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Abstract

Ethiopia’s economy is dominated by agriculture which is mainly rain-fed and subsistence.

Climate change is expected to have an adverse impact particularly on crop production. Pre-

vious studies have shown large discrepancies in the magnitude and sometimes in the direc-

tion of the impact on crop production. We assessed the impact of climate change on growth

and yield of maize and wheat in Ethiopia using a multi-crop model ensemble. The multi-

model ensemble (n = 48) was set up using the agroecosystem modelling framework Expert-

N. The framework is modular which facilitates combining different submodels for plant

growth and soil processes. The multi-model ensemble was driven by climate change projec-

tions representing the mid of the century (2021–2050) from ten contrasting climate models

downscaled to finer resolution. The contributions of different sources of uncertainty in crop

yield prediction were quantified. The sensitivity of crop yield to elevated CO2, increased tem-

perature, changes in precipitations and N fertilizer were also assessed. Our results indicate

that grain yields were very sensitive to changes in [CO2], temperature and N fertilizer

amounts where the responses were higher for wheat than maize. The response to change

in precipitation was weak, which we attribute to the high water holding capacity of the soils

due to high organic carbon contents at the study sites. This may provide the sufficient buffer-

ing capacity for extended time periods with low amounts of precipitation. Under the changing

climate, wheat productivity will be a major challenge with a 36 to 40% reduction in grain yield

by 2050 while the impact on maize was modest. A major part of the uncertainty in the pro-

jected impact could be attributed to differences in the crop growth models. A considerable

fraction of the uncertainty could also be traced back to different soil water dynamics model-

ing approaches in the model ensemble, which is often ignored. Uncertainties varied among

the studied crop species and cultivars as well. The study highlights significant impacts of cli-

mate change on wheat yield in Ethiopia whereby differences in crop growth models causes

the large part of the uncertainties.
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Introduction

In large parts of the world, local economies and food security are dependent on agriculture

which is very sensitive to climate variations [1,2]. Both shifts in the mean climate as well as

changes in the variability can considerably affect agricultural production [3]. There is now

insurmountable evidence linking anthropogenic greenhouse gas emissions to climate change

[4]. If global warming continues at the current pace, the global average temperature is likely to

increase by 1.5˚C by 2050 compared to pre-industrial levels [3]. This will undermine agricul-

tural production in many parts of the world, in general, and Ethiopia, in particular. It must be

seen as a very severe threat to meeting the growing world food demand [5,6]. A higher and

faster temperature increase of 2˚C is projected for Africa [7]. This would lead in a major food

security risk by 2050 [8]. Therefore, adapting agriculture to the changing climate is an addi-

tional and daunting problem for the continent [9]. Consequently, climate change impact

assessment has developed as an important area of research in Africa [6,10], aiming at identify-

ing adaptation options.

The impact of climate change on crop production has been studied extensively using statis-

tical models [5,11,12], process-based crop models [13–15], and a suitability evaluation

approach [16]. Simulations with process-based crop models driven by climate projections

from dynamical downscaling have dominated the recent literature. Crop models can describe

crop responses to different climate scenarios and variable agronomic management options.

Globally, crop model structures exhibit quite a large variability enabling more robust projec-

tions and quantifying associated model uncertainties. This will improve the relevance of crop

model outputs in different environments [17]. However, not accounting for the related uncer-

tainties may jeopardize decision-making in the agricultural sector. There are many sources of

uncertainties including those related to differences in the governing process model equations

and parameterizations, climate model projections, and methods of climate downscaling. In

order to help decision makers to decide between plausible decisions options, Challinor et al.

[18] recommended that these sources of uncertainties should be distinguished and

communicated.

Considering the complex and non-linear influence of climate on crop development and

growth, quantifying, and dissecting the various sources of uncertainties in the prediction of

the impact of climate change is a challenge. Recently, the multi-model ensemble approach has

been introduced to study uncertainties in projected climate change impact on crop production

[14,19,20]. By this, yield projections could be improved by calculating the ensemble means

and quantifying the related uncertainties in comparison to the common single crop model-sin-

gle climate projection simulations. One major finding from the previous studies was that dif-

ferences in the crop models were the main source of uncertainty and usually dominated over

the uncertainties resulting from the climate model scenarios [14,17,20].

Crop models differ not only in the equations describing crop growth, but also in the level of

detail of boundary conditions needed for running them, and the equations representing

related processes in the soil [21]. The role of different approaches in modelling these processes

determining crop growth has so far not been analyzed in previous studies. For instance,

modeling soil processes is an important component of crop modeling. However, considerable

uncertainties remain to be addressed regarding the quality of predictions among different soil

models of despite their significant progresses in soil models [22]. In previous multi-model

studies such as that by Asseng et al. [23], the participating modeler groups contributed only

with complete models, i.e. with a given combination of model equations that describe the soil-

plant-atmosphere system. Ceteris paribus analyses of how single model components affect the

PLOS ONE Climate change impact on crop growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0262951 January 21, 2022 2 / 26

the Federal Ministry for Economic Cooperation and

Development (BMZ). Additionally, this work was

supported by the Collaborative Research Center

1253 CAMPOS (Project 7: Stochastic Modelling

Framework), funded by the German Research

Foundation (DFG, Grant Agreement SFB 1253/1

2017). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0262951


outcome of simulations were not performed, which limits assigning uncertainties to individual

processes.

Studies focusing on the influence of climatic variations on crop productivity are of particu-

lar importance for regions such as Ethiopia, where only few studies have been conducted so

far. Ethiopia’s national economy is dominated by the agricultural sector, which accounts to

42% of the GDP, employs 85% of the population, and contributes about 90% to total export

earnings [24]. Crop production is the main agricultural activity, and it is mainly practiced

under rain-fed conditions. This can exacerbate the negative effects of climatic variations [25].

Since cereals are the main source of food, failures in cereal production will almost inevitably

jeopardize food security. In 2018, 87% of total crop production were cereals grown on 80% of

the total cultivated land [24]. Of the many cereals grown in Ethiopia, maize (Zea mays L.) and

wheat (Triticum aestivum L.) are two of the three most important crops with a combined share

of 42.6% of the total crop production [24].

Significant increasing trends in frequencies and magnitude of climate extremes have been

documented in Ethiopia [26–28]. In the face of a changing climate, the likely increase of

extreme events will have an adverse impact on cereal crop production in Ethiopia [10,29,30].

