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Abstract

Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allo-

cation of patients to alternative treatment options. Despite many clinical and biological risk

markers having been associated with variable survival in cancer, assessing the interplay of

these markers through Machine Learning (ML) algorithms still remains to be fully explored.

Here, we present a Multi Learning Training approach (MuLT) combining supervised, unsu-

pervised and self-supervised learning algorithms, to examine the predictive value of hetero-

geneous treatment outcomes for Multiple Myeloma (MM). We show that gene expression

values improve the treatment sensitivity prediction and recapitulates genetic abnormalities

detected by Fluorescence in situ hybridization (FISH) testing. MuLT performance was

assessed by cross-validation experiments, in which it predicted treatment sensitivity with

68.70% of AUC. Finally, simulations showed numerical evidences that in average 17.07% of

patients could get better response to a different treatment at the first line.

Introduction

Multiple Myeloma (MM) is a cancer of plasma cells, the second most common neoplasm. It is

considered an incurable disease, with MM patients having a mean survival of five years [1],

characterized by heterogeneity in the clinical outcome, driven by chromosomal abnormalities

[2]. Although the detection of these chromosomal events allows better understanding of the

genetic instability spectrum associated with the clinical outcome, the specific prognostic value

of most chromosomal abnormalities is still controversial and remains challenging for the dif-

ferent biological subgroups [3]. Thus, the prediction of Treatment Sensitivity (TS) has long

been pursued in order to make treatment choices and thus, to better allocate MM patients to

alternative treatment options [4, 5].

Given the massive increase in data available to the medical research community, there are

opportunities in the field of Machine Learning (ML) for new approaches regarding prognostic

assessment. Hence, analysis of cancer high-throughput “omics” data in combination with
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clinical ones may lead to a more precise characterization of the disease and is likely to have

higher clinical utility. Of note, TS prediction is one of the critical tasks and has the potential to

benefit a subset of the patients who may be associated with serious side effects. However, pro-

portional to the biological complexity associated to cancer, there are several computational

challenges that should be addressed while creating models related to MM. High dimensional

data with few samples require specific care about the modelling processes in order to guarantee

that final patient classifiers are not overfitted [6]. The unbalanced number of samples related

to each event (e.g., treatment sensitivity) is another important characteristic that increases

complexity. Indeed, MM patients with good response to a treatment or long survival corre-

spond to the rarest events. Classifying these events incorrectly is costly and can generate inap-

plicable models [7]. Finally, data sets are composed of several markers and are thus

represented by high dimensional feature vectors, a characteristic that brings the challenge of

selecting only significant and non-redundant markers in order to avoid noisy or too complex

models [6].

Current approaches focus on generating combined clinical and molecular markers [8].

Despite the efforts, caution must be exercised whenever applying the markers signatures

derived from specific molecular features to predict cancer outcome [9]. Nonetheless,

approaches that focus on generating clinical and molecular markers that map signatures to TS

may allow to customize the therapeutic regimen to each individual patient [10, 11]. In MM, a

seminal study [12] proposed an algorithm called Simulated Treatment Learning (STL) and

gathered data from three phase III trials to predict treatment benefit. The approach took into

account a reasonable assumption that molecular data of patients who received different treat-

ments, but who had genetically identical tumors, could be used to predict how a particular

patient would benefit from an alternative treatment.

Despite the significant advances promoted by STL, an approach considering the interplay

of clinical markers, gene expression levels, and treatments into the same model still remains to

be evaluated. Herein, we proposed the Multi Learning Training approach (MuLT) which

aggregates clinical and molecular data to predict TS. This allow us to perform simulations to

estimate which treatment could maximize sensitivity response of each patient.

We applied our approach on molecular and clinical data measured from 1,525 patients with

newly diagnosed MM from the Multiple Myeloma Research Foundation (MMRF) CoMMpass

study [37]. We first reveal that gene expression profiling recapitulates known molecular dam-

age detected by Fluorescence in situ hybridization (FISH) analysis. We further show that TS

prediction accuracy increases by incorporating the gene expression levels. Next, we proposed

the MuLT that combines supervised, unsupervised, and self-supervised methods to accurately

predict TS. Finally, our simulations pointed out alternative first line treatment options for

17.07% of patients.

