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Abstract 

Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular dis-
ease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, 
hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies 
considering sex differences in their study design has led to several policies. For example, the National Institute of 
Health’s (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate 
researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug 
discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identi-
fication of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select 
drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted 
to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. 
Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing 
because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discov-
ery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not 
expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods 
that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a 
disproportionate number of male and female samples are available to train computational methods [7]. However, 
there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular 
associations, and networks). Low-dimensional representations of molecular association and network approaches are 
also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the 
multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here 
we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias 
drug response, and how model organism study design choices influence drug repurposing validation.

Highlights 

• Genetic, epigenetic, hormonal, immunological, metabolic, and environmental factors affect sex-biased drug 
responses.
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Background
Introduction
Attempting to isolate novel therapeutic drug candidates 
can cost one to two billion dollars and 12–16  years of 
research [1]. As an alternative, drug repurposing strate-
gies require less investment and lead to faster Food and 
Drug Administration (FDA) approval because repur-
posed candidates are already FDA-approved for alterna-
tive indications. Historically, drug repurposing has been 
serendipitous [1]. For example, hydroxychloroquine was 
initially approved only to treat malaria and later repur-
posed to treat other autoimmune diseases such as sys-
temic lupus erythematosus (SLE). This repurposing 
resulted from retrospective clinical studies that found 
patients with SLE had better outcomes when treated with 
hydroxychloroquine for other conditions besides SLE [2]. 
Another fortuitous drug repurposing example, sildenafil, 
was initially intended for ischemic chest pain. However, 
after phase I clinical trials, it was repurposed to treat 
erectile dysfunction because of the unintended therapeu-
tic effect reported [1]. Recently, through advancements in 
computational approaches, drug repurposing has become 
more systematic in predicting drug candidates that are 
effective and avoid adverse events [1]. This review will 
discuss the following drug repurposing categories and 
how they apply to sex-aware drug repurposing: data min-
ing, ligand-target binding prediction, molecular associa-
tions, and network computational drug repurposing.

The effects of sex differences are known to lead to 
variation in therapeutic outcomes. For example, tumor 
resection followed by radiation and treatment with 
temozolomide is the standard treatment for Glioblas-
toma Multiforme (GBM) and is more efficacious in 
females [3]. This might be because females are more 
likely to have the DNA repair enzyme O6-methyl-
guanine-DNA methyltransferase (MGMT) promoter 
methylated, a biomarker for a therapeutic response for 
temozolomide [4]. Another example of a sex-bias drug 

response is ibuprofen. This over-the-counter medi-
cation is more effective in males than females, even 
though no pharmacokinetic differences between the 
sexes have been identified [5]. However, pain recep-
tors and nociception differences connected to estrogen 
activity in the nervous system might cause this varia-
tion in drug response [6]. Even though several examples 
of sex-bias drug responses exist, most drug repurposing 
methods do not consider sex. In addition, the available 
sex-aware drug repurposing methods require algo-
rithmic improvements (e.g., potentially incorporating 
additional data types) to achieve better performance 
characteristics in order to improve sex-aware drug 
repurposing [7].

Adverse events, defined by the FDA as any undesir-
able experience using a medical product in a patient 
[8], are the fourth leading cause of death in the United 
States and can be caused by many factors such as tis-
sue differences, age, development, and race [7, 9]. How-
ever, in 2001, eight of the ten drugs recalled by the FDA 
were more significant health risks to women than men 
[10]. This recall led to several studies that found that 
women are twice as likely to experience an adverse drug 
event compared to men based on adverse drug event 
case reports from the Food Drug Administration’s 
Adverse Event Reporting System (FAERS) or World 
Health Organization’s VigiBase database [7, 11, 12, 13]. 
Recently, during the coronavirus disease of 2019 
(COVID-19) pandemic, there was an increase in the 
sex-bias adverse event (SBAEs) gap between females 
and males, possibly due to the pandemic exacerbating 
known SBAEs such as anxiety [9]. Even though SBAEs 
are more common in females, males are more likely 
to have a severe drug adverse event than females [13]. 
For instance, ranitidine (an antihistamine and antacid) 
causes duodenal damage in males [14]. Currently, there 
are several drug repurposing methods to identify drugs 
that might cause adverse events [15, 16]. Still, most 

• Drug repurposing approaches provide a significant advantage over novel drug development by reducing lengthy 
and costly clinical trials.

• Advances in compute processing power and optimized algorithms for computational systems have increased the 
efficiency and feasibility of computational drug repurposing.

• Multiple challenges still need to be addressed for sex-aware drug repurposing, including the insufficient under-
standing of the cause of variation of drug responses due to sex differences, better performing sex-aware repur-
posing methods, and the lack of large and balanced datasets to develop improved methods.