However, the results have shown large discrepancies in the magnitude and sometimes in the

direction of the impact. For example, some studies projected maize yield to decline by 20–43%

[31–33], other studies show that maize yield could increase by 2–51% [10,29,31]. The possible

reasons of these inconsistencies might stem from limitations related to either the low number

of crop models used, or the few numbers of climate model projections considered in each of

the studies, or both.

Thus, the main objectives of this study were i) to quantify the impact of projected climate

change on maize and wheat yields in Ethiopia, and ii) to dissect the contributions of different

sources of uncertainties from the overall uncertainty in crop yield projections. To achieve the

objectives, we applied a multi-model ensemble approach by running 48 crop growth and soil

submodel combinations in conjunction with climate projections of ten different climate mod-

els from the Coordinated Regional Climate Downscaling Experiment (CORDEX). To the

authors’ best knowledge, no crop modeling study has been conducted so far using dynamically

downscaled climate projections in East Africa in general and Ethiopia in particular. Models

were calibrated for the phenology and growth across 3 locations representing the major wheat

and maize growing areas in Ethiopia. To identify the most influential factors that affect grain

yield, a sensitivity analysis was also conducted by discretely varying selected input variables

and analyzing their sensitivity on modeled yield for the 30 baseline years (1981–2010). The

potential impact of climate change on yield was computed by comparing the relative changes

between the baseline and future climate simulations. Finally, comparison was made for the

contribution of the different sources of uncertainty in projected impact on grain yield.

Materials and methods

The study sites

Our study was based on experimental field data for two wheat and two maize cultivars, which

were collected over several years at three research sites with differing soil and climate: Adet

and Sinana for the two wheat cultivars and Kulumsa for the two maize cultivars. Adet lies at an

altitude of 2170 m with a long-term (average) annual rainfall between 1000 and 1800 mm (Fig

1). The dominant soil types in Adet are Fluvisols and Vertisols. Wheat is widely grown as the

major crop following teff. Sinana is one of the major wheat producing regions in the country.

It is located at the foot of the Bale Mountain west of the Great Rift Valley at an altitude of 2460

m. Its average annual rainfall varies from 600–1600 mm with two distinct rainy seasons; the
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main one from July-October and the minor one from March-June. The research site is charac-

terized by a deep, fine textured and aggregated soil structure. Predominant soil types are

Phaeozems and Cambisols. Kulumsa is in the central part of the country at an altitude of 2260

m. It represents a highland area with a cool climate receiving an annual total average rainfall of

700–1100 mm rainfall and a rainy season from May to October. Most of the area is a flat plain

dominant by Haplic Xerosol.

Observed climate and crop data

Observed daily weather data (rainfall, solar radiation, maximum temperature, and minimum

temperature) were obtained from the National Meteorological Agency of Ethiopia for the

period of 1981 to 2017. Datasets from the Agriculture Modern-Era Retrospective Analysis for

Research and Applications [34] were used both for gap-filling and as source to estimate

unavailable data such as wind speed and relative humidity. Field data for wheat was obtained

from Adet and Sinana agricultural research centers while the data for maize was obtained

from field experiments conducted by the International Maize and Wheat Improvement Center

(CIMMYT) in collaboration with Kulumsa agricultural research center. The experimental data

we used were gathered in parts during genotype by environment experiments and extracted

from the agricultural research centers’ field books. The records contain summary of measured

data, published in annual reports for each season and stored in the research centers’ libraries.

The reports include records of crop development and growth observation data as well as soil

and crop management information for each field experiment. Crop data include maturity

date, anthesis date and grain yield, whereas crop management data include planting date,

planting density and fertilizer application dates and rates. The reports include only the average

values across the replications of the experiment. The four crop cultivars considered in the

study were ‘Shina’ (in Adet) and ‘Medawolabu’ (in Sinana) for wheat as well as ‘Jibat’ and

‘Wenchi’ (in Kulumsa) for maize (Table 1). Available soil data included soil texture as well as

physical and chemical properties (Table 2). The soil data were extracted from the report that

match the beginning of our experimental crop data wherever available. For maize (i.e.,

Fig 1. Monthly means of observed rainfall (prcp), and maximum (tmax) and minimum (tmin) temperature for

1981–2010 at the three research sites.

https://doi.org/10.1371/journal.pone.0262951.g001
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Kulumsa site), soil data from the 2012 report were used whereas for wheat the data were

extracted from the 2002 (i.e., Adet site) and 2006 (i.e., Sinana site) report.

Climate projections

Future climate change data of ten contrasting Global Climate Models (GCMs, S1 Table) were

accessed from CORDEX [35] which had been downscaled to 44 km horizontal resolution in

Africa (available at https://esgf-node.llnl.gov/search/esgf-llnl/). Sponsored by the World Cli-

mate Research Program, CORDEX generated high-resolution future climate projections by

downscaling GCM projections using different regional climate models. A 30-year window

period representing climate projections by the mid of the century (2021–2050) was considered

in this study. A single Representative Concentration Pathway (RCP4.5) emission scenario was

selected as the radiative forcing does not diverge in the different RCPs by the selected time

[36]. The data were bias-corrected using the quantile-quantile mapping procedure [37,38], in

order to match distributional characteristics of historical observations of precipitation and

temperature.

Compared to the baseline climate (1981–2010), a consistent temperature increase is

expected by 2050 for all study sites whereas the change in precipitation is expected to differ,

Table 1. Description of crop cultivars used in the study.

Crop Cultivar name Year of release Maturity group On-station (on-farm) yield (t ha-1) Days to maturity Data collected (years)

Maize Wenchi 2008 Intermediate 8–12 (6–8) 160–200 2010-2012/2015-2017

Maize Jibat 2009 Intermediate 8–12 (6–8) 160–200 2011–2016

Wheat Shina 1999 Intermediate 3–5 (2.5–3.5) 100–120 2001–2006

Wheat Medawolabu 2000 Late 4–5 (3–4) 136–143 2006–2011

https://doi.org/10.1371/journal.pone.0262951.t001

Table 2. Soil physical and chemical characteristics of soil horizons at the research sites.

