
 

 

 

 

 

 

 

 

 
The peptidyl–prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed

 
Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphory-

 
lation marks and implementing conformational changes in its substrates. Accordingly, Pin1  
has been linked to numerous phosphorylation-controlled signaling pathways and cellular  
processes such as cell cycle progression, proliferation, and differentiation. In addition, Pin1  

plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA  

damage is balanced by DNA repair, cells confronted with massive genotoxic stress are  

eliminated by the induction of programed cell death or cellular senescence. In this review,  

we summarize and discuss the current knowledge on how Pin1 specifies cell fate through  

regulating key players of the apoptotic and the repair branch of the DNA-damage response.  
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INTRODUCTION
Proline residues bear the unique intrinsic feature of being able
to convert between two distinct conformational states in a pro-
tein. Since the dihedral angle (ω) of the proline bond is large, a
switch can introduce significant changes in total protein struc-
ture (1, 2). The interconversion between the two isomeric cis
and trans states of peptide bonds preceding the amino acid
proline can be catalyzed by peptidyl–prolyl cis/trans isomerases
(PPIases) (3).

Three distinct families of PPIases that can facilitate prolyl iso-
merization have been identified so far. Among those are the family
of Cyclophilins (Cyp), FK506-binding proteins (FKBPs), and the
parvulins (4–7). Both Cyp and FKBPs have strong implications
in immune responses due to their function as receptors for the
immunosuppressive drugs cyclosporin A and FK506, respectively
(4, 8, 9). The family of parvulins consists of the PPIase NIMA-
interacting 1 (Pin1) and the more distantly related subgroup of
proteins Par14 (Pin4) and Par17, which are both encoded within a
single locus in the human genome (10, 11). In contrast to Pin1, the
biological functions of Par14 and Par17 remain currently largely
obscure. In the following section, we will introduce Pin1, which
shows a unique feature among the PPIase protein family members,
as it recognizes its client proteins in a phosphorylation-specific
manner.

Abbreviations: ASPP, apoptosis stimulating protein of p53; ATM, ataxia telang-
iectasia mutated; ATR, ataxia telangiectasia related; CDK, cyclin-dependent kinase;
ChIP, chromatin immunoprecipitation; Chk2, checkpoint kinase 2; DSB, double-
strand breaks; DYRK2, dual-specificity regulated kinase 2; HIPK2, homeodomain-
interacting protein kinase 2; HR, homologous recombination; iASSP, inhibitory
member of the ASPP family; JNK, c-Jun N-terminal kinase; MEF, mouse embryonic
fibroblast; NHEJ, Non-homologous end-joining; PPIase, peptidyl–prolyl isomerase;
Siah-1, seven in absentia homolog 1; TRF1, telomeric repeat binding factor 1.

PHOSPHO-SPECIFIC ISOMERASE Pin1
Pin1 is a small enzyme consisting of 163 amino acids. It con-
tains a WW protein interaction domain, which recognizes short
proline-rich motifs at its N-terminus, and a C-terminal PPIase
domain. The enzymatic conversion of peptide bonds between cis
and trans conformation is dependent on the phosphorylation state
of the Ser/Thr–Pro motif, which is the target sequence of Pin1 (12–
14). In contrast to other known PPIases, Pin1 has the unique prop-
erty of recognizing phosphorylation-specific motifs for isomer-
ization. This feature links occurrence of specific phosphorylation-
marks sites to conformational changes of its client proteins by
cis/trans isomerization of the phospho-Ser/Thr–Pro bond (15)
(Figure 1). Ser/Thr phosphorylation is a key mechanism of signal
transduction and the most frequent post-translational modifica-
tion in the cell. Phosphorylation at serine and threonine residues
accounts for around 96% of all protein phosphorylation in the cell
as revealed by global mass spectrometry analysis (16). Although
phosphorylation has been shown to be sufficient for inducing
conformational changes per se (17, 18), Pin1-catalyzed isomeriza-
tion of phospho-Serine/Threonine residues represents a central
mechanism in signaling and acts as a trigger to alter protein
conformation (19–23).