• Future low-dimensional representations of molecular association and network approaches could significantly 
impact the field of sex-aware drug repurposing.

Keywords: Sex differences, Drug repurposing, Sex-bias, Sex-aware, Review, Therapeutics, Pharmaceuticals, 
Computational drug repurposing
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methods that identify SBAEs, such as AwareDX, have 
significant limitations and would benefit from improve-
ments to their accuracy [7, 11, 17–19].

To summarize, sex differences influence drug safety 
and efficacy, but drug repurposing, as a field, rarely 
considers sex differences when selecting or prioritiz-
ing drug candidates. In this review, we discuss biologi-
cal mechanisms causing sex-dependent drug responses. 
In addition, we summarize current drug repurposing 
methods, survey cases where it has been done, and 
consider the challenges of developing and evaluating 
new drug repurposing candidates in light of sex.

Main text
Mechanisms driving sex‑dependent variation in drug 
response
In this review, we describe the current challenges and 
progress in the field of sex-aware drug repurposing by 
reviewing variations in drug response due to sex differ-
ences (Fig. 1). Here sex refers to the XX (female) or XY 
(male) genotype of an individual and is the focus of this 
review. Intersex and genotypes other than XX or XY, 
have not been extensively studied through future study 
is necessary and warranted. Gender refers to the soci-
etal construct of roles for women and men, which do not 
always overlap with biological sex [20]. Thus, we use sex 

Fig. 1 Factors known to influence sex-biased drug response include genetic, epigenetic, hormonal, immunological, metabolic, and environmental 
factors
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to refer to a person’s genotype and gender to refer to a 
person’s social behavior. Sex differences can be sexu-
ally dimorphic, meaning a gene or phenotype is present 
in one sex but not the other, or sex-biased, meaning 
there are differences in effect or effect size between the 
sexes. In this review, we use sex differences and sex bias 
interchangeably.

Aside from environmental and social factors, almost 
all documented molecular sex differences arise from dif-
ferences in the sex chromosomes, where mammalian 
females have two copies of the X chromosome and males 
have one X and one Y chromosome. This basic genetic 
difference leads to changes in gene expression that give 
way to larger-scale phenotypic changes as an organism 
continues to develop. During fetal development, the SRY 
gene on the Y chromosome codes for “maleness”, becom-
ing especially apparent when dysfunction of the SRY gene 
leads to XY-genotyped individuals developing female 
sex characteristics [21]. However, sex-biased genes are 
not limited to sex chromosomes and can originate from 
autosomes [22]. When an organism has reached adult-
hood, many sex differences in gene expression are tissue-
specific, with a large amount of differentially-expressed 
genes in tissues such as adipose, liver, and breast; but this 
can vary depending on the population of cell types in a 
given tissue [22, 23, 24]. In addition, multiple biological 
pathways have sex-biased gene expression and transcrip-
tional regulation, including sex-biased expression quanti-
tative trait loci (eQTLs) [22]. Sex-biased gene expression 
has been associated with sex-biased diseases, and they 
are more likely to be drug targets of FDA-approved drugs 
than non-sex-biased genes [25].

In addition to genetic differences, there are also epige-
netic disparities between males and females, specifically 
in DNA methylation and histone acetylation and methyl-
ation [26, 27]. For example, DNA CpG island methylation 
is strongly associated with X-chromosome inactivation 
(XCI), which controls gene dosage compensation and 
has sex-specific patterns [28]. Lyonization (i.e., XCI) 
randomly inactivates either parental or maternal X chro-
mosome copy resulting in tissue mosaicism, differential 
expression of parentally imprinted genes, and increased 
expression for genes that escape XCI [29]. About 15% of 
genes on the inactive X chromosome are consistently still 
expressed, and an additional 10% variably escape inacti-
vation. This results in a ‘double dosage’, which leads to a 
higher level of gene expression in females [30, 31]. Tis-
sue mosaicism and inheritance of both parental imprints 
of the X chromosome, as opposed to only the mater-
nal imprint [32], may protect females from deleterious 
alleles [33]. For histone modifications, neonatal male 
and female mice brains have been found to be sexually 
dimorphic in histone H3 Lys9 acetylation (H3K9/14Ac) 

and trimethylation (H3K9me3) [27]. Additionally, there is 
documentation of sex-differentiated distribution of epi-
genetic marks such as histone H3 Lys27 trimethylation 
(H3K27me3), which is also associated with heterochro-
matic gene repression and X-chromosome inactivation 
[22]. Thus, these differences should be considered when 
identifying novel cancer drugs, many of which are epi-
genetic inhibitors that target DNA methyltransferases, 
histone deacetylases (HDACs), and histone methyltrans-
ferases [34]. Epigenetic modifiers have the potential to 
disrupt female dosage compensation, and the chemother-
apy HDAC-inhibitor drug vorinostat has been shown to 
affect levels of H3K27me3 [34].