Site Depth (cm) Silt (%) Clay (%) BD (g cm-3) pH OC (%) PWP (Vol.%) FC (Vol.%) CEC (cmolc kg-1)

Adet 0–5 31 40 1.02 8.7 4.17 31.5 44.3 37

5–15 31 41 1.07 8.7 4.1 31.5 43.5 37

15–30 31 44 1.16 8.7 2.5 31.5 42.3 37

30–60 28 46 1.20 8.7 1.9 31.8 41.8 36

60–100 28 47 1.24 8.7 1.5 31.5 40.8 36

100–125 27 47 1.26 8.7 1.0 31.5 40.5 38

Kulumsa 0–5 28 42 1.21 5.3 2.6 31.0 41.0 41

5–15 28 44 1.23 5.3 2.4 31.0 41.0 40

15–30 28 46 1.35 5.3 1.4 31.0 39.0 40

30–60 25 47 1.40 5.3 1.0 31.0 38.2 41

60–100 25 47 1.45 5.3 0.6 30.7 37.7 40

100–150 26 45 1.47 5.3 0.5 30.0 37.0 41

Sinana 0–5 26 39 1.12 6.7 3.3 31.5 42.5 45

5–15 26 41 1.18 6.7 2.9 32.0 42.0 46

15–30 25 45 1.26 6.7 2.1 32.0 41.0 46

30–60 24 47 1.30 6.7 1.6 32.5 40.5 47

60–100 24 47 1.39 6.7 1.4 32.0 39.0 46

100–145 24 47 1.45 6.7 1.2 31.5 37.5 45

BD: Bulk density; OC: Organic carbon; PWP: Permanent wilting point; FC: Filed capacity; CEC: Cation exchange capacity.

https://doi.org/10.1371/journal.pone.0262951.t002
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both seasonally as well as between sites. Averaged over the climate models, both annual maxi-

mum and minimum temperature are projected to increase by about 1.2–1.4˚C by 2050 where

the projected change in the minimum temperature would be slightly higher than that of the

maximum temperature (Fig 2). Averaged across climate models, a slight increase in total

annual precipitation is projected by 2050 in Sinana (+6%) and Kulumsa (+7%), whereas a

decrease (>25%) is projected in Adet. However, the projected changes are highly variable

among the climate models as well as between seasons (Fig 2C). For the growing season only,

an increase by 17% and 29% in Kulumsa and Sinana, respectively, and a -2% in Adet are pro-

jected. Generally, a negative relationship was evident between the projected changes in tem-

perature and precipitation with a majority of GCMs predicted hot and dry condition (Fig 2D).

Model description

The Expert-N modelling package. The agro-ecosystem modelling package Expert-N pro-

vides process-based models and submodules for the description of coupled processes in the

soil-plant system (Fig 3). This enables the simulation of saturated and unsaturated water flux,

soil heat transfer, C and N turnover in the soil, evapotranspiration, transport of mineral nitro-

gen, and plant processes, given abiotic boundary conditions as well as soil and crop manage-

ment [39]. Its modular design facilitates multiple model configurations by combining various

submodels. The crop growth submodel enables the dynamic simulation of phenological devel-

opment, crop growth, canopy photosynthesis, biomass accumulation, leaf area and root distri-

bution, root water and nitrogen uptake, and yield.

Model ensembles. There exists a multitude of crop models and modelling approaches for

simulating processes in agroecosystems. In many cases, there is no clear reason for preferring

one process representation over another. It also depends on the data situation whether it is

Fig 2. Changes from 1981–2010 in monthly average (a) maximum temperature (˚C), (b) minimum temperature (˚C),

and (c) relative change in monthly averaged total precipitation (%) predicted by 2050 according to the 10 downscaled

GCMs as compared to the baseline. Standard deviations shown as whiskers. Scatter plot between projected mean

annual changes in maximum and minimum temperature and precipitation (d).

https://doi.org/10.1371/journal.pone.0262951.g002
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possible to decide a priori whether certain process formulations are to be preferred. In fact,

many submodels were developed specifically for limited data availability. In our study, we fol-

lowed a multi-model approach whenever it was not possible to decide a priori which approach

would be superior given our data. In the present study, a multi-model ensemble (n = 48; Fig 3)

was formed by coupling four crop growth submodels (CERES, SUCROS, SPASS, and

GECROS), two soil organic matter turnover submodels (SOILN and DAISY), two soil water

transport submodels (based on Richards equation and the tipping-bucket (TB) approach) and

three soil heat transfer submodels (LEACHN, DAISY and SHAW).

The four selected crop growth submodels took part in the world-spanning agricultural

model intercomparison and improvement project (AgMIP) for wheat [15,40] and maize

[13,41] under contrasting conditions and environments across the globe. The models covered

a good space of approaches and methods used in many common models. Most state-of-the-art

crop models originate from two crop modelling schools, the DSSAT models and the Wagenin-

gen models. In this study, we used a further developed version of the CERES model based on

an earlier version of DSSAT, two models from Wageningen (SUCROS and GECROS), and the

hybrid model SPASS. Table 3 presents short summaries of the main features of the four crop

growth models and their differences. The models vary in the level of detail and complexity of

growth process representation [42]. The CERES was designed to simulate management and

environmental effects on crop growth and development [43] and tested in different environ-

ments around the world [44]. SUCROS originally developed to simulate potential crop pro-

duction with unlimited supply of plant nutrients [45], was combined in Expert-N with

submodules for nitrogen uptake from WAVE [46] to take into account possible N-limitation

effects on photosynthesis and crop growth. SPASS was developed by adopting approaches

mostly from CERES and SUCROS with some new own functions [47]. GECROS is relatively a

recent model. It is based on the SUCROS model and uses a set of new algorithms that

enhanced the description of genotype-environment interaction [48]. Photosynthesis is calcu-

lated based on biochemical approach. This sets GECROS apart from the rest of the models that

Fig 3. Schematic diagram of the modular components of the Expert-N agro-ecosystem modeling package.

Submodels considered in the present study are surrounded by dashed lines. The circles show the submodels selected

for factorial combination to form the multi-model whereas the boxes show the submodels that were constant to the

multi-model.

https://doi.org/10.1371/journal.pone.0262951.g003
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use less advanced approaches. Whereas SPASS was originally developed in Expert-N [49,50],

the other crop growth models were implemented from freely available code or implemented

based on their documentations. Therefore, they may slightly differ from their original version

with regard to the coupling to soil modules of Expert-N (water uptake, nutrient uptake, litter

transfer to soil organic matter pools). Short summaries of the main features of the four plant

models and their differences are provided by previous studies [42,51,52].

The two soil organic matter turnover submodels included here were based on the SOILN

model [53] and DAISY [54,55] model. Both use a multi-pool structure of soil organic matter.

SOILN distinguishes three pools with distinct turnover rates (humus, litter, and manure)

whereas DAISY considers six of them. In DAISY, the soil organic matter is divided into three

main pools namely: added organic matter, soil microbial biomass and native soil organic mat-

ter where each pool is further divided into two parts, fast and slow. Turnover is determined by

the availability of fractions for the soil organisms [56]. Descriptions of the implementations of

SOILN and DAISY in Expert-N can be found in Berkenkamp et al. (2002).

