR-200a-3p can be used as
T1D predictors (AUC = 0:7696, p < 0:0025 and AUC =
0:8342, p < 0:0004, respectively) presenting higher discrimi-
nating power, even when we compared to the glucose ROC
curve (AUC = 0:7306, p < 0:0039)(Figure 3).

Five miRNAs (miR-195-5p, miR-19a-3p, miR376a-3p,
miR-590-5p, and miR-25-3p) were downregulated only in
the AbP group, whereas miR-323a-3p and miR-874-3p were
upregulated both in the recent T1D and T1D 2-5y groups.
Most of the other miRNAs from cluster A were increased
only in the AbP and T1D 2-5y groups.

Fifty-nine (15.6%) of the 377 miRNAs evaluated were
not expressed in any group (Suppl.1). Only one miRNA
(reclassified as Vault RNA; ncRNA-886) was upregulated
in all three groups.

2.7. Correlations. IA2A, GADA, and Znt8A levels correlated
positively with 13, 12, and 1 miRNAs, respectively. Negative
correlations were found for IA2A levels with miR-19a-3p
and for ZnT8A levels with miR-100-5p and miR-16-5p
(Tables 4–6). Correlations with autoantibodies were more
frequent in cluster A (10 of 18 miRNAs = 55:6%) than in
cluster B, presenting longer diabetes duration (9 of 51
miRNAs = 17:6%; p = 0:0044; OR = 5:83; CI:1.799-18.910).
The influence of glucose levels was suggested by both posi-
tive and negative correlations of glucose and/or HbA1c
levels with several up and downregulated miRNAs. The cor-

relations of miRNA with C-peptide levels and with age were
usually negative in both clusters.

2.8. Target Prediction and Pathway Analysis. In both clus-
ters, most pathways potentially regulated by DEMs were
related to cancer, cell growth and metabolism (ErbB, MAPK,
Wnt signaling pathway, and endocytosis), insulin produc-
tion, and axon guidance/neurotrophin signaling pathways.
Adherens junction and apoptosis pathways were enriched
by DEMs’ targets from the T1D 2-5y group.

The deregulated miRNAs were referred to several biolog-
ical pathways by the miRWalk database, retrieving 206 and
140 pathways modulated by up- and downregulated miR-
NAs in cluster A (Suppl.2) and 64 and 46 pathways in clus-
ter B, respectively (Suppl.3-4). In both clusters, most
pathways potentially controlled by DEMs were related to
cancer, growth, metabolism (ErbB, MAPK, Wnt signaling
pathway, and endocytosis), insulin, and axon guidance/neu-
rotrophin signaling pathways. Adherens junction and apo-
ptosis pathways were enriched by up- and downregulated
DEMs’ targets mainly from the T1D 2-5y group. The more
frequent DEM gene targets identified by Target Scan tool
are presented in Suppl.5-6.

Pathway enrichment analyses were performed using
KEGG and IPA software. Figures 4 and 5 list the enriched
pathways of the DEMs’ targets from both cluster profiles
using KEGG tool. Proliferative, metabolic, and immune
responses were the top pathways identified for up- and
downregulated miRNAs. Pathways related to survival
(autophagy) and self-renewal capacity (regulating

Table 2: MicroRNA expression profile of cluster A in comparison to the control group.