Many epigenetic changes that occur early in develop-
ment are mediated by hormones. It is well established 
that males and females have differences in sex steroid 
hormones such as testosterone, estrogen, and progester-
one [35]. These hormones vary in production site, blood 
concentration, and organ interactions [36]. For example, 
males produce testosterone in the testes and produce 
more testosterone than estrogen, while females produce 
more estrogen and progesterone. These hormones, with 
many others, are necessary for reproduction [37]. Sex 
hormones modulate body mass and fluids, enzyme syn-
thesis, synthesis of triglycerides and high-density lipo-
protein, and glucose metabolism [38], all of which can 
affect drug processing. Through steroid response ele-
ments [39] and G-coupled protein receptors [40] sex 
hormones affect gene expression, intracellular signaling, 
and downstream drug processing. Estrogen receptors, an 
example of steroid response elements, have an impact on 
energy intake and expenditure, regulation of adipose tis-
sue distribution, insulin sensitivity, and the function of 
macrophages and immune cells [41]. These sex hormone 
signaling mechanisms may lead to downstream sex dif-
ferences in endocytosis of drug transporters, therefore 
affecting drug response [19].

Sex chromosome genes and sex hormones, in addi-
tion to environmental and age-related factors, heav-
ily influence immune responses [42]. Females have 
a higher antibody response, increased amounts of 
immunoglobulin, and a larger frequency of B cells than 
males, which leads to their ability to have a more robust 
immune response [42]. XCI may be one of the main 
influences of increased immune response in females 
because the inactive X chromosome can become reac-
tivated in lymphocytes, resulting in the overexpression 
of autoimmune genes [43]. These sex differences in 
immune responses lead to differential susceptibility to 
autoimmune diseases, which disproportionately affect 
females [44, 45], and certain cancers, which dispropor-
tionately affect males [42]. The observed discrepancy in 
autoimmunity could, in part, be due to sex differences 
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in the microbiome affecting sex hormone regulation 
[46]. These immune system inconsistencies may explain 
different pharmacokinetic responses to vaccines and 
various immunologic drugs [47].

There are many differences in all stages of pharma-
cokinetics between males and females including drug 
absorption, distribution, metabolism, and elimination 
[48]. Some of the contributing factors to differential 
drug absorption rates are variations in gastric enzymes, 
transporter proteins, and liver and kidney organ func-
tion [49]. For example, females have a higher gastric pH 
than men, which can increase the absorption of com-
pounds such as caffeine through decreased ionization 
of weak bases [49]. In terms of the distribution of a drug 
throughout the body, plasma volume, body mass index 
(BMI), average organ blood flow, total body water ver-
sus body fat, and cardiac output all have sex differences 
[49]. Since females have a higher fat composition than 
males, the volume of distribution differs depending on 
whether a drug is lipid-soluble or water-soluble. In this 
scenario, a water-soluble drug would have a higher vol-
ume of distribution in males than in females, and vice 
versa for lipid-soluble drugs [48]. A higher volume of 
distribution results in higher concentration, so drug 
dosages should compensate for these effects to avoid 
the risk of adverse side effects. Pregnancy can cause 
changes in the elimination half-life of drugs, so the dos-
age requirements for drugs also need to be adjusted for 
pregnant individuals [50].

The drug zolpidem, also known as Ambien, is a drug 
the FDA recommended to be given to females at a dose 
half that of males; however, this recommendation only 
increased the adjusted dosage compliance from 10 to 
15% [51]. The FDA zolpidem statement was due to phar-
macokinetic and pharmacodynamic differences causing 
lower rates of clearance in women, resulting in 40–50% 
higher concentrations of the drug and a higher likelihood 
of side effects such as extreme drowsiness, possibly from 
non-compliance with the FDA dosage recommendations 
[52]. Zolpidem is among many drugs affected by the myr-
iad of differences in drug metabolism in the cytochrome 
p450 (CYP) enzymes. Sex differences in the CYP super-
family of genes, which are involved with phase I drug 
metabolism, can explain some discrepancies in phar-
macokinetic processes between males and females [53]. 
For example, differences in CYP genes such as CYP1A2, 
CYP2B6, CYP2E1, CYP3A4, affect the metabolism of 
hundreds of compounds [54]. CYP2B6 has more than 
70 substrates (including ketamine), and females have 
higher overall activity compared to males [54]. CYP3A4 
is involved in the metabolism of over 50% of all drugs 
(including zolpidem), and females have been found to 
have 20–50% higher activity than males [54]. In addition, 

the CYP superfamily of genes is involved in sex hormone 
biosynthesis [55].