The three soil heat transfer modules included were taken from LEACHN [57], DAISY [54]

and SHAW [58]. These models differ in the terms considered in the general heat transfer equa-

tion, the numerical solution of the applied equation and in the way the upper and lower

boundary conditions are defined. In LEACHN, the upper boundary condition is given by

interpolation of average weakly air temperatures and average weakly temperature amplitudes.

It is assumed that there is no heat flux across the lower boundary in 2 m soil depth. Convective

heat flow with water and vapor is neglected in LEACHN; however, it is considered in the other

models. In addition, SHAW considers the effects of soil frost and evaporation on the heat stor-

age in soil. In both DAISY and SHAW, it is assumed that soil temperature at zero soil depth

equals air temperature. At the bottom boundary, an analytical solution of the heat transfer

equation is used assuming that frost/thaw and convective heat transfer can be neglected.

The two approaches used to simulate soil water dynamics were based on a numerical solu-

tion to the Richards equation, as implemented in the HYDRUS 1D model [59], and alterna-

tively, on the tipping-bucket (TB) approach of CERES [60]. The former approach is based on

the numerical solution of the governing water flow equation using an implicit finite element

scheme, which can be used in unsaturated, partially saturated, or fully saturated porous media.

It considers the gradients of soil water potential to simulate soil water movement. The tipping-

Table 3. Main approaches adapted in the four crop growth models to describe various growth processes.

Model Root

distribution over

depth

Soil hydraulic

resistance

dependence

Root

hydraulic

resistance

Radiation

attenuation

Leaf internal

CO2

Assimilate

partitioning

Leaf area growth Factors for leaf

senescence

CERES Dynamic,

senescence

included

Soil moisture

content and root

length

Included Big-leaf

model

– Priority scheme Exponential during

juvenile phase, followed

by a phase with

constant sla

Age, drought, and

nitrogen

SUCROS Exponential

decrease in four

steps

Soil moisture

content

– Multilayer

(three layers)

From constant
Ci
Ca

-ratio

Fixed allocation

pattern

As in CERES Age, self-shading,

temperature

SPASS As in CERES As in CERES Included Multilayer

(five layers)

As in SUCROS Fixed allocation

pattern

From leaf biomass

growth rate, variable sla

Age, self-shading,

temperature, and

N

GECROS Uniformly

distributed

Not considered

until permanent

wilting point

– Two-leaf

model

Coupled to

photosynthesis

Optimizing root

and shoot

activity

Depending on C or N

limitation

N translocation

from leaves to

grains

Source [42].

https://doi.org/10.1371/journal.pone.0262951.t003
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bucket (TB) approach divides the soil into a cascade of ‘‘buckets” and calculates the water bal-

ance processes. Drainage occurs only when the field capacity of the overlying bucket is reached.

Since the matric potential is neglected, upward soil water movement (capillary rise) is not simu-

lated. Potential evapotranspiration was simulated based on the standard Penman-Monteith

FAO56 method with a single crop coefficient [61] for all model ensemble members. The majority

of the crop models participated in previous AgMIP studies were based on Penman-Monteith

method [41,62]. Webber et al. [63] showed that the difference in methods to calculate the refer-

ence evapotranspiration (ET0) can result in significant uncertainty in yield estimates. However,

the Penman-Monteith method is physically the most comprehensive method for calculating

evapotranspiration. It consistently provides better estimates than other methods, in particular

including the Penman equation [64] provided all input variables are available.

Model calibration

The crop growth models were calibrated by minimizing the sum of squared errors between the

model simulated and the observed experimental data. The data used for the calibration were

flowering and maturity dates, and crop yields for six years for each cultivar (Table 1). The cali-

bration procedure involved two steps. First, the genetic parameters (S2 Table) controlling sim-

ulated phenology were estimated based on observed flowering and maturity dates. In a second

step, the parameters from step 1 were fixed, and the genetic parameters which control crop

growth were estimated. For parameter estimation, we used the freely available inverse model-

ling code UCODE [65].

Statistical analysis

Performance metrics. The performance of the calibration was evaluated using most com-

monly used statistical methods such as Pearson correlation coefficient (r), Root Mean Square

Error (RMSE), the percent bias (PBIAS) and Nash-Sutcliffe efficiency (NSE). As a measure of

agreement between simulated (sim) and observed (obs) data, we computed r (Eq 1). A value of

r close to 1(-1) shows a perfect positive (negative) correlation between the simulated and

observed data.

r ¼
PN

i¼1
ðsimi � simÞ:ðobsi � obsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
ðsimi � simÞ

2

q

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðobsi � obsÞ

2

q ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðsimi � obsiÞ

2

N

s

x 100 ð2Þ

PBIAS (Eq 3) measures the extent to which the simulated values are larger or smaller com-

pared to the observed values; positive (negative) values correspond to overestimation (under-

estimation) [66].

PBIAS ¼
PN

i¼1
ðsimi � obsiÞ
PN

i¼1
obsi

x 100 ð3Þ

The NSE (Eq 4) measures the magnitude of the residual variance relative to the measured

data variance [67]:

NSE ¼ 1 �

PN
i¼1
ðsimi � obsiÞ

2

PN
i¼1
ðobsi � obsÞ

2
ð4Þ
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where obs and sim refer to observed and simulated data whereas, obsand simrefer the average

values respectively. NSE can range from −1 to 1 where NSE = 1 corresponds to a perfect sim-

ulated data match, whereas NSE < 0 occurs when the mean of observed data describes the

data better than the model simulation.

In addition, the calibration results were visualized in Taylor diagrams [68]. A Taylor dia-

gram summarizes how well model simulation match the observed system behavior to facilitate

the relative assessment of different models. For this, it combines three statistics in a 2-D graph:

the normalized standard deviations (SD) of both simulated and observed data, Pearson’s corre-

lation coefficient between simulated and observed data, and the centered RMSE. The radial

distance (blue contours) from the point on the x-axis identified as "observation" is a measure

of the centered RMSE between the simulated and observed. The normalized SD of the simu-

lated pattern are proportional to the radial distance from the origin to the points and the

cosine of the polar angle (pink) is equal to the correlation between simulated and observed

data. The standardization of SD is done using the SD of the respective observational data so

that the reference has a standard deviation of 1. The centered RMSE refers that the simulated

and observed data are normalized by subtracting the respective means before calculating the

RMSE.