Many Ser/Thr–Pro-directed kinases are predominantly local-
ized in the nucleus (24) and play a major role in cell cycle regulation
and cellular stress responses. This is evident from the well-studied
functions of some representatives of this subgroup of kinases,
such as cyclin-dependent kinases (CDKs), Jun-N-terminal protein
kinases (JNKs), polo-like kinases (PLKs), and glycogen synthase
kinase 3 (GSK-3). Accordingly, Pin1 also predominantly localizes
to the nucleus, where it exerts its versatile signaling functions in
regulating mitosis and mediating stress responses (14, 15, 25).

In this review, we are going to focus on the role of Pin1 in DNA-
damage signaling. Excellent comprehensive reviews covering the
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FIGURE 1 | Pin1 isomerase induces cis/trans conformational
change of substrates containing pSer/Thr–Pro motifs.
Ser/Thr–Pro-directed kinases phosphorylate diverse substrates thereby
creating a putative binding site for the foldase Pin1, which catalyzes
cis/trans isomerization of the previously phosphorylated protein in a

subsequent step. Isomerization can regulate different functions of the
substrate, such as stability, interaction, and activity. Pro-directed
phosphatases, such as PP2A can dephosphorylate the pSer/Thr–Pro
isomer [depicted substrate has been downloaded from PDB database;
Protein-ID: 2FEJ (111)].

function of Pin1 in mitosis, Alzheimer disease, immune response,
proliferation control, and cancer biology have been published
recently (19, 22, 26–31) and are recommended to those readers
interested in obtaining a global view on Pin1 function. In the fol-
lowing sections, we attempt to summarize the current knowledge
about the function of Pin1 in DNA damage-induced cell fate with
a focus on its role in the cell death response and DNA repair.

Pin1 AND p53
The tumor suppressor p53 is mutated in more than 50% of
human cancer (32) and cancer cells expressing wild-type p53
commonly functionally inactivate p53 by other means including
overexpression of the p53-degrading E3 ubiquitin ligases MDM2
(33). In response to genotoxic stress such as UV, ionizing irradia-
tion (IR), or chemotherapeutic drug treatment, p53 is stabilized,
activated, and drives transcription of target genes leading to cell
cycle arrest, senescence, or apoptosis, mostly depending on the
strength of the insult and the cellular background (34). Acti-
vation of p53 upon genotoxic stress is largely determined by
post-translational modifications, including site-specific phospho-
rylation and acetylation. Notably, p53 is phosphorylated by a
set of stress-activated, proline-directed protein kinases such as
p38, homeodomain-interacting protein kinase-2 (HIPK2), and
DYRK2 (35–39). Pin1 binds to phosphorylated Ser/Thr–Pro sites
on p53 upon genotoxic stress. In particular, phosphorylation at
Ser33, Ser46, Thr81, and Ser315 has been shown to mediate the
interaction of p53 and Pin1 (40–42). Subsequent conformational
changes driven by Pin1 are crucial for the functional activation
and stabilization of p53 upon DNA damage, which is achieved,
at least in part, due to impaired interaction with the E3 ubiq-
uitin ligase MDM2. Since MDM2 is a direct target gene of p53
(43), the Pin1-mediated accumulation of p53 is additionally regu-
lated by a transcription-dependent increase of MDM2 (41). In
line with these observations, cell cycle checkpoint function is
impaired in Pin1-deficient MEFs as shown by higher re-entry
into S-phase upon DNA damage. Overall, these studies demon-
strate that Pin1 is important for the timely accumulation and

the functional activation of p53 resulting in cell cycle arrest or
apoptosis (Figure 2).