ID MIRBASE
AbP group

p value
Recent T1D group

p value
T1D 2-5y group

p value
Rq Rq Rq

hsa-miR-100-5p 2.188 0.026 1.45 0.431 3.294 0,00E+00

hsa-miR-10a-5p 2.237 0.009 1.83 0.081 4.161 0,00E+00

hsa-miR-148b-3p 1.857 0.032 1.447 0.231 2.419 0.003

hsa-miR-181a-5p 2.588 0.007 1.4 0.725 3.415 0,00E+00

hsa-miR-200a-3p 2.728 0,00E+00 2.598 0.01 1.858 0.069

hsa-miR-296-5p 1.624 0.012 1.379 0.263 3.639 0,00E+00

hsa-miR-326 1.944 0.021 1.669 0.121 3.52 0,00E+00

hsa-miR-330-3p 1.614 0.026 1.39 0.263 2.675 0,00E+00

hsa-miR-518b 1.907 0.025 1.656 0.133 10.541 0.007

hsa-miR-520b-3p 1.986 0.021 1.625 0.164 3.179 0,00E+00

hsa-miR-323a-3p 1.455 0.193 1.847 0.039 5.677 0,00E+00

hsa-miR-874-3p 1.426 0.071 1.837 0.011 2.294 0.001

hsa-miR-16-5p 0.379 0.042 0.358 0.019 0.16 0,00E+00

hsa-miR-195-5p 0.421 0.021 0.527 0.116 0.548 0.089

hsa-miR-19a-3p 0.418 0.039 0.648 0.461 0.527 0.133

hsa-miR-376a-3p 0.463 0.037 0.821 0.906 0.829 0.902

hsa-miR-590-5p 0.406 0.023 0.754 0.775 0.749 0.669

hsa-miR-25-3p 0.405 0.013 0.717 0.671 2.763 0.024

AbP group (individuals without diabetes expressing islet autoantibody), recent T1D group (newly diagnosed patients with type 1 diabetes with duration
≤6months), T1D 2-5y group (patients with type 1 diabetes with 2 to 5 years of duration), and health control group, Rq: relative expression represented by
fold change in comparison to controls, p value: corrected p value.
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Table 3: MicroRNA expression profile of cluster B in comparison to the control group.