Finally, differing environmental and social pressures 
can lead to conscious decisions that physically affect 
the body, resulting in differing responses to various 
drugs. These social pressures vary depending on gender, 
not just biological sex. Gendered behaviors may lead to 
changes in testosterone levels in men and women [56]. 
One example of environmental and social contribu-
tions is melanoma: men are more likely than women to 
develop melanoma and have a fatal outcome [57]. The 
increased likelihood of development could be due to 
many behavioral differences: men spend more time out-
side, are less likely to wear sunscreen, and are less likely 
to self-detect and examine for skin irregularities [58]. 
Males and females have different immune responses, so 
women’s higher melanoma survival rate could be due 
to women’s immune systems being more effective at 
preventing metastasis through estrogen signaling [57]. 
Women are also more likely to use supplements, natural 
botanicals, and homeopathic remedies, which are less 
likely to be reported than FDA-approved drugs and could 
cause dangerous drug interactions [59, 60]. There are 
also nutritional and gut microbiome differences between 
males and females [61]. These microbiome differences 
can be caused by various factors, including hormones, 
diet, drugs, BMI, and colonic transit time [61]. Acetami-
nophen is an over-the-counter drug known to have dif-
ferent toxicity across individuals, which may be due to 
microbial metabolites that compete with acetaminophen 
for liver enzyme binding sites [62]. This competition 
leads to a higher fraction of acetaminophen transformed 
into a toxic byproduct resulting in increased hepatotoxic-
ity [62].

In substance use, men in the United States are more 
likely to smoke cigarettes than women [63]. Incomplete 
combustion leads to accumulations of carcinogenic 
compounds, which are inducers of CYP enzymes [64], 
causing many drug interactions, with some drugs requir-
ing dosage increases due to higher CYP1A2 levels [65]. 
Among biological females who are heavy cigarette smok-
ers, low-dose oral contraceptives have a much higher 
chance of adverse arterial effects [66]; therefore, the FDA 
advised doctors not to prescribe oral contraceptives for 
females smoking over 15 cigarettes a day [67]. Another 
example of how behavior can lead to biological conse-
quences is the example of alcohol, which interacts with 
numerous drugs [68]. Alcohol has a stronger effect in 
women due to differences in alcohol metabolism, lead-
ing to higher amounts of alcohol in the body and a higher 
risk for severe side effects and adverse drug reactions 
(49). Women are drinking at increased rates on a popula-
tion scale, and because of their predisposition to stronger 
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effects of alcohol, they are at higher risk for alcohol-
related health problems such as liver disease than men 
[69, 70].

Before reaching 12–17 years old, males are more likely 
to experience ADEs than females. After adolescence/
puberty however, females consistently report more ADEs 
than males. [13]. The most marked differences in adverse 
events reported between females and males is between 
the ages of 18–44 [13]. In addition, there are major sex 
differences with respect to aging when menopause is 
considered. Menopause causes major biological changes 
in the female body, most markedly loss of regular men-
ses and hormonal changes, and occurs around 51 years of 
age [71]. After menopause, when hormone levels become 
more comparable to male hormone levels, females still 
report an excess of adverse drug events but the margin 
of events between men and women is smaller. Elderly 
people are most vulnerable to ADEs compared to other 
groups [72]. One reason for this is that with increased 
age there is an increase in polypharmacy, which is tak-
ing multiple drugs at once. The more drugs a given 
patient is taking, the greater risk they have for interac-
tions and general side effects [73]. Women, in addition 
to the elderly, are also more likely to experience polyp-
harmacy, possibly due to their willingness to seek out 
medical attention more readily [73]. Other contributing 
factors to the elderly being more susceptible to ADEs 
are the changes in pharmacokinetics during aging due 
to changes in renal function [74] and body composition, 
leading to smaller volumes of distribution for water-solu-
ble drugs such as digoxin, common heart failure medica-
tion [75]. Peak concentration of digoxin is increased from 
38 hours in younger subjects to 69 hours in elderly sub-
jects, with clearance also reduced in older subjects [75]. 
As a result, digoxin has a recommended dose for older 
adults reduced by 20% [75]. This medication also has an 
increased risk of mortality in women compared to men, 
which could be due to an interaction between hormone-
replacement therapy and digoxin [76].