An important activation mark of p53 is the phosphorylation of
p53 at Ser20, which is under control of checkpoint kinase 2 (Chk2)
(44, 45). Phosphorylation of p53 at Ser20 impairs the interaction
of p53 with its E3 ubiquitin ligase MDM2 (46, 47). Mutation of
p53 Pro82 that precedes the phosphorylation site at Thr81 results
in impairment of DNA damage-induced phosphorylation of p53
at Ser20 (48). Notably, genotoxic stress has also been shown to
result in JNK-mediated phosphorylation of p53 at Thr81, which is
important for JNK-dependent p53 transcriptional activation and
apoptosis (49). Mechanistically, Pro82 mutation results in reduc-
tion of the DNA damage-induced interaction of Chk2 and p53.
Exogenous expression of Pin1 enhances the interaction of Chk2
and p53 upon DNA damage and Ser20 phosphorylation is strongly
impaired in Pin1-deficient MEFs. These findings indicate that
Pin1-mediated isomerization of the Thr81–Pro82 bond is impor-
tant for the binding of Chk2 to p53 and for DNA damage-induced
phosphorylation of p53 at Ser20. In conclusion, this mechanism
provides a model of how Pin1 facilitates Chk2-mediated p53 phos-
phorylation at Ser20, and as a functional consequence, leads to the
disruption of the p53–MDM2 complex (48, 50).

Since Pin1 has a potent role in the activation of p53, one might
wonder whether Pin1 is also able to trigger the activation of mutant
p53. Somatic mutations in the TP53 gene are frequent in many
cancer types and have a huge impact on the clinical outcome of
those cancers (51, 52). Pin1 is frequently overexpressed in can-
cer and mediates proliferative signals through client proteins such
as Cyclin D1 (53, 54). TP53 R172H mutation corresponds to the
hot-spot mutation 175 in human cancers and has been linked
to gain of function mechanisms associated with tumor progres-
sion, resembling Li–Fraumeni syndrome. In fact, TP53 missense
mutations exhibit enhanced oncogenic potential beyond the loss
of physiological p53 functions (52, 55).

Comparison between mice harboring a mono-allelic mutant
p53R172H or p53 KO mice in a Pin1 wild-type or Pin1-deficient
background revealed that absence of Pin1 results in a reduced

Frontiers in Oncology | Molecular and Cellular Oncology June 2014 | Volume 4 | Article 148 | 2

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polonio-Vallon et al. Role of Pin1 in DNA-damage signaling

FIGURE 2 | Role of Pin1 in DNA damage-induced apoptosis and DNA
repair pathways. Upon DNA damage ATM loosens the HIPK2–Siah1
complex by phosphorylation of Siah1, thereby allowing HIPK2
autophosphorylation. Phosphorylated HIPK2 recruits Pin1, which in turn
changes HIPK2 conformation and potentiates disruption of the HIPK2–Siah1
complex. HIPK2 gets stabilized and phosphorylates p53 Ser46 to induce
apoptosis. Moreover, p53 and Pin1 form a complex which further unleashes
p53 apoptotic functions by changing p53 conformation and facilitating
acetylation of p53 by the acetyltransferase CBP and loading of p53 on
pro-apoptotic target gene promotors. At the same time, prolyl-isomerization
of p53 Ser46–Pro47 by Pin1 leads to increased monoubiquitination of p53,
which in turn triggers the translocation of cytosolic p53 to mitochondria,

thereby initiating mitochondrial outer membrane permeabilization (MOMP)
and intrinsic apoptosis release of cytochrome c into the cytoplasm. In a
parallel signaling branch, ATM activates other kinases, such as c-Abl and p38,
which leads to phosphorylation of p73. Recruitment and Pin1 binding leads to
association with the acetyltransferase p300 and stimulates acetylation, which
enhances transcriptional activity of p73 toward apoptotic genes. Beyond its
function in apoptosis, Pin1 plays also a crucial role in double-strand break
(DSB) repair. During S/G2 phase CtIP promotes end resection of DNA lesions.
Phosphorylation of CtIP by CDK2 and most likely other kinases leads to Pin1
binding and isomerization of CtIP, which promotes its ubiquitylation and
proteasomal degradation, thereby counteracting DSB end resection in favor
of NHEJ.