ID MIRBASE
AbP group

p value
Recent T1D group

p value
T1D 2-5y group

p value
Rq Rq Rq

hsa-let-7c-5p 1.592 0.065 1.334 0.53 2.284 0.002

hsa-miR-18a-5p 1.404 0.063 1.17 0.671 2.171 0,00E+00

hsa-miR-346 1.922 0.069 1.754 0.125 51.456 0,00E+00

hsa-miR-708-5p 1.864 0.063 1.512 0.264 2.875 0.001

hsa-miR-491-5p 1.638 0.059 1.41 0.275 2.052 0.006

hsa-miR-106b-5p 1.434 0.53 1.064 1,00E+00 2.479 0.023

hsa-miR-122-5p 1.771 0.711 2.074 0.532 3.795 0.008

hsa-miR-125b-5p 1.592 0.207 1.876 0.12 3.591 0,00E+00

hsa-miR-130b-3p 0.966 1,00E+00 1.189 0.854 2.401 0.001

hsa-miR-132-3p 1.157 0.937 1.371 0.532 3.918 0,00E+00

hsa-miR-145-5p 0.842 0.988 1.071 1,00E+00 2.281 0.023

hsa-miR-148a-3p 1.414 0.374 1.372 0.464 3.96 0,00E+00

hsa-miR-181c-5p 1.634 0.11 1.405 0.418 2.707 0.002

hsa-miR-193a-5p 0.938 1,00E+00 1.234 1,00E+00 4.369 0.003

hsa-miR-203a-3p 1.638 0.323 1.965 0.163 2.396 0.031

hsa-miR-208a-3p 1.977 0.078 1.72 0.263 9.314 0,00E+00

hsa-miR-21-5p 1.058 1,00E+00 1.405 0.716 7.703 0,00E+00

hsa-miR-212-3p 1.052 1,00E+00 1.137 1,00E+00 6.975 0,00E+00

hsa-miR-214-3p 1.488 0.107 1.064 1,00E+00 2.178 0.002

hsa-miR-215-5p 1.537 0.138 1.677 0.132 3.164 0,00E+00

hsa-miR-221-3p 1.019 1,00E+00 0.982 1,00E+00 4.421 0,00E+00

hsa-miR-27a-3p 1.188 0.948 1.303 0.732 5.625 0,00E+00

hsa-miR-29c-3p 1.305 0.134 1.208 0.546 1.991 0.003

hsa-miR-324-3p 1.063 1,00E+00 1.294 0.539 1.764 0.019

hsa-miR-328-3p 0.837 0.906 0.836 0.977 4.999 0,00E+00

hsa-miR-335-5p 0.803 0.716 0.81 0.804 2.243 0,00E+00

hsa-miR-365a-3p 1.773 0.099 1.894 0.15 2.876 0,00E+00

hsa-miR-410-3p 1.284 0.447 1.186 0.766 1.749 0.026

hsa-miR-423-5p 1.352 0.532 1.04 1,00E+00 1.953 0.037

hsa-miR-485-3p 0.813 0.503 0.997 1,00E+00 2.106 0.009

hsa-miR-486-3p 1.441 0.081 1.16 0.804 2.5 0,00E+00

hsa-miR-489-3p 1.513 0.092 1.404 0.31 2.488 0,00E+00

hsa-miR-532-5p 1.003 1,00E+00 0.861 1,00E+00 2.541 0.021

hsa-miR-532-3p 1.362 0.345 1.408 0.264 2.011 0.002

hsa-miR-636 1.532 0.457 1.482 0.45 2.721 0.008

hsa-miR-652-3p 1.254 0.264 1.301 0.351 2.566 0,00E+00

hsa-miR-660-5p 1.002 1,00E+00 1.053 1,00E+00 3.203 0.001

hsa-miR-92a-3p 1.002 1,00E+00 1.124 1,00E+00 5.08 0,00E+00

hsa-miR-99b-5p 0.875 1,00E+00 1.274 0.804 2.646 0.015

hsa-miR-451a 1.319 0.78 1.2 0.977 5.451 0,00E+00

hsa-miR-125a-5p 0.954 1,00E+00 0.57 0.321 0.22 0,00E+00

hsa-miR-126-3p 0.938 1,00E+00 0.479 0.055 0.221 0,00E+00

hsa-miR-146a-5p 0.767 0.641 0.547 0.15 0.324 0,00E+00

hsa-miR-155-5p 0.536 0.481 0.986 1,00E+00 0.332 0.029

hsa-miR-191-5p 0.788 0.728 0.49 0.11 0.19 0,00E+00

hsa-miR-197-3p 0.676 0.4 0.734 0.61 0.394 0.005

hsa-miR-342-3p 1.209 0.717 0.815 0.82 0.282 0,00E+00

hsa-miR-374a-5p 0.614 0.345 0.654 0.484 0.259 0.001
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pluripotency of stem cells) were associated to downregulated
miRNAs. More pathways were potentially modulated by
downregulated DEMs in clusters A and B (216 and 321)
than by upregulated DEMs (118 and 153 pathways),
respectively.

Targeting and pathway analysis using IPA software iden-
tified highly predicted and/or experimentally observed tar-
geting information from 10 DEMs (out of 16) in the AbP
group with 359 targets: 1 DEM (out of 4) in the recent
T1D group with 198 targets and 45 DEMs (out of 64) in
the T1D 2-5y group with 1033 targets.

After excluding cancer-related pathways, we identified a
total of 366, 320, and 425 enriched canonical pathways
related to DEMs’ targets from the AbP, recent T1D, and
T1D 2-5y groups, respectively (Suppl.7). The top forty
canonical pathways most enriched with DEMs’ targets iden-
tified by IPA analysis for each one of the three groups com-

pared to control were the PTEN (phosphatase and tensin
homolog deleted from chromosome ten), aryl hydrocarbon
receptor, STAT3 (signal transducer and activator of tran-
scription 3), epithelial-mesenchymal transition, and senes-
cence pathways (Figure 6). Pathways related to cell
proliferation and immune response, e.g., cyclins/cell cycle
regulation, and Interleukins IL-7 and IL-8, were overrepre-
sented in the AbP and recent T1D groups. NF-KB (nuclear
factor kappa B), IL-6, IL-10, acute phase response, and glu-
cocorticoid receptor signaling pathways were overrepre-
sented in the T1D 2-5y group. miRNAs from all groups
were associated with a great number of pathways related to
growth (IGF-1, FGF, HGF, EGF, ErbB, JAK/STAT, and
PI3K/AKT signaling) and cell division (cyclins/cell cycle reg-
ulation). Inflammatory and defense pathways (ILK, neure-
gulin, dendritic cell maturation, toll-like receptor signaling,
and Th1/Th2 activation pathways) were modulated.

Table 3: Continued.

ID MIRBASE
AbP group

p value
Recent T1D group

p value
T1D 2-5y group

p value
Rq Rq Rq

hsa-miR-454-3p 0.507 0.1 0.752 0.796 0.299 0.026

hsa-miR-483-5p 1.577 0.134 1.324 0.418 0.448 0.003

hsa-miR-518d-3p 1.194 0.884 1.148 1,00E+00 0.264 0.001

Non-coding RNA-886

hsa-miR-886-3p 2.883 0.005 1.938 0.045 5.455 0,00E+00

AbP group (individuals without diabetes expressing islet autoantibody); recent T1D group (newly diagnosed patients with type 1 diabetes with duration
≤6months); T1D 2-5y group (patients with type 1 diabetes with 2 to 5 years of duration). Rq: relative expression represented by fold change in
comparison to controls. p value: corrected p value.