There are also differences in drug metabolism based 
on race and ethnicity. In this review, we look at sex as 
a binary, whereas race is less readily simplified. Race 
is a social construct that has historically been used to 
group together people based on outward characteristics 
such as skin color, presumably based on biological and/
or genetic differences. This is not an absolute classifica-
tion with clear boundaries, with 85% of genetic variation 
being found within populations and only 15% of genetic 
variation found between populations [77]. Ethnicity is 
generally considered to consist of a combination of some-
one’s cultural, religious, or national identity, and is highly 
subjective. Biological differences in a given population 
can vary greatly by geographical regions, and are largely 

affected by socio-economic status [78]. Meaningful bio-
logical differences such as an increased rate of heart dis-
ease in African Americans can be attributed to decreased 
access to preventative healthcare, increased concentra-
tion of fast-food restaurants and rates of environmen-
tal pollution in primarily minority neighborhoods, and 
more occupational hazards as opposed to genetics [78]. 
A person with limited access to medical care may under 
report adverse side effects, or only pursue medical care 
when side effects are more severe. Racial and ethnic dis-
parities in ADEs have been found in various studies, but 
consistent definitions of race and ethnicity and evalu-
ation of underlying factors (i.e., environmental and cul-
tural) are lacking [79]. A major study by Man et al. was 
able to find genetic differences in drug metabolizing 
and transporter (DMET) allele variants in three differ-
ent populations: Caucasian, African, and East Asian [80]. 
In another study, cisplatin, an anti-cancer drug, is more 
likely to cause nephrotoxicity in African Americans than 
Caucasians [81]. When intersecting with gender, drug 
transporter genes ATP7B and KCNJ8 have been shown 
to have higher mRNA expression in African American 
women compared to European American women [82]. 
In the same study, researchers found that there is a sig-
nificant difference in SLC31A2 in European American 
males compared to European American females, but not 
between African American males and females [82]. Race 
and ethnicity are contributing factors in drug response 
and ADE outcomes, and should be considered for future 
studies, especially with sex as a biological variable 
included.

Due to the overwhelming evidence that males and 
females have differing responses to many drugs, their 
treatment recommendations should reflect these dis-
crepancies. Therefore, the need to develop alternative 
drug treatments to minimize sex-bias related adverse side 
effects is a high priority, and drug repurposing can help 
address this in a more timely and cost-effective manner.

Overview of drug repurposing
As drug discovery costs increase (145% between 2003 
and 2013), the need to use systematic methods to iden-
tify drug repurposing candidates has grown [83, 84]. 
Some of these approaches are experimental while oth-
ers are computational. Experimental approaches conduct 
drug screens using in  vitro and in  vivo models testing 
hundreds to thousands of compounds and evaluating if 
those compounds affect a specific molecular target or 
cellular phenotype [1]. An example of a large-scale appli-
cation of a drug screen is the Profiling Relative Inhibi-
tion Simultaneously in Mixtures (PRISM) project [85]. 
This project treated 930 cancer cell lines with 21,000 
drugs to identify which inhibit cancer growth [85]. This 
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large-scale screening process requires many resources 
including cell lines, drugs, and personnel time and exper-
tise. However, researchers can reduce this investment by 
identifying specific drug candidates via computational 
approaches that will prioritize candidates for experimen-
tal application.

Over the last several decades, increased processing 
power and optimized algorithms for rapid calculations 
have resulted in in silico drug repurposing methods 
being quicker at identifying drug repurposing candidates 
than exhaustive experimental approaches (Table  1) [1]. 
Additionally, the number and size of biomedical data-
bases with appropriate clinical, genomic, transcriptomic, 
epigenetic, metabolic, and proteomic information for 
various diseases and preclinical models have expanded 
[86–88]. These public databases have expedited the pro-
cess of identifying new drug candidates by making this 
data accessible to research groups across the world to 
train their drug repurposing approaches [86–88]. Here 
we discuss data mining, ligand-target binding prediction, 
molecular associations, and network computational drug 
repurposing categories that contain different strategies 
for identifying drug repurposing candidates.

Data mining drug repurposing approaches retro-
spectively analyze information from and across clinical 
trials, biomedical literature, and other resources with 
drug outcome or drug target information to identify 
novel drug indications [113]. These approaches apply 
machine learning models that use logical and math-
ematical algorithms to interpret or make predictions 
about data. For example, Kuenzi et  al. generated an 
interpretable visible neural network, a machine learn-
ing model, to predict the effectiveness of drugs for indi-
vidual cancer mutation profiles [114]. Another example 
of a data mining approach, text mining, uses biomedi-
cal literature to connect information from different 
studies or data sources to discover novel connections or 
patterns [115]. For example, aspirin, an over-the-coun-
ter medication used for analgesia, was repurposed in 
2016 to reduce the risk of developing colorectal cancer 
after a systematic review of data from the literature and 
clinical trials [116]. An advantage of these data mining 
approaches is using large amounts of publicly available 
data that researchers do not need to recreate for them-
selves. However, there are some ethical considerations 
with data mining methods, including data storage, dis-
tribution (data should be secure for identifiable infor-
mation and available for research reproducibility and 
reuse), and bias within the data, such as the exclusion of 
different sexes (as discussed in this review), age/devel-
opmental groups, and ethnic/racial groups [117]. For 
example, The Cancer Genome Atlas (TCGA) includes 
various “omics’’ data from tumor and normal samples 