Sensitivity analysis. To identify the most influential factors that affect grain yield, a sensi-

tivity analysis was conducted by discretely varying selected input variables and analyzing their

impact on modelled yield for the 30 baseline years (1981–2010). We considered five levels of

fertilizer applications: 0, 40, 80, 120 and 160 kg ha-1; five [CO2] levels: 360, 450, 540, 630 and

720 ppm; four levels of temperature increase: 0, 2, 4, and 6˚C; and five levels of precipitation

change: -50, -25, 0, 25, and 50%. The perturbations are applied as absolute offsets for tempera-

ture treatments from daily maximum and minimum temperature data whereas precipitation

perturbations are applied as fractional changes to daily data. The sensitivity to changes in

[CO2], temperature and precipitation were evaluated under three (0, 80, 160 kg ha-1) N-fertil-

izer levels to evaluate their combined effects on grain yield. Here, the main purpose of the sen-

sitivity analysis was to sample over a wide range of treatment space to understand the

influential factors that drive grain yield changes. The levels were selected one to encompass the

current situation (represented by 360 [CO2], 0˚C temperature increase, and 0% precipitation

increase from the baseline climate) and second to approximate as much as possible to the levels

used in previous studies [13,41,69] for comparison purpose. Grain yield was simulated for 30

years � 141 perturbations � 48 model ensembles resulted in 67,680 simulations per cultivar. We

analyzed the effect of the treatments using Student’s t-test and linear modelling with analysis

of variance (ANOVA) and post-hoc Tukey test.

Climate change impact calculation. The potential impact of climate change on crop

growth (yield and grain [N]) were computed by comparing the relative changes in the simula-

tions driven by baseline (1981–2010) climate and future (2021–2050) climate projections. The

relative percentage change (ΔZ) due to climate change was calculated as:

DZ %ð Þ ¼
Zfuture � Zbaseline

Zbaseline
� 100 ð5Þ

where Zfuture and Zbaseline represent the simulated median values for the future and baseline cli-

mates, respectively.

Dissecting sources of uncertainty. In predicting climate change impact on crop growth,

uncertainties may arise for a variety of reasons. In this study, we compared the contributions

to the uncertainty in the projected impact of climate change on yield from i) climate models,

and ii) Expert-N models and submodules selected to represent soil and crop processes. As in
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Asseng et al. [17], the uncertainties were quantified by calculating the respective coefficient of

variation (CV) for each crop cultivar. For instance, to calculate the CV due to climate models

for a certain crop cultivar, first the standard deviation of yield changes over the ten climate

models was calculated for each combination of crop and soil models:

s
ðClimate modelÞ
i;j;k;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðDZjMi;Nj;Ok; PlÞ

q
for i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k

¼ 1; 2; . . . ; o and l ¼ 1; 2; . . . ; p ð6Þ

where ΔZ is simulated grain yield change, ΔZ | Mi, Nj, Ok, Pl represent the simulated yield

change by plant models Mi, soil water models Nj, SOM models Ok and soil heat models Pl, and

m, n, o and p are the total number of plant models, soil water models, SOM models and soil

heat models, respectively. Second, the resulting m × n × o × p standard deviations, s
ðClimate modelÞ
i;j;k;l

were normalized by division with the overall average of simulated yield change, DZ , and

expressed as percentages:

CVð%ÞðClimate modelÞi;j;k;l ¼
s
ðClimate modelÞ
i;j;k;l

DZ
� 100 ð7Þ

The same procedures were repeated to calculate the CVs resulting from the use of different

plant models, soil water models, SOM models and soil heat models.

While the trials on the two maize cultivars were conducted at one site, the two wheat culti-

vars were grown at two different sites. Since the maize and wheat sites are not the same, we

present our study per cultivar. Specifically, this means that the sensitivity analysis, the climate

impact study, and the uncertainty decomposition analysis were conducted per cultivar.

Crop management assumptions. Throughout our analysis, the same crop cultivars and man-

agement were assumed to evolve in both baseline and future periods (S3 Table). The planting

window was calculated by taking the mean +/- 2SD of the planting dates used for model cali-

bration. Planting was triggered on the first occasion from the beginning of planting window

with 20 mm or more within a 3-day period and no dry spell exceeding 10 days in the following

30 days [70]. The last day in the particular window will be set as a planting date if the condition

was not met. In the present study, the models were run with same initial conditions each year.

In addition, the pressure from pest and disease were not considered here. The effects of CO2

fertilization were not included in our climate change impact assessments.

Results

Model performance

The detail statistics (r, NSE, RMSE and PBIAS) of individual models’ performances are presented

in S4 and S5 Tables. In the case of phenology (flowering and maturity dates), only the crop growth

submodels affect the calibrations (S4 Table and S1 Fig). The RMSEs for the flowering dates were

around two and five days for wheat and maize cultivars, respectively, and the corresponding cor-

relation coefficient was higher than 0.90. The NSE values were also reasonably good ranging from

0.62 to 0.90 and from 0.6 to 0.94 for wheat and maize cultivars, respectively, where the PBIAS was

below 3.2% in both crops. Similarly, close agreements were observed between the simulated and

observed maturity dates. The models simulated maturity dates with RMSE lower than 2 and 5

days for wheat and maize cultivars, respectively, with r values greater than 0.97. The NSE values

ranged from 0.53 to 0.96 and 0.8 to 0.98 for wheat and maize cultivars, respectively with a PBIAS

value of below 2.0% in both crops. Overall, all simulated phenological stages (flowering and matu-

rity dates) were in good agreement with the observations of both crops and in all cultivars.
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The standard deviation, correlation coefficient, and RMSE (relative to the reference obser-

vation) for grain yield is shown Fig 4 and S5 Table. The variations due to soil heat transfer sub-

models were minimal and are not shown in the diagram. Each symbol and color combination

represents a plant-soil water-soil organic matter model combination. For example, red circles

represent simulation results obtained by running the CERES crop growth model together with

the tipping-bucket approach for soil water movement and humus mineralization by DAISY.