Area under the ROC
curve

hsa-miR-200a hsa-miR-16-5p Glycemia

Area 0.8342 0.7696 0.7306

Std.Error 0.06363 0.07284 0.07239

95% confidence interval 0.7095 to 0.9589 0.6268 to 0.9123 0.5887 to 0.8724

P value 0.0004 0.0025 0.0039
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Figure 3: ROC curves of miR-200a-3p, miR-16-5p, and glucose levels.
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Apoptosis, virus response, and neuronal development/repair
(neuroinflammation, PEDF, neuregulin, and axonal guid-
ance signaling pathways) were also affected. In general, the
DEMs from the T1D 2-5y group modulated most genes
from all pathways, with a greater magnitude than the other
groups, many of them expressing an innate and adaptive
immune responses.

The miRNAs miR-16-3p and miR-200a-3p had a high
number of identified targets. The miR-16-3p potentially reg-
ulates pathways related to GADD45 (growth arrest and
DNA damage-inducible 45) signaling, cell cycle regulation
by antiproliferative BTG family proteins, cell cycle check-
point control, EGF signaling, senescence, and autophagy
pathways. miR-200a-3p has the most targets related to met-
abolic pathways, e.g., ascorbate recycling, PRPP (phosphori-
bosyl pyrophosphate) biosynthesis I, glutathione redox
reaction II, melatonin degradation II, fatty acid β-oxidation
III, salvage pathways of pyrimidine deoxyribonucleotides,
pentose phosphate, and NAD biosynthesis III pathways
(Figure 7).

3. Discussion

We identified miRNA dysregulation during T1D evolution.
By comparing patients at different stages of disease progres-
sion with healthy individuals, from the initial immunological
manifestation (one to three autoantibodies in AbP group)
until partial and strong beta cell damage in the recent T1D
and T1D 2-5y groups, we have found 69 differentially
expressed miRNAs. These miRNAs have predicted targets
related to immune regulation, metabolism, glucose homeo-
stasis, cell proliferative/survival mechanisms, and beta cell
function. Dysregulated expression of miRNAs pointed to
possible mechanisms underlying the pathophysiology of
T1D. The AbP group could also provide the effects of
miRNA dysregulation and pathways predicted to be acti-
vated during the onset of islet autoimmunity that are unre-

lated to blood glucose levels. The most enriched pathways
potentially regulated by DEMs were related to immune cell
activation, inflammation, and apoptosis.

The miR-200a-3p was the most highly expressed miRNA
in AbP and recent T1D groups positively correlated to IA2A
and GADA levels, suggesting a robust association with T1D
pathogenesis. miR-200a was previously reported to be highly
expressed in beta cells [11], being associated with their dam-
age and apoptosis in vitro [12]. We hypothesize that its
decrease to values similar to controls in the T1D 2-5y group
could be linked to the scarcity of beta cells in this group or to
hyperglycemia, although its expression was not correlated
with glucose or HbA1c levels. Mechanistically, it was
described as an antiapoptotic and stress-resistance miRNA,
with targets that include the beta cell chaperone Dnajc3
and the caspase inhibitor XIAP and positively controls the
activation of the tumor suppressor Trp53 [13].

Other important target of this miRNA is the
thioredoxin-interacting protein (TXNIP). Its proapoptotic
and diabetogenic function prevents beta cell function via
induction of miR-200a in vitro. The TXNIP/miR-200/Zeb1/
E-cadherin signaling pathway links miR-200 to beta cell apo-
ptosis and diabetes and links TXNIP to inhibition of
epithelial-mesenchymal transition (EMT), a process involved
in beta cell expansion [12], predicting its decline [14]. Cata-
bolic and oxidizing reactions related to NAD generation, anti-
oxidant mechanisms, and synthesis of nucleotides, suggested
by canonical pathways associated with miR-200a-3p, are
probably related to cell lesion and repair (Figure 7).

Besides miR-200a-3p, other upregulated miRNAs (miR-
181a and miR-323) were also described as inhibitors of EMT
[14], which could worsen beta cell function precociously, in
the phase of ongoing autoimmunity (AbP) or in recent T1D
group. In accordance, the EMT pathway was an enriched
pathway in all three groups (Figure 6).