Results

Gene expression levels predict FISH markers with high accuracy

Our study started by assessing if the main markers employed in the current MM clinical deci-

sion-making process [13] could be predicted by gene expression levels. Thus, we employed a

Simplified ML Approach (SMLA) (see Methods section for details) to create specific predictors

for each FISH marker available in MMRF data set. All of these steps were performed over

10-fold cross-validation (CV) [14].

Fig 1 presents the average AUC [15] associated with each FISH marker (x-axis label) predic-

tor. Results show an average AUC of 94.53%(±5.92%) among all FISH predictors. The predic-

tor for the 20q13 marker had the worst performance with average AUC of 80.04%(±10.11%),
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while the predictor for the t(4;14)—WHSC1 marker reached 100.00%(±0.00) on the same met-

ric. Genes used as predictors for FISH markers and detailed metrics, including train and test

AUC and loss, are listed at S1 File. We conclude that gene expression levels accurately mirror

FISH markers in MM patients.

Treatment sensitivity outcome stratifies overall survival

According to the Treatment Response (TR), patients were categorized into one of six classes:

Progressive Disease (PD), Stable Disease (SD), Partial Response (PR), Very Good Partial

Response (VGPR), Stringent Complete Response (SCR), and Complete Response (CR). TS is

defined as a binary marker derived from TR, categorizing patients into either treatment sensi-

tive or treatment non-sensitive classes. In our study, patients identified as SCR or CR compose

the treatment sensitive class, and those in any of the remaining categories are in the non-sensi-

tive one. The MMRF data set contains more than 700 patients data annotated with the TR out-

come, and a relatively low prevalence (30%) of patients with the Days to Disease Progression

(DDP) information. The reduced number of patients annotated with DDP in the MMRF

cohort hampers the design of precise risk models. We overcome this by using TS as a surrogate

for DDP. To further assess our approach, we apply it to stratify the DDP patients as shown in

Fig 2, which shows the maximum DDP stratification capability of a perfect model used to pre-

dict TS taking the MMRF data set into account. We concluded that the proposed TS definition

based on TR classes was able to stratify overall survival groups (p-value < 0.0001).

Gene expression levels improve treatment sensitivity prediction

We used the SMLA (see Methods section for details) and performed two independent experi-

ments in order to evaluate if gene expression levels can add information to clinical markers

while predicting TS.

First, we created TS predictors taking a single clinical marker (e.g., age, race, stage) as

input. Then we performed a second independent experiment, creating another TS predictor

combining that single clinical marker to selected genes. All experiments were performed over

10-fold CV.

Fig 1. Average AUC of FISH predictors in 10-fold CV experiments. Hyperdiploid flag indicates if patients have at least two gains in the hyperdiploid gain

regions [13].

https://doi.org/10.1371/journal.pone.0254596.g001
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For each clinical marker, Fig 3 shows the accuracy gain comparing two TS predictors. The

first predictor consists of a single clinical marker and a set of selected genes. The second one is

composed only by the same clinical marker. We observed an average gain of 11.82% (±6.65%)

in accuracy. The m protein marker produced the largest gain of 25.76%, while the lgg marker

had the smallest gain of 0.96%. The S2 File informs the complete list of selected genes used in

these experiments. The selection itself was performed using Algorithm 1, the same feature

selection algorithm of MuLT.

Proposition of a novel machine learning approach

In an attempt to improve TS prediction accuracy, we proposed MuLT, that comprises the fol-

lowing integrative approaches: i) combining clinical makers, gene expression levels, and treat-

ments to compose a more sophisticated patient description; and ii) creating new representation

[16] of gene expression levels based on unsupervised and self-supervised learning algorithms in

Fig 2. Observed survival grouped by TS classes according to days to disease progression with death events.

https://doi.org/10.1371/journal.pone.0254596.g002

Fig 3. Improvements of TS prediction accuracy reached by gene expression levels combined to clinical markers. These results were obtained from two

independent 10-fold CV experiments. First experiment uses a single clinical marker to estimate TS, and the second experiment combines that clinical marker

with a set of selected genes.

https://doi.org/10.1371/journal.pone.0254596.g003
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order to find hidden predictive information (Fig 4). Briefly, it takes clinical data (e.g., age, race,

stage, first line transplant), gene expression levels, and five first line treatments (i.e., Bor-Cyc-