across several cancers; however, the majority of the 
samples in this database are caucasian [118]. To over-
come this limitation, Gao and Cui applied a machine 
learning method called transfer learning (this method 
applies knowledge learned from a large dataset, like 
TCGA caucasian samples, to a smaller dataset, such as 
the underrepresented ethnic groups in TCGA) to cre-
ate ethnicity-specific cancer survival prediction models 
[118]. This method created a more accurate model than 
using the limited and underrepresented ethnic samples 
alone [118]. Furthermore, another limitation of data 
mining approaches is the dependency on information 
from literature and clinical trials. If a disease or drug is 
rare or understudied, there may be limited publications 
for these approaches.

Additionally, researchers should be aware of data min-
ing challenges with regards to variation in data structure 
and nomenclature. While the NIH is implementing a new 
Policy for Data Management and Sharing (DMS Policy) 
effective January 2023 for NIH-funded research to ensure 
stricter standards for data sharing and the availability of 
raw data, this has been a pervasive issue from past data 
sharing up until this point [119]. Due to different levels 
of processed vs raw collected processing of data being 
shared, accompanying metadata being missing or incom-
plete, and unavailability of code used to manipulate and 
analyze data, NIH policies are raising the standard to 
ensure data analyses are reproducible and allow for more 
effective data reuse through proper data repository use, 
requiring common format by datatype to maintain con-
sistency, and mandating that full datasets and accom-
panying metadata be available to the community with 
“broadest possible terms of reuse” [120]. Additionally, 
nomenclature for gene names (i.e., Entrez, GenBank, 
RefSeq, etc.) has remained an issue for data mining, 
where many synonymous terms and annotations must 
be searched for in text mining and identification conver-
sion steps for analysis may lead to data loss, errors, or 
duplication [121]. Ontologies, also known as vocabular-
ies or terminology systems, are also relied heavily upon 
for literature mining and semantic tools, but introduce 
inconsistencies and can hinder interoperability [122, 
123]. While there have been many attempts to coalesce 
ontologies, such as Web Ontology Language (OWL), the 
Open Biomedical Ontologies (OBO) Foundry initiative, 
and Unified Medical Language System (UMLS) (http:// 
www. nlm. nih. gov/ resea rch/ umls/), ontology sources 
often remain incongruent and may lead to misconcep-
tions and error [122]. In summary, there are many fac-
tors to consider with data mining approaches, and the 
impact of these factors should be reduced and limited in 
order to develop accurate data mining models for drug 
repurposing.

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
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Another drug repurposing approach, ligand-target 
binding prediction, identifies drugs predicted to bind 
to a disease target (i.e., proteins) based on their bind-
ing affinity [124]. Molecular dynamic modeling and 
structure similarity are two types of ligand-target bind-
ing prediction methods. Molecular docking predicts if 
a ligand and a drug target can bind via their structures 
[124]. A limitation of this approach is that it requires a 
significant amount of time and memory, even on a high-
performance computing system [125]. Some molecular 
docking methods have reduced the complexity of calcula-
tions by approximating and removing certain parameters 
to increase computational speeds, but this has increased 
docking energy errors and unreliable ranks of drug candi-
dates [126]. Alternatively, structure similarity approaches 
predict drug candidates based on the premise that similar 
drugs will have similar mechanisms of action or adverse 
events [127]. Ligand-target binding predictions are lim-
ited due to the requirement for accurate information 
about drug structures, mechanism of actions, and protein 
structures of disease targets to predict suitable drug can-
didates, which are often inaccurate or unknown [1].

Molecular association methods identify targets or pat-
terns from molecular data (i.e., genomic, transcriptomic, 
epigenetic, metabolic, or proteomic profiles) that cor-
relate with disease, therapeutic outcomes, and/or drug 
candidates [1]. Molecular association strategies include 
guilt-by-association, signature matching, and signa-
ture reversion [1]. Recently, a genome-wide association 
study (GWAS) used guilt-by-association to identify drug 
repurposing candidates for psoriasis [128]. In this study, 
IL-23 receptor gene variants were found to be associ-
ated with the development of psoriasis, and therefore 
the IL-23 receptor became a potential drug target [128]. 
Further, based on biomedical literature, risankizumab 
was identified as a drug candidate because it targets the 
IL-23 receptor, and after clinical trials, risankizumab was 
indeed approved for psoriasis treatment [128, 129]. Sig-
nature matching, another molecular association strat-
egy, has been applied in several cancer applications, as 
reviewed in Wang et al. [129]. It compares patient molec-
ular profiles to cell line profiles or another model system 
that were treated with drugs and assessed for a specific 
phenotype (e.g.., cell viability in cancer cell lines) [129]. 
Another variation, signature reversion, leverages molecu-
lar disease signatures (i.e., gene expression differences 
between disease and normal) and cell line perturbation 
signatures (i.e., gene expression differences before and 
after drug treatment) to identify drug signatures that are 
inversely related to disease signatures [88]. Chen et  al. 
applied this principle to liver cancer and identified and 
validated four drug repurposing candidates in xenograft 
mouse models [130]. Signature matching and reversion 