Among the upregulated DEMs, we also observed miR-
296, miR-874 (miR-Walk pathway), and miR-518, all

Table 4: Correlations of miRNAs from cluster A.

miRNAs
IA2A GADA ZnT8A Glucose HbA1c Age C-peptide

p r p r p r p r p r p r p r

Upregulated

miR-181a-5p 0.033 0.255 0.005 0.341 0.023 -0.277 0.038 -0.342

miR-200a-3p 0.027 0.255 0.026 0.262 0.035 -0.33

miR-296-5p 0.038 0.338 0.016 0.392 0.005 -0.577

miR-326 0.034 0.402 0.001 0.572 0.009 0.49 0.03 -0.542

miR-874-3p 0.026 0.474

miR-518b

miR-323a-3p 0.022 0.255 0.008 0.298 0.002 0.34 0.032 0.246 0,000 -0.572

miR-100-5p 0.044 -0.358

Downregulated

miR-16-5p 0.007 -0.268 0.002 -0.304 0.005 -0.27

miR-25-3p 0.003 0.236 0.044 0.261 0.003 -0.476

miR-195-5p 0.002 -0.309

miR-19a-3p 0.037 -0.214

IAA: insulin autoantibody; GADA: glutamic acid decarboxylase antibody; IA-2A: tyrosine phosphatase autoantibody; ZnT8A: zinc transport 8 autoantibody.
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previously associated with apoptosis signaling [15]. Others
were negatively involved in beta cell formation/differentia-
tion and survival, insulin processing/secretion, and glucose
homeostasis like miR-518b, miR-330-3p, miR-148b-3p,
miR-181a-5p, and miR-330-3p [14, 16–18]. Deleterious
effects were still observed for upregulated miRNAs miR-
520b, miR-326, and miR-181a-5p related to response to cell
stress [19], to islet autoantibodies and Th17 pathway [20], or
impairing regulatory T cells (Tregs) induction [21], respec-
tively, probably further hampering the recovery of beta cells.

Tregs are fundamental in individual protection from
autoimmunity and miRNAs reported as inhibitors of their
differentiation, development, and immunological functions
were upregulated in both clusters A (miR- 181a, miR-200a,
miR-330-3p, and miR-326) [21, 22] and B (miR-27a, miR-
92a, miR-193, and miR-181c) [22–24]. In addition, other
miRNAs related to Treg cell-mediated immunological toler-
ance were downregulated in AbP (miR-195 and miR-16)
[23–25] and in T1D-2-5y groups (miR-18a, miR-27, miR-

Table 5: Correlations of upregulated miRNAs from cluster B.

miRNAs IA2A GADA Glucose HbA1c Age C-peptide
Upregulated p r p r p r p r p r p r

miR-106b-5p 0.049 -0.224

miR-132-3p 0.037 0.287 0.015 0.337

miR-145-5p 0.023 0.244 0.027 0.241 0.005 -0.407

miR-148a-3p 0.021 0.336 0.001 0.467 0.007 -0.49

miR-18a-5p

miR-181c-5p 0.044 0.348

miR-193a-5p 0.049 0.257 0.023 -0.406

miR-208a-3p 0.007 0.282 0.007 0.287 0.003 0.307 0,000 0.376 0.003 -0.441

miR-212-3p 0.05 0.263

miR-214-3p 0.002 -0.495

miR-215-5p 0.026 0.387 0.025 0.408

miR-21-5p 0.049 0.208 0.002 0.314 0.03 -0.298

miR-346 0.035 0.274 0.049 0.261 0.001 0.425 0.001 0.447 0.004 -0.515

miR-221-3p 0.02 0.335 0.044 -0.293

miR-130b-3p 0.039 -0.293

miR-27a-3p

miR-29c-3p

miR-328-3p 0.003 0.297 0.003 -0.407

miR-410-3p 0.01 -0.404

miR-423-5p 0.008 -0.267

miR-451a 0.046 0.204 0.003 -0.303 0,000 -0.483

miR-485-3p

miR-486-3p 0.006 -0.274

miR-489-3p 0.016 -0.531

miR-532-5p 0.016 -0.384 0.023 -0.481

miR-636 0.001 0.378 0.005 0.326 0.009 -0.398

miR-660-5p 0.002 -0.541

miR-886-3p

miR-92a-3p 0.016 0.231 0.007 -0.351

miR-99b-5p 0.012 0.291 0.006 0.325 0.025 0.264 0.049 -0.313

IAA: insulin autoantibody; GADA: glutamic acid decarboxylase antibody; IA-2A: tyrosine phosphatase autoantibody; ZnT8A: zinc transport 8 autoantibody.