Dex, Bor-Dex, Bor-Len-Dex, Len-Dex, Non-treatment) as input. Then, it starts by executing

the steps Clinical Marker Selection (CMS) and Gene Selection (GS), which respectively select

clinical markers and genes in order to reduce noise and complexity of TS predictors. For these

steps, we created an algorithm that selects predictive markers for TS, removing those with infor-

mation embedded by more significant markers (see Methods section for more details). Results

from GS are independently loaded into Genetic Profiling (GP), Gene Clustering (GC), and

Gene Denoising (GD) steps. These aim at creating gene expressed-based features to improve

the TS predictor accuracy (see Methods section for more details).

GP and GC steps were motivated by the fact that different genetic profiling and gene clus-

ters could be associated with some transcription factors and known recurrent translocations

that imply in better or worse overall survival [17]. In addition, these genetic profiles and clus-

ters could underlie the transitions between the disease phases of MM [18]. The GD step was

designed to create a noise-resilient representation of gene expression levels, which are based

on a sampling process that naturally generates a noise measure.

The Treatment Sensitivity Predictor Training (TSPT) step creates a TS predictor using a

supervised learning algorithm. It inputs all features previously selected and created during

Marker Selection and Extraction (Fig 4). As a learning algorithm is regulated by several hyper-

parameters, the TSPT step applies a hyperparameter optimization using half of the training

data set and the Bayesian Optimization (BO) algorithm [19] before TS predictor training takes

place. After that optimization, the entire training data set is used to train the TS predictor.

The final classifier is based on the Light Gradient Boosting Machine (LightGBM) [21] algo-

rithm and returns a value in [0, 1], namely the TS score. We estimated the optimal class thresh-

old based on the training data set, where “optimal” refers to the threshold associated with the

highest AUC computed over the training data set. A TS score greater than or equal to that

threshold represents the TS sensitive class, while a TS score smaller than that threshold repre-

sents the TS non-sensitive one.

MuLT predicts treatment sensitivity

MuLT was evaluated via 10-fold CV. We split the data set into ten folds of similar sizes. To

avoid bias, we randomly equalized the number of sensitive and non-sensitive patients and

Fig 4. MuLT overview. It inputs clinical markers, gene expression levels, and treatments, performs a set of marker selection and extraction steps, and then

creates a TS predictor.

https://doi.org/10.1371/journal.pone.0254596.g004
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treatments per fold. For each experiment, we employed nine folds to compose the training

data set used to apply MuLT, and one fold to compose the validation data set used to evaluate

our proposed approach. MuLT performed with an average AUC of 68.70%, ranging from

59.49% to 74.70%, with standard deviation of 4.66%.

We face the challenge of fairly comparing results to related work taking into account data

set composition, available markers, and clinical outcome definition (e.g., treatment sensitivity,

risk group, survival). To deal with this limitation, we carried out new experiments using

SMLA with four different ML models, namely MLP [20], LightGBM [21], and Support Vector

Machines (SVM) [22]. Table 1 presents the average performance on 10-fold CV experiments

of the TS predictors created by MuLT and MLP, SVM, and LightGBM models embedded in

SMLA. SMLA results do not reach AUC greater than 61.54%, where LightGBM achieved the

best performance and SVM had the worst one with AUC of 55.57%. Taking AUC into account,

MuLT results are statistically better than SMLA ones with p- value = 2.529 × 10−5 computed

via t-test.

The overall classification performance per treatment is shown in Table 2. The Bor-Len-Dex

treatment reached the best AUC with 67.13%, while Bor-Cyc-Dex the worst one with 63.09%.

Len-Dex presents the worst sensitivity with 28.57%, followed by Bor-Cyc-Dex with 55.17%.

Specificity performance ranged from 58.48% to 86.05%, corresponding to Bor-Len-Dex and

Len-Dex, respectively. See S2 File for a complete list of selected clinical markers and genes

used to create TS predictors in our experiments and details about the performance metrics.

Finally, it is important to highlight that both MuLT and SMLA (including its variants based on

LightGBM, MLP, and SVM) were evaluated under the same raw data and CV fold

arrangements.

New marker set capable of predicting treatment sensitivity

The MMRF data set contains a total of 55,103 genes and 26 clinical markers. The marker selec-

tion is based on Algorithm 1 (see the Methods section for details), and our experiments

selected 74 genes and 11 clinical markers.