tumor frequency and a decreased incidence of hematopoietic can-
cers. Most importantly, cancers of epithelial origin were completely
absent in p53R172H; Pin1 KO mice (56). Interestingly, mutant p53
appears to be constitutively phosphorylated on Ser46 and Ser33
in breast cancer cell lines, which is potentiated upon oncogenic
RasG12V induced signaling, thus creating permanent target sites
for Pin1. Furthermore, mutant p53 exhibits a highly metastatic
phenotype that is dependent on Pin1, since Pin1-depletion results
in strongly reduced migration and invasion capacity in vitro and
in vivo. Inversely, Pin1 overexpression potentiated migration in
a mutant p53-dependent manner. Moreover, Ser46 phosphoryla-
tion appears to be critical for the migration phenotype observed
in breast cancer cell lines bearing mutant p53. Most importantly,
both Pin1 and mutant p53 synergize in the positive regulation
of a set of genes that are relevant for migration and invasion.
Furthermore, the oncogenic functions of mutant p53 are further
enhanced by augmenting p63 transcription in a Pin1-dependent
fashion, thereby reprograming gene expression in breast cancer

cells. Overall survival appears to be drastically diminished in breast
cancer cases bearing p53 missense mutation and Pin1 overexpres-
sion, which suggests that p53 status in combination with Pin1
expression level can be used as an independent prognostic marker
for poor clinical outcome.

Pin1 AND p73
The p73 protein is a member of the p53 protein family. Similar to
its homolog p53, p73 harbors tumor suppressive functions such as
growth suppression, apoptosis, DNA repair, senescence, and dif-
ferentiation. DNA-damage induced by chemotherapeutic drugs
such as Doxorubicin or Cisplatin also activate p73 (in the absence
of p53), which exerts transcription-dependent and independent
functions (57–60). Apart from being implicated in cytotoxic stress-
mediated cell cycle arrest or apoptosis, p73 also plays a pivotal role
in development, especially in that of the neuronal system (61).

Interestingly, it has been demonstrated that DNA damage-
induced p53-dependent apoptosis requires functional p63 and p73
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(62). Along these lines, Pin1 is not only essential for proper activa-
tion of p53, but it is also required for p73’s pro-apoptotic function
(63). Pin1-depletion leads to defective induction of apoptosis and
p73 accumulation upon Cisplatin administration. Accordingly,
Pin1 controls p73 turnover in unstressed cells and upon cytotoxic
stress and is required for proper activation of p73 target genes
such as Bax and PIG3, as revealed in cell lines lacking p53 expres-
sion (63). In contrast to p53, Pin1 interacts with p73 even without
any indication of cellular stress, implying that p73 is constitutively
phosphorylated at Pin1 binding sites. Nevertheless, treatment with
Doxorubicin and Cisplatin enhances binding of Pin1 to p73 via
Ser412, Thr442, and Thr482 target sites, which is partly due to
activation of p73 by c-Abl and p38 kinase (63). In fact, Pin1
is required for the c-Abl induced p73 activation and accumula-
tion upon cytotoxic stress and p300-mediated p73 acetylation is
strongly impaired in Pin1-deficient cells, since Pin1-mediated iso-
merization regulates p300–p73 binding (63). In conclusion, these
data support the indispensable role of Pin1 activity to synergis-
tically drive p53 and p73-mediated apoptosis under given stress
conditions (as shown in Figure 2).