Table 6: Correlations of downregulated miRNAs from cluster B.

miRNAs Glucose HbA1c Age

Downregulated

miR-125a-5p 0.014 -0.279 0.014 -0.284 0.03 -0.251

miR-126-3p 0.044 -0.196 0 -0.373 0.028 -0.217

miR-146a-5p 0.005 -0.277 0.018 -0.233

miR-155-5p 0.01 -0.3

miR-191-5p 0,000 -0.354

miT-197-3p 0.033 -0.211 0.021 -0.228

miR-342-3p 0.001 -0.319 0.013 -0.245

miR-374a-5p 0.006 -0.291

miR-483-5p 0.015 -0.242 0.035 -0.209

miR-518d-3p 0.021 -0.222 0.016 -0.235

IAA: insulin autoantibody; GADA: glutamic acid decarboxylase antibody;
IA-2A: tyrosine phosphatase autoantibody; ZnT8A: zinc transport 8
autoantibody.
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155, miR-126, and miR-146a) [22, 25–27], limiting control
of beta cell offensive attack. The deleterious role of upregu-
lated miRNAs in autoimmune aggression was further sug-
gested by their negative correlation with C-peptide levels
and positive correlation with islet autoantibodies (Table 4).
The correlations of miRNAs with autoantibody titers were
more frequent in cluster A (55.5% of the miRNAs), which
is expected greater immunological activation than in cluster
B (17.6% of miRNAs) (p = 0:004), probably subjected to
effects of longer diabetes duration, decreasing antibody
titers, and to other stimuli such as metabolic disturbances.
Exceptions to all trends in immune activation were observed
for miR-100-5p, negatively correlated to ZnT8A (r = −0:358;
p = 0:044)(Table 4), and opposed to inflammation [23] and
for a few other upregulated miRNAs such as miR-10a-5p
and miR-874, acting through stabilizing Tregs [25, 28], inhi-
biting NF-κB, TNFalpha, IL-6, and IL-1β signaling [29].

Among cluster A downregulated miRNAs, miR-16-5p
was the unique miRNA downregulated in all three groups
in comparison to controls. It seems to favor Treg induction
[22, 25], which is highly expressed in beta cells, and nega-
tively regulates the protein Ptch1 (protein patched homolog
1) involved in the inhibition of beta cell proliferation [30].
miR-16 seems to protect from high glucose-induced pancre-

atic beta cell apoptosis by targeting CXCL10 [31] and from
immune aggression as it was negatively correlated with
ZnT8A levels in our cohort (r = −0:358; p = 0:044). The
most enriched pathways for miR-16 predicted targets were
related to cell cycle regulation and division, checkpoint con-
trol, and DNA repair (Figure 7).

The insulin resistance due to autoimmune aggression
and the release of inflammatory cytokines might function
decreasing the levels and the protective role of miR-16
[32]. miR-16 was downregulated already in the preclinical
phase of diabetes, whereas hyperglycemia, which was corre-
lated negatively with miR-16 levels (r = −0:289, p = 0:003),
probably influenced its great decline in the T1D 2-5y group.
Other five miRNAs downregulated only in the AbP group
are involved in immune regulation (miR-195-5p and miR-
590-5p) [33], cell proliferation, insulin transcription (miR-
376a-3p and miR-19a-3p) [34, 35], and residual beta cell
function: miR-25 [7]. Their downregulation could poten-
tially prevent beta cell recovery and inflammation resolution
and is mirroring the autoimmune aggression in progress,
unrelated to glucose levels.

Therefore, parts of upregulated genes, including those in
the AbP group, reveal a profile toward inflammation, apo-
ptosis, and commitment of beta cell and insulin secretion,
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Figure 4: Distribution of enriched KEGG pathways of cluster A: 18 miRNAs consistently deregulated in AbP or recent T1D groups (13 of
them being also deregulated in T1D 2-5y). The chart shows category rankings. The X-axis value represents the number of microRNA’s
targets in the pathway and the Y-axis the pathways. (a) Represents the potential genes from up-expressed microRNAs. (b) Represents
the potential genes from down-expressed microRNAs in comparison with controls. AbP group (individuals without diabetes expressing
islet autoantibody); recent T1D group (newly diagnosed T1D patients with duration ≤6 months); T1D 2-5y group (patients with T1D
with 2 to 5 years of duration); IAA: insulin autoantibody; GADA: glutamic acid decarboxylase autoantibody; IA-2A: tyrosine
phosphatase autoantibody; ZnT8A: zinc transport 8 autoantibody; only target genes identified by 20% or more of the DEMs with seed of
conserved 7-8 mers were submitted to functional enrichment analysis.