Table 1. Performance of TS predictors created by MuLT and SMLA on 10-fold CV experiments. Namely, sensitivity is the rate of correct prediction of patients identi-

fied as sensitive to first line treatments, and specificity describes the correct prediction percentage of patients identified as non-sensitive to first line treatment.

ML Model AUC Accuracy Sensitivity Specificity

MuLT 68.67%(±4.66%) 64.61% 61.70% 65.56%

SMLA + LightGBM 60.15%(±5.57%) 61.82% 51.46% 65.00%

SMLA + MLP 61.54%(±4.96%) 60.89% 56.49% 62.20%

SMLA + SVM 55.57%(±8.24%) 51.52% 57.65% 49.21%

https://doi.org/10.1371/journal.pone.0254596.t001

Table 2. Classification performance metrics per treatment on 10-fold CV. Sample size describes the amount of patients annotated with the correspondent treatment. All

CV validation data sets were combined into a unique data set to compute these metrics.

Treatment Sample Size AUC Accuracy Sensitivity Specificity

Bor-Cyc-Dex 133 63.09% 63.16% 55.17% 65.39%

Bor-Dex 64 65.41% 76.56% 57.14% 78.95%

Bor-Len-Dex 236 67.13% 60.16% 64.61% 58.48%

Len-Dex 50 66.61% 78.00% 28.57% 86.05%

Non-treatment 232 65.93% 63.79% 55.55% 66.86%

https://doi.org/10.1371/journal.pone.0254596.t002
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Yet, a unique gene (i.e., GIHCG) and 5 clinical markers (i.e., hemoglobin, bun, beta 2

microglobulin, ldh, first line transplant) were selected in common among all experiments.

GIHCG belongs to a family of non-coding RNA (ncRNA) and has been associated with prog-

nosis in hepatocellular carcinoma [23] and colorectal cancer [24]. Other studies [25, 26] have

revealed the role of GIHCG in key biological processes such as cell proliferation and cell

migration in primary tumors and cancer cells.

Here, we observed GIHCG as differentially expressed (p< 0.05) among the non-sensitive

and sensitive groups (see S1 Fig). Because GIHCG inhibits a cluster of miRNA which play

important roles in regulating the expression of a number of genes, functional studies are

required to expand the relative effects of GIHCG in multiple myeloma. It is worth mentioning

that most patients in the sensitivity risk group received stem cell transplantation (see S2 Fig) as

the first line in MM, which led to prolonged survival [27]. In addition, we recapitulate the

prognostic value of serum beta 2 microglobulin in MM patients (see S3 Fig) in which the

increased levels have been associated with a poor prognosis [28]. Taken together, these find-

ings endorse our results and the predictive power of the MuLT-based model. The full list of

gene and clinical markers is available in S3 File.

After CV, we observed that only a small number of genes appears in common among all

independent CV rounds, highlighting the genetic heterogeneity in MM patients, which sup-

ports previous studies [12, 29, 30]. Of note, this combination of clinical markers and selected

genes compose a completely new finding for predicting treatment sensitivity in MM.

Fig 5 shows an undirected graph that describes the relationship among selected markers.

To build the graph we used p-values computed in Algorithm 1, the number of independent

CV rounds in which a marker was selected, and the marker category (i.e., clinical or gene). We

built the graph based on the following rules:

1. Node size is proportional to the number of independent CV rounds that a marker was

selected;

2. Clinical markers are represented as triangles while genes are represented as circles;

3. Node color intensity is inversely proportional to the average p-value of a marker among all

independent CV rounds; and

4. Edge width is proportional to the number of CV rounds that two markers were selected

together.

Remarkably, we reveal relationships among clinical markers and both known and unknown

genes associated to MM, where the most relevant relationships for predicting TS are central-

ized (see S3 File for detailed graph structures).