Pin1 AND iASPP
p53 activity needs to be tightly regulated in unstressed cells to pre-
vent an unscheduled activation of the apoptotic response. To this
end, p53 is sustained at low levels under physiological conditions,
which is achieved by constant proteasomal degradation of p53
mediated by the E3 ubiquitin ligase MDM2. On the other hand,
also association with iASPP inhibits p53 by preventing its binding
to promoters of pro-apoptotic target genes (64). ChIP experiments
revealed that under genotoxic stress conditions, Pin1-depletion
results in decreased binding of p53 to p21 and Bax promoters.
Upon genotoxic stress, Pin1 is directly associated with p53 on chro-
matin mainly via its binding sites Ser33, Ser46, Thr81, and Ser315.
In fact, Pin1 activates p53-mediated transcription in a direct man-
ner by potentiating the binding of the acetyltransferase p300 and
subsequent acetylation of p53 at Lys373 and Lys382. Moreover,
Pin1 also enhances the binding of p300 on p53-occupied pro-
moters, which results in transcriptional activation. In addition,
Thr81–Pro82 also appears to be a critical binding site for Pin1 and
is required for proper acetylation of p53. The Thr81 residue lies
within the Proline-rich domain of p53, which mediates binding
of the p53 inhibitor iASPP. iASPP has been shown to regulate the
transcriptional activity of p53 and is also pivotal for the stabi-
lization of p53 in response to genotoxic stress (64). Intriguingly,
Pin1 regulates the dissociation of the iASPP–p53 complex upon
cytotoxic stress and thereby unmasks p53 transcriptional activ-
ity. Notably, dissociation of iASPP from p53 is dependent on
stress-induced Ser46 phosphorylation but not on Pin1 stimulated
acetylation of p53. Taken together, these findings indicate that
Pin1 regulates p53 activity at different levels: (1) Pin1 controls
p53 stabilization, (2) Pin1 is required for p53 binding to its tar-
get promoters, (3) Pin1 associates with chromatin and promotes
p300-mediated acetylation of p53, and (4) Pin1 initiates the dis-
sociation of p53 from its inhibitor iASPP. As described in the next
chapter, Pin1 is also essential for stabilization of the p53 Ser46
kinase HIPK2. By facilitating efficient p53 Ser46 phosphorylation,
Pin1 may regulate its own complex formation with p53 and drive
the apoptotic response.

Pin1 AND THE p53 Ser46 KINASE HIPK2
Homeodomain-interacting protein kinase-2 is a central activator
of the apoptotic cell death in development and in response to cel-
lular stress and also acts as a tumor suppressor targeted by cellular
and viral oncogenes (37, 38, 65–70). HIPK2 triggers apoptosis
induction upon various types of DNA damage including UV radi-
ation, ionizing radiation, and chemotherapeutic drug treatment
through catalyzing phosphorylation of p53 at Serine 46, a phos-
phorylation mark, which drives expression of pro-apoptotic target
genes (37, 68, 71–73). In addition, HIPK2 also activates the apop-
totic response independent of p53 by regulating the JNK pathway
and by targeting the anti-apoptotic transcriptional repressor CtBP
for degradation (74, 75). In healthy cells and cells recovering
from sublethal DNA damage, HIPK2 is kept inactive through
proteasome-dependent degradation mediated by the ubiquitin lig-
ases MDM2, WSB1, and Siah-1 (76–79). In the wake of DNA dam-
age, HIPK2 is stabilized by a mechanism involving the checkpoint
kinases ATM and ATR, which facilitate dissociation of the HIPK2–
Siah-1 complex by phosphorylation of Siah-1 at Ser19 (77).

Interestingly, HIPK2 stabilization upon DNA damage also
requires Pin1 activity (80). It has been recognized that HIPK2
autophosphorylates at multiple sites, which influences its kinase
activity (81, 82). In particular, autophosphorylation in trans at
Thr880/Ser882 through an intermolecular mechanism activates
its kinase activity and apoptotic function upon genotoxic stress.
Thr880/Ser882 autophosphorylation takes place at an early phase
of HIPK2 activation and decreases when HIPK2 is fully stabi-
lized. Furthermore, pThr880/pSer882 is followed by Pro residues
and thus represent bona fide Pin1 binding sites. In fact, Pin1
binds HIPK2 through this phospho-motif and alters the con-
formation of the autophosphorylated HIPK2 isoform and medi-
ates stabilization by inhibiting its proteasomal degradation. Loss
of Pin1 by genetic deletion or RNA interference results in a
lack of DNA damage-induced HIPK2 stabilization and apopto-
sis induction (80) (as shown in Figure 2). Interestingly, HIPK2
autophosphorylation appears to be evolutionary conserved and
is also detected on the zebrafish HIPK2 protein, and induction
of apoptosis in zebrafish embryos by ionizing radiation (IR) is
regulated by the autophosphorylation of HIPK2. Finally, Pin1 is
essential for IR-induced cell death in zebrafish embryos and in
human cancer cells, highlighting a fundamental role in the DNA
damage-triggered apoptotic response (80). Taken together, these
findings support a major role of Pin1 in DNA damage-activated
apoptosis signaling.