10 Journal of Immunology Research



evidencing cluster A DEMs as relevant to autoantibody
development, decreased C-peptide levels, T1D pathogenesis,
and progression. Few miRNAs were associated with immu-
nomodulation and anti-inflammatory effects.

The expression of most miRNAs of the cluster A
followed a similar pattern in the three groups, although
not always with statistical significance. The worsening of
beta cell function, dysregulation of glucose levels, and insulin
resistance probably accounted for the progressive upregu-
lated trend of the expression of these miRNAs toward the
T1D 2-5y group, particularly for miR-518b and miR-323a-
3p, interfering negatively with beta cell expansion [14] and
insulin secretion [36]. The exceptions were miR-200a-3p
and miR-25-3p, associated with islet autoantibodies, in
which the response of the T1D 2-5y group was opposite of
the AbP and recent T1D groups, supporting its role in
immunological aggression.

Thus, the altered expression of miRNAs from cluster A
may be implicated in the cycle of damage regeneration of
beta cells, inflammation, and metabolic disorders, contem-
plating insulin resistance and later, hyperglycemia. Cluster
B (composed of DEMs expressed only in the T1D 2-5y
group; n = 51) conferred similar results. Most upregulated
miRNAs were present in human pancreatic beta cells [11].

Published studies link several DEMs from both clusters
to T1D evolvement, metabolic disturbs, impairment of beta
cell function [1, 2, 5–7, 12–14, 18, 20, 22, 30–32, 34–36],
or taking part in other autoimmune diseases like systemic
lupus erythematosus, rheumatoid arthritis, Crohn’s disease,
multiple sclerosis, and autoimmune thyroid disease [2, 27,
37, 38].

Nc886 (pre-miR-886), upregulated in the three groups,
seems to activate the protein kinase RNA-activated; an
interferon-inducible kinase maybe related to defense against
viruses [39].

The analysis using miRWalk and KEGG databases rein-
forced the relevance of both clusters in the autoimmune pro-
cess. The potential biological pathways enriched by DEMs
targeted oncogenic/proliferative and metabolic pathways,
processes related to cell differentiation, migration, survival,
apoptosis, neural development, insulin signaling, and
immune system pathways. Most of these pathways are essen-
tial for proper lymphocyte development and function, and
their enrichment, which was greater in cluster A, may be a
reflection of the autoimmune activity.

Interestingly, these pathways were enriched by up- and
downregulated miRNAs from both clusters, although
through different targets.
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Figure 5: Distribution of enriched KEGG pathways of cluster B: 51 miRNAs deregulated only in the T1D 2-5y group. The chart shows
category rankings. The X-axis value represents the number of microRNA’s targets in the pathway and the Y-axis the pathways. (a)
Represents the potential genes from up-expressed microRNAs. (b) Represents the potential genes from down-expressed microRNAs in
comparison with controls. AbP group (individuals without diabetes expressing islet autoantibody), recent T1D group (newly diagnosed
T1D patients with duration ≤6 months), and T1D 2-5y group (patients with T1D with 2 to 5 years of duration); health control group;
Rq: relative expression represented by fold change in comparison to controls; p value: corrected p value. Only target genes identified by
20% or more of the DEMs with seed of conserved 7-8 mers were submitted to functional enrichment analysis.
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Pathway enrichment analyses were performed using
KEGG and IPA software. Figures 4 and 5 list the enriched
pathways of the DEMs’ targets from both cluster profiles using
KEGG tool. Proliferative, metabolic, and immune responses
were the top pathways identified for up- and downregulated
miRNAs. Pathways related to survival (autophagy in cluster
A) and self-renewal capacity (regulating pluripotency of stem
cells in cluster B) were less modulated by downregulated miR-
NAs, perhaps in an attempt to contain the self-aggression.

Genes related to B and T cell differentiation/function
were targeted by upregulated miRNAs in cluster A (HIPK1)
and B (NAA50, NFAT5, OTUB7B) and by downregulated
miRNAs in clusters A (BRWD1) and B (ABL2, FOSL2, and
PDE7A).

In a similar way, genes related to beta cell function were
associated with upregulated miRNAs in clusters A (FZD5
and GATA6) and B (KCNJ6) and downregulated miRNAs
in clusters A (PLAG1) and B (FBXO28). Importantly, one
of the miRNAs’ gene targets from cluster A was DYRK2
(dual specificity tyrosine-phosphorylation-regulated kinase
2), which is an autoantibody target antigen in T1D [40].
The DEMs targeting DYRK2 were miR-181a-5p, miR-326,
and miR-874-3p (positively correlated to islet autoanti-
bodies) and miR-148b-3p, all previously related to T1D
and/or autoimmune diseases [1, 2, 17, 21, 22].