Simulations highlights the patients would have better sensitivity using a

different treatment

Simulations were performed over the 10-fold CV experiments. For each experiment and

patient in the validation data set, we employed the trained TS predictor to estimate the TS

scores associated with different treatments (i.e., modifying the value of the input treatment

marker and then predicting the TS score). Once this simulation is over, we have a data set of

TS scores associated with patients and each possible treatment. For each patient, we chose sim-

ulated treatment as the one with the highest TS score. Finally, for each pair of treatments (a,

b), we computed the percentage of patients that received treatment a while simulations indi-

cated treatment b (i.e., treatment that maximize TS score). Fig 6 shows for each actual
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Fig 5. Relationship between clinical markers and genes represented as an undirected graph. Triangles and circles

represent clinical markers and genes, respectively, while color intensity is inversely proportional to average p-value.

The edge width corresponds to the number of CV rounds that the connected markers were selected together.

https://doi.org/10.1371/journal.pone.0254596.g005

Fig 6. For each actual treatment (y-axis), we performed a simulation to identify the treatment (stacked bar colors) that

maximizes the TS score considering the clinical and molecular data of MMRF cohort. The percentage of patients

associated with a simulated treatment is shown on the x-axis.

https://doi.org/10.1371/journal.pone.0254596.g006
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treatment (y-axis) the percent of patients (x-axis) associated with a simulated treatment

(stacked bar color).

Simulation results indicate that 17.07% of patients would have better sensitivity using a dif-

ferent first line treatment (see Treatment Simulation section for details). Our approach sheds

light on underlying aspects of disease heterogeneity, which allows further understanding of the

interplay between clinical and molecular data coupled with treatment. See S4 File for detailed

simulation results used to simulate the optimal treatment for each patient.

Discussion

Identifying which treatment could maximize patient survival is a possible way to improve cur-

rent clinical decision-making processes. In this study, we (i) investigated how well gene expres-

sion levels can predict FISH markers, (ii) estimated accuracy gain by adding genes to TS

predictors based on clinical markers, (iii) defined MuLT to advance the state-of-the-art in MM

TS prediction, and (iv) simulated MM optimal treatment in a personalized manner by using

TS predictors. High quality data sets containing clinical markers, gene expression levels, and

treatments related to the same patient and associated to TR clinical outcome are a requirement

to create MM models that are helpful for understanding why patients that are expected to be

sensitive to a certain treatment do not and vice-versa. Moreover, the data sets must have a

large number of samples to allow ML algorithms to capture the complex interplay among the

clinical and molecular data. We next restricted analysis to the MMRF data set, which contains

data from more than one hundred different sites. To the best of our knowledge, there is no

other public MM data set with the required quality and quantity.

Related work has performed analysis using different and independent data sets [12, 31, 32],

either considering only genes or proposing independent models for each treatment. The MM

Dream Challenge [33, 34] enables building around one hundred MM predictors based on a

few different data sets, including MMRF. However, outcome measures are based on different

survival thresholds, which bring an additional challenge with respect to predictor quality

assessment. Additionally, AUC variations [33, 35] have been employed to deal with differences

(e.g., survival thresholds) between outcome measures, which make comparisons more com-

plex. Furthermore, different data sets of the MM Dream Challenge contain different marker

sets, with some intersection between them, but generating several missing values when merg-

ing all data. The study herein does not try to address the described limitations in the related lit-

erature, but on establishing a preliminary understanding about the relation between clinical

markers, gene expression levels, FISH, treatment, and sensitivity in a completely reproducible

way. We pursue a systematic approach to create MM predictors.

Next steps are related to applying MuLT over different cancer data sets composed of clinical

markers, gene expression levels, and treatment. This study was limited to binary classification,

stratifying patients into either treatment sensitive or non-sensitive, but it could be generalized

to perform regressions and multi-categorical classification. We are also interested in investi-

gating more robust treatment representation. Techniques like Word Embedding [36] can be

applied to create more robust representations for categorical markers (e.g., race, treatment),

which can be helpful to reduce model noise and bias.

Methods

Data and processing

We extracted clinical markers, gene expression levels, FISH, treatments, and survival data

from MMRF CoMMpass [37] (release IA14) data set composed of 1,525 patients. In order to

ensure reproducibility of data collection and organization, we implement a tool called
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MMWebBot [38]. For our study, we only employed patients with clinical markers and gene

expression levels associated with a non-missing value of the best response first line treatment.