can be approached by either enrichment statistics such 
as Kolmogorov–Smirnov or correlation methods [131]. 
However, enrichment statistics approaches had lower 
accuracy compared to correlation approaches, but cor-
relation approaches were more sensitive to noise [98, 
131]. Additionally, molecular associations methods can 
only determine correlation and not causation; therefore, 
molecular associations are not always the drug target or 
the cause of the disease. For example, if a GWAS study 
identified a gene variant with favored drug response, 
it should not conclude that the gene with the variant or 
gene closest to the variant is the drug target. A neighbor-
ing gene could be the drug target due to the influence of 
linkage disequilibrium where genes near each other tend 
to be inherited together [1]. Therefore, researchers using 
these molecular association strategies should be critical 
when evaluating and interpreting their associations to 
avoid making causal inferences about drug targets [1].

Network approaches evaluate mathematical graphs 
(nodes joined together by edges) representing relation-
ships as edges between different nodes like genes, pro-
teins, diseases, and drugs to identify drug repurposing 
candidates [132]. One of the benefits of this approach is 
that networks can integrate multiple data types to pre-
dict drug candidates. In one study, Morselli et  al. suc-
cessfully repurposed four drug repurposing candidates 
for COVID-19 by implementing a protein–protein inter-
action network, information about severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), and drug 
targets [133]. Another benefit of a network approach is 
interpretability. This interpretability allows for insights 
into possible disease and drug mechanisms. For exam-
ple, a study that used tissue-specific networks derived 
from transcription factor sequence motifs, protein–pro-
tein interaction, and gene expression data identified the 
BTK inhibitor ibrutinib as a drug candidate for metabolic 
syndrome [134]. Because of the interpretability of their 
network approach, the researchers gained mechanistic 
insight into how ibrutinib treatment might treat meta-
bolic syndrome via BTK expression and immune cells 
[134]. However, some drug-target interaction networks 
with nodes representing drugs and gene targets have a 
high number of false positives due to nonspecific drug 
targets making it difficult for this approach to predict 
new drug candidates [135]. A prime example of one mul-
titarget drug is imatinib, which was originally designed 
for its inhibition of BCR-Abl fusion protein, but was also 
found to be especially efficacious in chronic myeloid leu-
kemia by also inhibiting non-oncogenic c-Abl tyrosine 
kinase in normal cells [136]. Another limitation is the 
dynamic nature of biological systems means networks 
capture a specific point in time so critical evaluation and 
interpretation of network construction is necessary [135]. 
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Additionally, network analysis can require costly comput-
ing resources and time due to complex algorithms [137].

However, a promising approach is to use a combination 
of computational and experimental approaches to iden-
tify and validate drug repurposing candidates (Table  1). 
For example, Fang, et  al. conducted a study for Alzhei-
mer’s Disease (AD) with data mining approaches and a 
drug-target network to identify a drug repurposing can-
didate, sildenafil, followed by experimental assays to vali-
date its mechanism of action in patient-derived induced 
pluripotent stem cells (iPSCs) [138]. This study used 
multiple data sources including health insurance claims 
from the MarketScan Medicare Claims database and 
gene expression data from the Gene Expression Omni-
bus (GEO) and Genotype-Tissue Expression (GTEx) 
databases [138]. Moreover, some studies combine several 
methods (known as weak learners) into a single frame-
work, resulting in better therapeutic predictions than 
using one method alone [131]. This technique is called an 
ensemble approach. EMUDRA, an example of an ensem-
ble method, combined four weak learners: Kolmogorov–
Smirnov statistic, weighted signed statistic, the sum of 
fold changes, and cosine similarity [131]. This ensemble 
model outperformed the individual weak learners and 
other drug repurposing approaches with simulated and 
drug perturbation data [131]. This methodology per-
forms better in cases where the weak learners have simi-
lar accuracy but diverse predictions [139, 140]. In this 
situation, the different weak learners’ algorithms identify 
different important signals to determine drug candidates. 
A limitation of this approach is the increase in compu-
tational complexity, which requires more computational 
power and time to predict drug repurposing candidates.