One of the most significantly enriched canonical
pathways in the three groups (Figure 6), pathogenetically
relevant in T1D, was the senescence pathway, a state of cel-
lular arrest associated with inflammatory cytokines, growth
factors, and matrix metalloproteinases triggered by several
damaging factors present in the three groups (like immune
attack and metabolic derangements). In the same direction,
the STAT3 pathway, regulating Th17 cell differentiation
and suppressing Treg generation [41], and the PTEN path-
way, involved in T helper follicular cell precursor induction,
autoantibody generation and triggering of islet autoimmu-
nity [42, 43], and the regulation of EMT [14], all have their
role in inflammation and reduction of beta cell function/sur-
vival. The IL-7 and IL-8 inflammatory signaling pathways
were highly represented in the AbP and recent T1D groups
whereas IL-6, NF-KB, and acute phase response pathways
in the T1D 2-5y group.

On the opposite direction, there was the aryl hydrocar-
bon receptor pathway, enriched in all three groups. It mod-
ulates the development and functionality of immune cells
and suppresses the expression of inflammatory cytokines
during diabetes development [44]. DEMs from the T1D 2-
5y group also target anti-inflammatory pathways like IL-10
A and glucocorticoid receptor signaling.

In general, DEMs from all groups target mechanisms
related to growth, cell cycle regulation, apoptosis, inflamma-
tion, defense, and neuronal pathways, whereas few of them
favored defense against an autoimmune offensive. The com-
mitment of these pathways increased progressively from
AbP to the recent T1D and then to T1D 2-5y group, which
regulated the largest number of targets in most pathways,
many of them expressing innate and adaptive immune
responses. The metabolic dysregulation probably influenced
these results.

Of note, similar pathways were enriched by both up- and
downregulated miRNAs, triggered probably by different
causal hits. Other possibility is the intense metabolic
derangement due to glucose/lipotoxicity and inflammatory
cytokines, eliciting miRNAs from inflammatory pathways.
This can also explain some inconsistent results in the litera-
ture, where the same miRNA predisposed or protected from
T1D or other autoimmune diseases. Diabetes duration, age
of patients, and glucose levels could have acted in miRNA
deregulation during disease progression and taken part in
these inconsistencies, pointing to the importance of these
variables in disease determinations. This can be further evi-
denced when considering the 69 miRNAs from clusters A to
B, where 26 DEMs correlated with glycemic status, 19 with
autoantibodies levels and ongoing islet autoimmunity, and
20 miRNAs correlated negatively with age. T1D duration
influenced positively and negatively the levels of 19 miRNAs
and their association with autoantibody titers, which are
known to decrease with time. However, these results should
be considered carefully, considering the sample size and low
serum RNA yield.

Although the serum miRNA profile might not mirror
the situation in the affected pancreas, it is notable that most
of the DEMs of our cohort are miRNAs enriched in beta
cells, suggesting they may correlate with the severity of beta
cell injury. Ongoing destruction of beta cells could result in
diffusion of islet-enriched miRNAs into serum, as observed
during the autoimmune attack in animal models of diabetes
[45]. Furthermore, the negative correlation of several upreg-
ulated miRNAs expression with C-peptide levels as well as
with age, considering that the immune attack is usually more
intense in the youngest, reinforces our results. Even more,
previous reports of the participation of most miRNAs in
the pathogenesis of T1D and other autoimmune manifesta-
tions also point to their role in the autoimmune process.
Their expression in the different phases of the autoimmune
lesion, starting with positivity to islet autoantibodies up to
severe beta cell dysfunction, evidencing the influence of
age, duration of diabetes, and glycemic control on their
expression brings relevant information and suggests new
immunological and metabolic influences.

In conclusion, our data suggested the potential role of
miRNAs favoring the preponderance of pathways
compromising beta cell function throughout diabetes pro-
gression like increased apoptosis, inhibition of EMT,
impaired TREG function, inflammatory pathways like
STAT3 and PTEN, and senescence probably being indirect
signs of islet autoimmunity and metabolic derangements
due to gluco-lipid toxicity. The higher discriminating power
for T1D prediction for miR-200a-3p and miR-16-5p, distin-
guishing patients from the different stages of T1D, suggested
both miRNAs as potential biomarkers and targets for beta
cell recovery.
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