Patients associated with treatments with less than ten samples were excluded to avoid bias in CV

experiments. Markers with more than 10% of missing values were also excluded. Based on these

constraints, the analysed data set included 715 newly diagnosed valid MM samples, treated

either with five different first line treatments, while non-treatment is assumed as valid first line

treatment alternative (see Table 2 for detailed counts). Average age is 62.90, ranging from 27 to

93, 60.13% of the patients are male. The data set includes 55,103 genes, 26 clinical markers, and

17 FISH markers. Nominal markers (e.g., race) were represented as one-hot encoding. Each

nominal value generated an individual binary marker, where 1 represents that the value is asso-

ciated with the patient and 0 that it is not associated. Ordinal markers (e.g., stage) were repre-

sented as sequential integers starting from one. Missing values were replaced by zero.

To assess robustness and generalization, the data set was split into ten disjoint folds, strati-

fied by treatments and TS outcome. Based on this setup, we performed ten individual experi-

ments. For each experiment we used nine folds to perform model training, and one fold to

perform inferences, simulations, and analyse results. All fold compositions are available at

http://github.com/lucasvenez/mult.

Treatment sensitivity outcome definition

In general, patients are associated with different clinical status (e.g., DDP, days to first

response, days to overall survival, TR). This study was directed to modeling TS. For that, we

created the TS outcome, that is defined from TR. We choose the mapping between TR and TS

classes using Cox proportional hazards regression models (CHMs) [39]. Once TR outcome

can be in one of six different classes, we consider five different TS outcome definitions. For

each of these possibilities, we create a CHM, stratifying survival (DDP) by TS. We choose the

TS definition that reached the minimum survival stratification p-value (see Fig 2).

Simplified Machine Learning Approach (SMLA)

We defined a baseline pipeline called SMLA in order to perform three different analyses: (i) to

identify if it is possible or not to predict structural genetics markers carried by FISH technol-

ogy from gene expression levels—they are particularly relevant once these markers are broadly

used in the current clinical decision-making process in MM; (ii) to measure the accuracy gain

obtained by combining clinical markers and gene expressions levels; and (iii) to assess MuLT

classification performance against a benchmark. Hence, SMLA is composed of three steps:

1. Marker selection based on our marker selection algorithm (see Algorithm 1);

2. Hyper-parameter optimization using the BO algorithm; and

3. Binary classifier (e.g., LightGBM, MLP, KNN) training.

For the first and second analyses we employed the LightGBM classifier, and for the third

one we performed three independent experiments employing LightGBM, MLP and SVM clas-

sifiers. Table 3 presents the complete list of hyper-parameters optimized by the BO algorithm

organized by method.

We employed a BO algorithm that uses Gaussian Processes (GP) [19] to minimize the log

loss function l defined as:

lðy; ŷÞ ¼ �
1

N

XN

i¼1

yi � logðŷiÞ þ ð1 � yiÞ � logð1 � ŷiÞ

PLOS ONE Machine learning predicts treatment sensitivity in multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0254596 July 28, 2021 10 / 17

http://github.com/lucasvenez/mult
https://doi.org/10.1371/journal.pone.0254596


where y represents expected values and ŷ represents estimated values while yi and ŷi are the ith

elements of their corresponding vectors, and N is the size of vectors y and ŷ. The BO algorithm

solves the following problem:

arg min
H

f ðH; P;DÞ

where f(�; �, �) returns the log loss after training a predictor P, given hyper-parameter values H,

and a data set D.

For each learning method, BO initially generates 10 random H values that correspond to

the hyper-parameters described in Table 3. It then computes f(H; P, D) and creates a surrogate

function that fits the hyper-parameters values (H) to their resulting log loss. Based on the sur-

rogate function, BO estimates new hyper-parameter values that are expected to return the

global minimum log loss. It then computes f again for these estimated values and updates the

surrogate function. This procedure is repeated over 50. Finally, BO returns the hyper-parame-

ter values associated with the global minimum log loss. This process is used in all of our experi-

ments that employ BO, the detailed implementation is available at https://git.io/JGBsv.

Multi Learning Training (MuLT)

MuLT aims to create TS predictors that estimate if a patient is sensitive to a particular treat-

ment based on clinical markers, gene expression levels, and treatment. As stated previously,

our experiments were carried out using CV, splitting data into 10-folds. We used nine folds to

compose the training data set and one to compose the validation data set. All steps described

below were applied on training data, while the validation data was used only for inference and

result analysis. Our novel ML-based approach starts by normalizing each value m of a marker

M by n(m) = (m−minM)/(maxM−minM). Both maxM and minM are extracted from the training

data set, and are also used to normalize the validation data set via min(1, max(0, n(m))). Mini-

mum and maximum work for limiting output to the interval [0, 1].