Pin1 AND HUNTINGTIN
It has recently been shown, that mutant huntingtin (mHtt) is able
to induce p53-dependent apoptosis via a Pin1-mediated mecha-
nism (83). Activation and accumulation of p53 has been observed
in Huntington disease and recapitulated in transgenic mouse
models (84). mHtt, which bears an elongated segment of polyg-
lutamine, is able to trigger the DNA-damage response (DDR) and
induce the accumulation and phosphorylation of p53 at Ser46
and Ser15 (83, 85). In fact, Ser46 is critical and sufficient for
the induction of apoptosis upon mHtt generated cellular stress.
Interestingly, the other Pin1 binding sites identified in previous
studies (40–42) are dispensable in mHtt-triggered neuronal death.
p53 Ser46 is a Ser/Thr–Pro target site for Pin1 and expression of
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mHtt can stimulate the interaction of p53 and Pin1. As previously
mentioned, isomerization of Ser46–Pro47 bond has been demon-
strated to be a prerequisite for the dissociation of the inhibitor
iASPP from p53 in order to fully activate p53 transcriptional
activity (86). In accordance with these previous findings, disrup-
tion of the iASPP–p53 complex is also critical in mHtt-mediated
p53 activation. Moreover, Pin1 is necessary for the transcrip-
tional activity of p53 and PUMA-mediated apoptosis induction in
mHtt-stimulated cells and neurons derived from a mHtt-knock-
in mouse model (83). Furthermore, it has been shown that Ser46
phosphorylation upon mHtt expression is synergistically mediated
by HIPK2 and PKC δ (Figure 2). These findings provide an unex-
pected link between neurodegenerative disease and the apoptotic
DDR mediated by HIPK2 and Pin1.

Pin1 AND MITOCHONDRIAL APOPTOSIS SIGNALING
p53 can regulate apoptosis by transcription-dependent and
-independent mechanisms. Recent studies have demonstrated that
the interplay of the nuclear and cytoplasmic functions of p53
is crucial for shaping its full apoptotic activity (87). The mito-
chondrial pathway is predominantly activated in response to IR
or other types of cytotoxic stress and is therefore exploited in
cancer therapy by ionizing-IR or chemotherapeutic drugs such as
doxorubicin. Remarkably, p53 has been demonstrated to modu-
late Bcl-2 family members that regulate apoptosis by controlling
mitochondrial permeability (88, 89). Upon cytotoxic stresses, p53
is partially localized at the mitochondrion and has been demon-
strated to induce mitochondrial outer membrane permeabiliza-
tion (MOMP) (90). In fact, the cytosolic apoptotic function of
p53 is rapidly induced upon cytotoxic stress and precedes its
transcription-dependent functions. Pin1 has also been linked to
the regulation of cytosolic functions of p53. In this context, Pin1
potentiates mitochondrial damage induced by p53 and triggers
apoptosis by releasing cytochrome c from the mitochondria (91).
These effects require Pin1–p53 binding, since mutation of target
sites on p53 diminished mitochondrial damage and induction of
apoptosis when compared to wild-type p53. In addition, Pin1
is important for the efficient translocation of cytosolic p53 to
mitochondria upon treatment with the chemotherapeutic drugs
Doxorubicin and Etoposide. Mechanistically, Pin1 binds cytosolic
fractions of p53 mainly via its target site at Ser46–Pro47. Ser46
is a target site for the protein kinase HIPK2 that has been shown
to increase p53-dependent apoptosis (37, 38). Indeed, HIPK2 is
able to cooperate with Pin1 to induce mitochondrial apoptosis
and increases the fraction of p53 bound to mitochondria, which
is dependent on the catalytic activity of the kinase and presence
of Pin1 (91). These results show that HIPK2 is not only critical
for the nuclear, transcription-dependent function of p53 but –
in cooperation with Pin1 – also regulates activation of p53 at
mitochondria.