Other than with the phenological stages, the different ensemble model members showed quite

large spread in simulating crop yields. The resulting ensemble members simulated grain yields

of wheat and maize with RMSE values ranging from 0.13 t ha-1 to 0.54 t ha-1 and 0.36 t ha-1 to

Fig 4. Taylor diagrams for simulated grain yield after calibration. Top and lower panel shows performance of model ensemble

members for wheat and maize cultivars, respectively. The crop growth model estimates are represented by symbols: CERES (⚫), SPASS

(▲), GECROS (▼) and SUCROS (■). Colors indicate tipping bucket combined with CN mineralization according to DAISY [red] and

SOILN [blue] or Richards equation combined with CN turnover according to DAISY [black] and SOILN [green]), respectively. The

green asterisks (�) marks the standard deviation of the observations (unity because of normalization). Centered RMSE values equal the

distance between the simulated data points and the observation (green asterisk, �), readable from the blue lines.

https://doi.org/10.1371/journal.pone.0262951.g004
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1.01 t ha-1, respectively. The NSE values ranged from 0.21 to 0.75 and 0.15 to 0.95 for wheat

and maize cultivars, respectively, where PBIAS values range approximately from -2% to +2%

and -1.2% to +3.9%, respectively. The respective coefficient of correlation ranges from 0.51 to

0.90 and 0.4 to 0.97 for wheat and maize cultivars, respectively. Among the model ensemble,

members that involved the GECROS plant model coupled with the tipping bucket approach

perform less in simulating wheat grain yield. In contrast, model ensemble members based on

the Richards equation reproduced the observed grain yield significantly better than those

based on the tipping bucket approach. This holds for both crops.

Sensitivity analysis

The ‘probability-of–exceedance’ plots in Fig 5 show the spread of the ensemble runs for the

simulated effect on grain yield, dependent on the different nitrogen fertilization application

rates. Maize yield continuously increased with increasing fertilizer level, whereas the response

of wheat grain yield was pronounced only until 80 kg ha-1N, after which the effect of additional

fertilizer was small. Based on the ensemble median, increasing fertilizer application rates from

0 to 160 kg ha-1 could increase maize grain yield by 4 to 4.4 t ha-1 while the corresponding

range of increase in wheat grain yield was 1.0 to 1.7 t ha-1. The variability in the ensemble was

consistently higher in the lower fertilization levels across cultivars. For instance, at zero fertili-

zation level, the standard deviation (SD) of the yields was more than 1.5 t ha-1 for maize and

0.8t ha-1 for wheat. However, the SD were less than 0.7 t ha-1 at the highest fertilization rate

(160 kg ha-1) for both crops.

The results of the sensitivity analysis of grain yield to different levels of [CO2], temperature

and precipitation are presented in box plots under three fertilizer levels (Fig 6). The associated

multi-comparison ANOVA test result is also appended (S6 Table). The pattern of the effects of

elevated CO2 were much clearer for wheat than for maize. The response of wheat grain yield to

increased [CO2] were positive at all treatment levels and the effects were enhanced at higher

fertilizer amounts. For instance, increasing [CO2] levels from 360 to 720 ppm increased

median wheat grain yield by 1.2 t ha-1 under high fertilizer rates (160 kg ha-1) while the effect

was only 0.5 t ha-1 for unfertilized treatment. However, the maize grain yield responded to a

change from 360 to 450 ppm [CO2] level, beyond which no further response was observed.

Fig 5. Probability of exceedance mean yield of ensemble models for the effects of different fertilizer levels.

https://doi.org/10.1371/journal.pone.0262951.g005
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The corresponding maize grain yield increase was only 0.2 t ha-1 and the effects also show not

much difference between different levels of fertilizer treatments.

Temperature had a clear effect on grain yield and the effect was stronger for wheat.

Wheat grain yield decreased by 1.6 to 1.8 t ha-1 for a 6˚C increase in temperature, which

conforms with a relative decrease in yield of 47–57%. However, the effects on maize yield

were modest. The decrease was less than 0.2 t ha-1 for a 6˚C increase in temperature, which

is less than 10%. In particular, there was no considerable difference in maize grain yield

for 2˚C temperature increase. The temperature effect on wheat yield was higher when N

fertilization was high. A 6˚C increase in temperature decreased the wheat yield by 50–60%

under high N fertilization (160 kg ha-1) while without fertilizer, the corresponding

decrease was 35–50%.

The simulated grain yields reacted rather insensitive to changes in precipitation. In some

cases, a negative relationship between increases in precipitation and yield was simulated. A

50% decrease of precipitation resulted in a decrease of median maize yield by around 0.5 t ha-1

(p<0.05) while a 50% increase in precipitation led to no significant change. Wheat yield, on

the other hand, show no significant response for precipitation change. However, despite its

weak relative strength, wheat yield decreased by about 0.1 t ha-1 for a 50% decrease in precipi-

tation under high N fertilization. There was also an instance where wheat yield decreased

(increased) by 0.3 (0.2) t ha-1 for a 50% increase (decrease) in precipitation under unfertilized

treatment. These results were opposite in tendency to those observed for the temperature and

[CO2] treatments in the sense that the response decreased as N fertilization increased. Further

investigation revealed that much of the effects of precipitation perturbation were attributed to

N leaching which was relatively higher for wheat cultivars (S2 Fig). An increase in precipitation

resulted in higher N leaching where the effects were different at different level of N input. The

effects of increased precipitation on N leaching were larger at higher N fertilization rate (160

kg ha-1) for wheat cultivars while maize cultivars were more affected when N was limiting (0

kg ha-1). The results clearly show an interaction effect of nitrogen and precipitation. The pat-

tern of precipitation effects was consistent between the maize cultivars but not between wheat

cultivars.

Fig 6. Effect of temperature (T), precipitation (P) and elevated CO2 (C) in air on grain yield for wheat (a) and maize

(b) cultivars.

https://doi.org/10.1371/journal.pone.0262951.g006
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Impact of climate change on crop growth and development

Fig 7(A) presents the percentage change in grain yield between the baseline and future climate

scenraios by the ensemble. Wheat grain yield is expected to decrease by 36 to 40% by 2050

whereas the impact on maize yield is minimal (~ -2%). However, the variability of the pro-

jected change in wheat grain yield was much higher SD ~ 18–21%. The results were consistent

among the cultivars. The grain N concentration is expected to decrease by about 27% for

wheat (Fig 7B). In contrast, the simulations suggest that maize grain N concentration will

increase by 12 to 14%. The variability associated with the projected change of grain N was

higher for wheat cultivars (SD: 17–28%) than for maize cultivars (SD: 7.5–15%). We analyzed

the effect on the growing season length, as a definition for the operation window for the farm-

ers. Due to climate change, a substantial shortening of crop life cycle (LGS) is projected for

both crops (Fig 7C). A median shortening in LGS of 12 days was found for maize and between

8 to 9 days for wheat.