Table 3. List of optimized hyper-parameters per ML method.

Method Hyper-parameter Description

LightGBM num_leaves Max number of leaves in one tree

scale_pos_weight Weight of labels with positive class

min_child_samples Minimal number of data in one leaf

bin_construct_sample_cnt Number of data that sampled to construct feature discrete bins

max_bin Max number of bins that feature values will be bucketed in

min_sum_hessian_in_leaf Minimal sum hessian in one leaf

bagging_fraction Percentage of selected data without resampling

feature_fraction Percentage of features on each tree to be randonly selected

feature_fraction_bynode Percentage of features on each tree node to be randonly selected

MLP hidden_layer_sizes Number of neurons in the hidden layer

learning_rate Learning rate schedule for weight updates

learning_rate_init Initial learning rate

max_iter Maximum number of iterations

tol Tolerance for the optimization

SVM C Regularization parameter

gamma Kernel coefficient

degree Degree of the polynomial kernel function

kernel Kernel type to be used in the algorithm (i.e., linear, poly, rbf)

https://doi.org/10.1371/journal.pone.0254596.t003
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Let F be a matrix composed of markers at columns and patients at rows, where each ele-

ment mpM describes the value of a marker M associated with a patient p. Let c be a vector asso-

ciating a treatment sensitivity class (i.e., sensitivity and non-sensitivity) to a patient p. Based on

normalized training data set, Algorithm 1 inputs F and c, and splits the patients along sets

(rows of F) based on the clinical outcome class described by c. For each marker M (column of

F), the algorithm tests whether these two classes originate from the same distribution based on

KS test [40] for a significance level α, excluding markers with p-values higher than α. After

that, the algorithm computes a pairwise linear correlation for remainder markers. For each

marker M0
i , the algorithm excludes M0

i if it has a linear correlation β> 0.75 with any marker

M0
j 8i 6¼ j with smaller p-value. The algorithm then outputs the selected markers F

0

. This

marker selection algorithm is applied over genes (GS step) and clinical markers (CMS step)

independently, generating selected genes G
0

, and selected clinical markers C
0

.

Our marker selection algorithm has two main objectives: (i) to identify which markers have

different distributions when separated by TS classes; and (ii) to exclude markers that have

their information encompassed by a more relevant marker. In order to implement the first

objective, our algorithm applies a KS test between values of a marker among the TS classes.

We also considered different approaches, testing the Maximal Information Coefficient (MIC)

[41] with different thresholds to evaluate the effectiveness of a method that aims to identify

non-linear correlation, and the Kruskal test [42] in order to evaluate the effectiveness of a non-

parametric method. The second objective was addressed by using Pearson Correlation to mea-

sure linear correlation between markers to identify which of them are embedded in another

that better discriminates TS classes. While designing MuLT, we did not identify relevant gains

when using the different approaches above, but the reduced processing time when employing

the KS test was notable.

Algorithm 1 Pseudocode of the marker selection algorithm.
1: function MARKERSELECTION (F, c, α, β)
2: ExcludedMarkers  {}
3: AnalysedMarkers  {}
4: MarkerSet  names(F) ⊳ Get marker names from matrix F
5: for all M1 2 MarkerSet do ⊳ For each marker M1, do
6: AnalysedMarkers  AnalysedMarkers [ {M1} ⊳ Add M1 to
AnalysedMarkers
7: pM1

 ComputeOrRetrievePvalueðF�M1
; cÞ

8: if pM1 > α then ⊳ If p-value associated to marker M1
is greater than α
9: ExcludedGenes  ExcludedGenes [ {M1} ⊳ Add M1 to Excluded-
Markers set
10: else ⊳ For each marker that was not analysed,
do
11: for all M2 2 MarkerSet \ AnalysedMarkers do
12: pM2

 ComputeOrRetrievePvalueðF�M2
; cÞ

13: if pM2 > α then
14: ExcludedMarkers  ExcludedMarkers [ {M2}
15: else
16: pc j ComputePearsonCorrelationðF�M1