Pin1 AND TELOMERES
Telomeres are chromatin structures capping the ends of chromo-
somes in order to shield the free DNA ends from degradation
and damage. Erosion of telomeres below a critical length has been
linked to chromosome end fusion and premature aging (92–95).
Dysfunctional telomeres are considered as a permanent source of

DNA damage leading to the activation of p53 (96). To avoid detec-
tion of chromosome ends as aberrant DNA structures, telomeres
are organized in a higher order duplex lariat structure, the T-loop,
and sequestered by a specialized macromolecular shelterin protein
complex. The telomeric repeat binding factor 1 (TRF1) is part of
the shelterin complex and is essential for telomere function. Pin1
has been shown to regulate TRF1 function on telomeres by directly
binding to TRF1 through the phospho-Thr149–Pro150 motif (97),
which is phosphorylated by CDKs during mitosis. Furthermore,
Pin1 negatively regulates TRF1 stability, which requires its PPI-
ase activity and leads to increased binding of TRF1 to telomeres
(97). Strikingly, TRF1 stability is increased not only upon Pin1-
depletion in human cells, but also in vivo as determined in the
Pin1 KO mouse model. TRF1 has previously been shown to reg-
ulate telomere length (98, 99). Remarkably, Pin1 inhibition leads
to progressive telomere shortening through a TRF1-dependent
mechanism in human cells and in splenocytes derived from Pin1
KO mice (97). Accordingly, Pin1 nullizygous animals show pre-
mature aging phenotypes such as reduced bone radio-density
and thinner dermal and epidermal layers along with further hall-
marks of accelerated aging (54, 100, 101). Of note, the widely used
telomerase-deficient mouse models, which are frequently used to
study aging by telomere-erosion require five to six generations to
develop efficient telomere shortening and premature aging pheno-
types. The fact that Pin1 KO mice show massive telomere erosion
and a severe aging phenotype even in the first generation suggests
that active resection takes place at the telomere in the absence
of Pin1. The molecular basis of this interesting phenotype still
remains to be elucidated.

ROLE OF Pin1 IN DNA DOUBLE-STRAND REPAIR: THE
Pin1–CtIP LINK
DNA damage is one of the major factors driving genomic insta-
bility and carcinogenesis in multicellular organisms. Numerous
factors lead to the activation of the DDR, including ionizing
radiation, chemotherapeutic drug treatment, and strong hyper-
proliferative signals as induced by oncogene expression (102).
Proper cellular response to DNA damage is needed to suppress
carcinogenesis, and this involves a set of gene products that elicit
cell cycle arrest, DNA repair, premature senescence, or apopto-
sis, in accordance with the damage inflicted. The maintenance
of genome integrity is accomplished by an elaborate signaling
network termed DDR. A major mechanism underlying the cel-
lular response to DNA damage is protein-phosphorylation (103).
Accordingly, the master checkpoint kinases ATM, ATR, and DNA-
PK play a central role in coordination of the DDR. Double-strand
breaks (DSBs) are considered to be a particularly deleterious form
of DNA lesion that needs to be repaired by the cell to facilitate cell
survival and proliferation.

Two main pathways orchestrate the DNA repair process
of DSBs, namely homologous recombination (HR) and non-
homologous end-joining (NHEJ). HR represents a highly accu-
rate, error-free repair mechanism, whereas NHEJ is more error-
prone. In mammalian cells, DSBs produced for instance by IR
are mostly repaired by NHEJ, however, when DNA replication
is impeded this leads to stalled replication fork collapses and
resulting DSBs are resolved by the HR pathway (104). The NHEJ
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pathway operates mainly in the G0/G1 phase of the cell cycle by
joining DSB ends, whereas HR employs the sister homolog as
the template for repair and thereby is restricted to late S and G2