Model uncertainties

Fig 8 illustrates the contributions of different sources of uncertainty in the projected of grain

yield change in the near future climate. The uncertainty in projected grain yield change caused

by the variability in crop growth models was larger compared to the rest of the model compo-

nents considered in this study. The corresponding median CVs were 40–80% (crop growth

submodels), 11–25% (climate models), 3–22% (soil water flow submodels), 1–15% (soil

organic matter submodels) and less than 2.5% (soil heat submodels). The uncertainty due to

crop growth submodels was larger for wheat than maize. The uncertainty in the wheat grain

Fig 7. Relative change (%) in a) grain yield, b) grain N concentration and c) length of growing season (LGS) for the

simulations of the multi-model ensemble for 2050s. The spread of the boxes shows the variations due to the multi-

models.

https://doi.org/10.1371/journal.pone.0262951.g007
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yield changes was largely dominated by the variations in the crop growth models (with 71–

80% CV) followed by climate models (with 11–25% CV). Meanwhile, the sources of uncer-

tainty in the maize grain yield changes were fairly distributed among all model groups except

for the soil heat submodels. Accordingly, 39–47% of the variations were attributed to the dif-

ferences in crop growth submodels followed by climate models, soil water flow and soil

organic matter submodels with CVs 19–23%, 19–22% and 10–16%, respectively. The contribu-

tions in the uncertainty were largely consistent within the crop cultivars but not across crop

species. Among the model components considered, the uncertainty due to variations in the

soil heat transfer submodels were minimal (CV<2.5%).

Discussion

Yield response to elevated CO2, warming atmosphere, change in

precipitation and fertilizer application

It is established knowledge that elevated CO2 affects crop production. However, the strength

of the response varies widely among crops and environment [71–76]. Compared to current

yields, our study suggested that elevated CO2 to 720 ppm would increase wheat grain yield by

35–37% while maize grain yield would increase only by 3 to 5%, without considering the

increase by the breeding progress or new technologies. Based on 59 peer-reviewed papers,

Wang et al. (2013) conducted a meta-analysis on the impacts of elevated CO2 and found that

wheat yield increased by 20–28% as [CO2] increased from 450 to 800 ppm. Depending on the

environment, some studies even reported much higher yield increases of up to 44% [77] and

70% [73]. The effects of elevated CO2 were lower under low N fertilization treatments. The

response of grain yield of C3 plants for elevated CO2 was higher under non-limiting N and

H2O [74]. Regarding maize yield response, our results are consistent with previous modeling

studies [13,78]. A doubling of [CO2] from 360 to 720 ppm resulted in an average 7.5% increase

in maize grain yield [13]. The lower response of maize yield to increasing [CO2] in our study

can be related to the site climate conditions, where rainfall is high. In C4 plants such as maize,

the response of grain yield to increased levels of [CO2] is more pronounced under water stress

conditions [72,75], due to water saving by a reduced stomatal conductance. Temperature,

along with photosynthetic radiation and humidity are important agroclimatic factors that

affect crop growth and development [79]. It affects various photosynthesis-related reactions

Fig 8. CVs (%) for the simulated grain yield changes according to the contribution by various model components for

maize (right two bars) and wheat (left two bars) cultivars.

https://doi.org/10.1371/journal.pone.0262951.g008
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and hence crop yield [80]. The present study highlights the negative effects of increasing tem-

perature on grain yield. This is in-line with previous findings [81]. Higher temperature gener-

ally decreases yield by shortening the grain filling phase. Like the effects of elevated CO2,

however, the level of the impact on wheat yield was much higher than that on maize yield. A

temperature increase by 6˚C from current climate reduces wheat grain yield by 47–57%, but

the same temperature increment results in a reduction of only 10% in maize yield. The relative

reduction in wheat yield was higher than that presented in Pirttioja et al. [82]. These authors

reported 28% to 37% reduction in spring wheat yield over Europe in response to a 6˚C temper-

ature rise. However, in their global analysis, Asseng et al. [17] also found that wheat yield can

be decreased by up to 56% in the tropics due to a 4˚C increase. For maize, our results are com-

parable to the study of Bassu et al. [13]. Evaluating maize crop response to different climate

factors using multi-crop models, they reported a modest reduction of grain yield.

The impact of precipitation on grain yield was the weakest in our sensitivity analysis. The

effects of a 50% increase/decrease of current precipitation resulted in less than a 0.5 t ha-1 and

0.3 t ha-1 yield difference for maize and wheat. In some cases, precipitation increase had also a

small negative effect on grain yield, particularly in case of wheat. These results have to be seen

in the light that perturbation of precipitation did not affect the frequency of rainy or dry days

but the quantity of rainfall. Guan et al. [83] also found similar decline in crop yield with

increasing rainfall under high mean annual precipitation scenario in west Africa. Major cereal

production including maize, wheat and sorghum showed no significant correlation with pre-

cipitation and should be studied together with other agronomic and climatic factors [84]. On

the other hand, the effects of precipitation were smaller when considering increases in N fertil-

ization which is in-line with the fact that application of N increases water use efficiency [85].

The simulated effects of precipitation changes were rather more pronounced in N leaching

compared to grain yield. A possible explanation for the negligible effect of precipitation pertur-

bation on grain yield could be attributed to the associated high soil organic carbon content at

the study sites [86]. The high water holding capacity of the soils due to high organic carbon

contents may provide the sufficient buffering capacity for extended time periods with low

amounts of precipitation. More importantly, the low sensitivity could be attributed to the fact

that the higher amount of precipitation at the study sites would be satisfactory even with -50%

perturbations. Similar results were reported for sites in Africa (like Benin and Ethiopia) with

high seasonal precipitation [41].

Results of the sensitivity analysis showed that nitrogen fertilization played a crucial role in

modelled crop productivity in the study area. Compared to the unfertilized treatment, applica-

tion of 160 kg ha-1 nitrogen increased maize and wheat median grain yield by 4.0–4.4 t ha-1

and 1.0–1.7 t ha-1, respectively, corresponding to a relative increase of 90 to 100% and 40 to

65%, respectively. In their field experiment conducted in a maize growing area in Ethiopia,

Abera et al. [87] found up to 254% increase in maize grain yield with 110 kg ha-1 nitrogen

application. For wheat, studies highlight that in the highlands of Ethiopia nitrogen application

has even higher impact on grain yield [88].