;F�M2
Þ j

17: if pc > β then ⊳ If linear correlation is
greater than β, then
18: if pM2 � pM1 then
19: ExcludedMarkers  ExcludedMarkers [ {M2}
20: else
21: ExcludedMarkers  ExcludedMarkers [ {M1}
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22: S  MarkerSet \ ExcludedMarkers
23: F0  F�S
24: return F0

GP inputs the selected genes G0, applies it to estimate patient genetic profiles by using the

k-means algorithm [43], and returns matrix L ¼ ðlijÞ 2 R
m�o associating a patient i to its

Euclidean distances from a cluster centroid j, where m is the number of patients.

Number of clusters o is defined by our Number of Clusters Selection (NCS) algorithm,

which is based on the average Silhouette Coefficient (SC) [44]. NCS inputs selected genes G0

and iterates over the number of clusters c = 2, 3, . . . to compute a Silhouette Coefficient-based

Metric (SCM), defined by

SCMðcÞ ¼
SCðcÞ � sSCðcÞ
sNSðcÞ þ 1

where SCðcÞ is the average SC of all observations for c clusters, σSC(c) is the standard deviation

of SC for c clusters, and σNS(c) is the standard deviation of the number of samples in each clus-

ter for c clusters. NCS stops after 10 iterations without getting a higher value for SCM, return-

ing the number of clusters o = arg maxc SCM(c).

GC inputs the transpose of selected genes matrix G
0T, estimates gene clusters using k-

means algorithm, and returns a matrix E ¼ ðeijÞ 2 R
m�k associating a patient i to the average

expression level of each estimated gene cluster j, where k is the number of gene clusters

defined by NCS algorithm.

GD inputs selected genes G0 and returns a denoised representation Gd of selected genes. It

is defined using a Deep Denoising Autoencoder (DDA) [45]. DDAs are composed of an input

layer representing selected genes, five processing (hidden) layers, and an output layer repre-

senting the denoised selected genes. The number i of input and output units equals the number

of selected genes. Processing layers has b0.5ic, b0.4ic, b0.3ic, b0.4ic, and b0.5ic units, where b�c

is the floor operation. A DDA model is trained by adding a noise to the input and then reduc-

ing the Mean Squared Error (MSE) between the raw input and the DDA output. We modified

the input values adding a noise generated from a random variable X � N ð0; 1Þ. We used the

AdaDelta optimization algorithm and ReLU activation function [20] on processing units.

Training was stopped after 1,000 iterations with no reduction of the minimum MSE loss. L2

regularization [20] was employed with a scale of 1%.

Finally, TSPT inputs the concatenation (G0 | C0 | L | E | Gd | T) and outputs a model able to

predict an individual patient TS, where T is a matrix associating patients to its first line treat-

ment. TSPT is defined by LightGBM [21] to model the individual patient TS. The training is

composed of two parts. First, the training data is split into two folds and a hyper-parameter

optimization (see LightGBM row in Table 3 for the complete list of optimized parameters)

using the BO algorithm [19] is applied to define model parameter values to improve generali-

zation and accuracy. One fold is used to train the model, and another to estimate the log loss.

Hyper-parameter optimization returns the LightGBM parameters associated with the mini-

mum average log loss in the 50 independent iterations. Taking the optimized parameters, the

training data set is then split into three folds. An independent TS predictor is created based

on each pairwise fold. Training is stopped after one iteration without log loss improvement,

or after 100 iterations. Final TS score is defined via the average of TS scores computed by each

predictor.
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Treatment simulation

We performed simulations based on MuLT predictors in order to identify which treatment

could maximize the TS score for a given patient p, by computing:

kðGp;CpÞ ¼ argmax
ts

MuLTðGp;Cp; t
sÞ

where, for a given patient p, ts is the simulated treatment, Gp is the gene vector, Cp is the clini-

cal marker vector, and MuLT(�, �, �) is a trained predictor that returns a TS score.

Next, the relative number of patients that had a simulated treatment different from the

actual one was computed by the equation below:

1

Np

X

p

zðta; kðGp;CpÞÞ

where tp is the actual treatment for a given patient p, Np is the number of patients in the cohort,

z(a, b) is a function that returns 1 if a and b are not equal and 0 otherwise.
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