phase (105).
A recent study demonstrated that Pin1 plays an important

role in the DNA repair pathway (106, 107). Using a proteomics
approach, the authors elegantly isolated a set of novel Pin1 bind-
ing proteins, among them a couple of factors known to play a role
in DNA repair including MDC1, 53BP1, BRCA1, and CtIP (106).
They focused on the Pin1–CtIP link and demonstrated that deple-
tion of Pin1 by RNAi leads to an increased DNA-end resection
and decreased NHEJ frequency. In good accordance with these
findings, Pin1 overexpression strongly diminished HR frequency.
The authors also provided insight in the mechanism by show-
ing that Pin1-depletion leads to aberrant hyper-phosphorylation
of the single-strand DNA binding protein RPA2, which serves
as a surrogate marker for DNA-end resection (106). The DNA
repair protein CtIP is a key regulator of DNA-end resection at
DSBs and is essential for the recruitment of additional key factors
to the DSBs in S/G2 phase (108–110). Interestingly, the authors
found that the Ser/Thr–Pro-directed kinase CDK2 phosphory-
lates CtIP on Thr315 and Ser276 and thereby facilitates complex
formation with Pin1, which subsequently mediated isomeriza-
tion of CtIP. The resulting altered protein conformation impacts
on the stability of CtIP and promotes its polyubiquitylation and
proteasomal degradation (Figure 2). This regulatory principle
facilitates timing of DNA-end resection at break sites during
late S/G2 phase. Of note, since Pin1 overexpression is frequently
observed in cancer, this mechanism is presumably involved in
the increased genomic instability observed in human cancer cells.
Taken together, Pin1 obviously plays a critical role in coordinating
DNA repair pathway choice by suppressing HR and promoting the
NHEJ pathway.

CONCLUSION AND POTENTIAL FUTURE ASPECTS
The identification of Pin1 and the clarification of its under-
lying enzymology have greatly put forward our knowledge on
mechanisms of signal transduction. The intense research activ-
ities on Pin1 during the last years generated fascinating novel
insight in the function and regulation of this remarkable enzyme
and its role in cell signaling and disease. Pin1 provides a highly
sophisticated, elegant means to translate pSer/pThr–Pro phospho-
rylation marks into conformational changes and thus in altered
protein function. Since Ser/Thr–Pro phosphorylation is the most
abundant post-translational modification in mammalian cells, it
appears not very surprising that Pin1 emerged as a central spec-
ifier in signal transduction. Despite these facts, however, there
is still much to be learned about the biochemistry and biology
of Pin1.

For example, numerous Pin1 substrates including p53, HIPK2,
and CtIP harbor several pSer/pThr–Pro sites, which critically con-
tribute to Pin1 binding. This raises a number of questions: how
is the exact stoichiometry of the Pin1–substrate complexes? Does
Pin1 isomerize all pSer/pThr–Pro bonds in its substrates or only a
subset? In addition, it is currently unclear whether Pin1 also cross-
talks to phosphatases. The timed removal of the pSer/pThr–Pro
marks by a given phosphatase would contribute to lock a substrate

in a particular conformational state by preventing a backward
isomerization reaction.

Even though there is evidence that Pin1 is subject to regu-
lation by post-translational modifications including phosphory-
lation and SUMOylation, it currently remains unclear whether
Pin1 function is also regulated in response to DNA damage.
Such regulation might facilitate functional dissection of the DNA
damage-associated functions and the cell growth regulatory and
mitotic activities.

Beyond its impact on CtIP function, Pin1 has been found to
interact with numerous additional factors implicated in DNA
repair (106, 107) suggesting a currently unexplored broader
function of Pin1 in coordinating DNA repair.

Finally, Pin1 appears to play important roles both in onco-
genic and tumor suppressive signaling pathways. To exploit Pin1
function in diseases such as cancer it will be a major effort in the
future to dissect the molecular determinants in order to design
small molecules for specific interference with its oncogenic and
mitotic functions, but to conserve its pro-apoptotic activities,
which are necessary for the efficacy of genotoxic stress-inducing
cancer therapies.
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