Possible effects of climate change on crop growth

Climate change will negatively affect crop production in Africa [6,89,90]. Our study suggests

that future wheat yield will be a major challenge in Ethiopia (Fig 7A). However, the associated

variability in the prediction of the grain yield was high. Averaged over all climate simulations,

annual temperature is projected to increase by 1.2 to 1.4˚C by 2050 in the study area (Fig 2A

and 2B). This entails a tremendous impact on a cool season crop like wheat through the accel-

eration of phenological development [62]. Compared to the baseline period, the median length
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of the wheat life cycle is expected to shorten by eight to nine days by 2050 (Fig 7C). The expo-

sure to climate extremes particularly during the grain filling phase [79] could probably explain

the large yield decrease despite modest change in growing season duration which clearly worth

further research. In their review of climate change impacts on major crops in eastern Africa,

Adhikari et al. [91] highlighted wheat as the crop most vulnerable to climate change in the

region. However, the projected yield losses could partly be offset if we included CO2 fertiliza-

tion in our simulations, which have been found to have positive effects in C3 crops [76].

Studies suggest that atmospheric CO2 exposure also affects the availability of N and N use

efficiency [80]. Our study indicate that the impact of changing climate also manifested itself in

terms of grain quality where a decrease of up to 28% in wheat grain N concentration is pro-

jected by 2050 (Fig 7B) but with a high associated variability. Asseng et al. [15] evaluated the

effect of climate change on wheat protein around the world using 32 different wheat crop

models with combination of 5 GCMs. They found that grain protein concentration would

decline as a result of climate change in most parts of Africa. The study suggested that reduc-

tions in grain quality were attributed to nitrogen availability limiting growth stimulus from

elevated CO2 particularly in low-rainfall regions [15]. A meta-analysis study supported the

result that elevated CO2 reduces grain quality albeit it stimulates wheat grain yield [92].

In contrast, our estimates showed maize production would not suffer as much as wheat

crop with a projected grain yield reduction of less than 2% by 2050. This was even though

maize growing season was projected to decrease by up to two weeks under future climate (Fig

7C). It suggests that changes in the critical development stages like the timing of flowering and

length of grain filling period could be more important than the total growing season in deter-

mining the final grain yield. The projected increase in seasonal total precipitation for the site

(Fig 2C) can also partly explain the minimal impact. The estimated relative change in maize

grain yield is in line with the study conducted by Tesfaye et al. [10] who reported a relatively

small yield reduction of 3–9% projected for 2050s for the highlands of Eastern Africa. Likewise,

in their recent working paper, Timothy et al. [29] pointed out that the impact of climate

change on crop yield including maize will be minimal. Some studies even reported that climate

change would increase maize yield by 2050s. Araya et al. [30] studied the effects of climate

change on maize yield in southwestern Ethiopia and found that median grain yield would

increase by up to 4.2%. Generally, the projected impact of climate change on maize production

would be minimum in east Africa [10,91,93]. In the lowland part of the country, however,

much higher maize yield reduction (up to 20%) was projected by 2050 [32]. In contrast to the

grain yield, climate change affected maize grain quality positively, where grain N concentra-

tion increased with median projection ranging from about 12% to 14% (Fig 7B).

Sources of uncertainty

Understanding and quantifying different sources of uncertainties has become the core interest

among scholars in multi-model climate change impact studies [13,20,62,78,94]. In this regard,

sources including the choice of crop models and climate model scenarios contributed to the

uncertainty of the simulated results. Comparisons of uncertainties among the different model

components showed that differences in crop growth models resulted in largest uncertainties in

the crop yield change estimates (Fig 8). Our result is in line with similar previous studies

[17,95–97]. In the largest global crop model intercomparison exercise, Asseng et al. [17] com-

pared 30 different crop models in simulating wheat growth around the world under rising

temperature. They found that the uncertainty in simulated grain yield due to differences in

crop models were more than the uncertainty caused by the variations in locations as well as

the inter-annual variability. Similarly, in their climate change impact assessment, Araya et al.
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[95] reported the choice of crop models to cause much of the variations in projected maize

yield.

The present study also shows that the uncertainties vary among crop species and cultivars

as well (Fig 8). The uncertainties in the projected yield change due to crop growth models

were higher for wheat than maize. This is related to the larger sensitivity of the wheat plant

models and the magnitude of impact of climate change on wheat. The uncertainty in simulated

wheat yield increased with increasing temperature [17]. The relative inconsistent pattern

among the wheat cultivars also suggested that the contributions of different sources of uncer-

tainties might also be site dependent [98]. The variation due to soil water dynamics submo-

dules could be related with the different performance of the two approaches suggesting the

importance of soil processes in such studies [99]. Our study showed that soil water dynamic

submodule based on Richards equation approach performed better than the tipping bucket

based approach in simulating yield. The result suggest that Richards based soil dynamics

modeling approach would help in capturing the high variability in the observation data like in

the case of ours. Richards equation based approach has a potential for better simulation of soil

water dynamics provided that the necessary data are available [100]. Our study highlighted

that a considerable amount of uncertainty originated from the different soil water flow and

soil organic matter models. However, the variance in projected yield changes due to variations

in crop growth models remain the main source of uncertainty across examined crop species

and cultivars. This is mainly due to the fact that crop growth models vary largely in their

approach to represent key dynamic processes [42] and overall, their predictive skill might still

be limited. Model improvement has been hindered by unavailability of high-quality data as

well as uncomplete understanding of some plant processes [101].

Conclusions

In the face of climate change, agricultural decision making is and will be a challenging task due

to the uncertainties associated with impact assessments. Different sources of uncertainties,

including choice of crop models and climate model projections, challenge results of climate

change impact assessment. Our results indicate that the use of multiple dynamic crop models

provides a better understanding of the uncertainties as a consequence of model structural differ-

ences, leading to more robust analyses. The current study also included the uncertainties that

could arise from future climate prediction through involving a variety of distinct climate models

that were downscaled to finer resolution. In such an effort to quantify, dissect and compare

uncertainties, the Expert-N agro-ecosystem modeling package was an ideal framework to facili-

tate multiple model configurations. Importantly, our results identified crop growth model asso-

ciated uncertainty to be larger than the rest of model components considered in this study.

Uncertainties varied between the crop species and cultivars as well. Incorporating different soil

water flow and soil organic matter modeling approaches in multi-model ensemble uncertainty

studies could also reveal a considerable portion of uncertainty in grain yield changes. Under the

current crop management scenario, our results suggest that maintaining current wheat yield will

be a challenging task for the region due to the projected greater impacts by 2050. To abate the

associated problems, proper management strategies will be required. In this regard, proper appli-

cation of N fertilization would alleviate part of the projected impact. Regarding precipitation,

our sensitivity study was based on simple perturbations of the quantities to which the crops did

not show a significant sensitivity. Possibly, the distribution of rainy days within the year might

matter more than the difference in rain amounts in the region. In summary, our study quantifies

the impact of climate change and demonstrates the importance of multi-model ensemble

approach in understanding the associated uncertainties.
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