Lastly, with some complex diseases such as cancer, the 
use of combinational drug therapy increases the rate of 
success because different combinations of drugs can 
have synergistic effects on the same target or multiple 
targets [141]. For example, multiple drugs can be used 
to synergistically impact one target or pathway, such as 
GKT136901 and L-NAME working on NOX4 and co-
target NOS [142]. Several computational methods are 
available to investigate synergistic effects between drugs 
for therapy [143, 144, 145,  146]. In a computational 
development challenge to find cancer drug combinations, 
160 teams developed computational methods to find 
synergistic drug combinations [146]. After reviewing the 
performance of the methods developed by the different 
teams, this project concluded that ensemble approaches 
with multiple computational methods improved drug 
combination predictions compared to single methods 
[146]. Similar to the ensemble approach, combinational 
drug repurposing methods increase the complexity of the 
model, affecting computational power and time.

In this section and Table  1, we highlighted several 
computational methods that have prioritized novel drug 
repurposing candidates and their limitations which 
can significantly impact the success or accuracy of drug 
repurposing. Overall, critical evaluation of current and 
future computational methods via code peer-review and 
in silico and experimental validation is important to con-
tinually improve computational drug repurposing [147]. 
In addition, many ethical considerations that should be 
acknowledged when developing or using computational 
models because all models are designed with different 
assumptions and biases due to algorithms or datasets 
used to train models [148]. Understanding the limitations 
of a model will help identify if the method is suitable 
for the task or if another model with less bias or better 
assumptions should be used or designed [148]. Another 
common hurdle for all of these methods is the require-
ment for statistically powered datasets to create more 
accurate models. This limitation can be incredibly chal-
lenging for sex-aware drug repurposing because these 
methods require powered datasets for males and females. 
In combination with other challenges to studying sex 
differences (discussed in the last section), these limita-
tions make sex-aware drug repurposing difficult. Still, we 
propose and discuss several solutions and drug repur-
posing approaches to mitigate these challenges to aid in 
the development of better sex-aware drug repurposing 
approaches (discussed in the next section).

Sex‑aware drug repurposing methods
Currently, there are limited methods available to either 
select sex-specific drug repurposing candidates that will 
be effective against a disease of interest or prioritize 
candidates to avoid SBAEs. While these methods fall 
under the same drug repurposing categories, the follow-
ing sex-aware methods are variations that adjusts input 
data, parameters, and/or algorithms for sex differences 
to identify sex-specific drug candidates or SBAEs. We 
did not consider drug repurposing methods that used 
sex as a covariate as sex-aware because using sex as a 
covariate reduces the impact of sex in computational 
models. These models will not identify sex-specific drug 
candidates and adverse events. Here we summarize the 
currently available sex-aware approaches or studies for 
sex-aware drug repurposing (Table 2).

The first sex-aware drug repurposing approaches use 
data mining to identify SBAEs based on case information 
from patient adverse events databases such as FAERS or 
VigiBase. A study from Yu et al. calculated the reporting 
odds ratio for a sex-bias adverse event based on FAERS’ 
case reports [11]. They found and confirmed several 
SBAEs and drug combinations via drug labels or previous 
studies [11]. The drug repurposing database DrugCentral 
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also used the FAERS database to calculate the likelihood 
ratio for a sex-bias adverse event for all drugs in the data-
base. These calculations can identify drugs with SBAEs 
and prioritize drug candidates that avoid SBAEs [149]. 
Another study created a random forest model based on 
the FAERS database to predict a propensity score (the 
likelihood that a patient is female) based on clinical data 
and the standardized medical terminology used for med-
ical conditions, medicines, and medical devices (Medical 
Dictionary for Regulatory Activities MedDRA) adverse 
events terms [7]. This study used several metrics such as 
out-of-bag score and Receiver Operating Characteristic 
Area Under the Curve (ROC-AUC) to evaluate their ran-
dom forest model. This model had an out-of-bag score of 
0.63 and ROC-AUC of 0.64 [7]. However, this model had 
a low recall of 0.47 and required 250 patients per sex for 
each adverse event [7]. A more recent study from Zucker 
and Prendergast conducted a literature search to identify 
SABEs based on pharmacokinetic differences between 
males and females [14]. This approach was successful in 
identifying female-bias adverse events but struggled to 
identify male-bias adverse events [14]. This limitation 
might suggest pharmacokinetics are less likely to cause 
male-biased adverse events [14]. In addition, this study 
was limited by only having pharmacokinetic information 
for a small fraction of FDA-approved drugs [14].

Furthermore, there are some additional limitations 
with data mining studies. For example, adverse events 
are often voluntarily reported by healthcare profession-
als, consumers, and drug manufacturers [154]. Even with 
standardized terminology like MedDRA, it can be dif-
ficult to categorize or describe an adverse event; there-
fore, there could be misclassification of a specific adverse 
event. Second, case reports cannot distinguish an adverse 
event caused by a drug or an extraneous factor such as 
another drug. Some databases like FAERS do not require 
a causal relationship for a report to be filed [154]. There-
fore, it is difficult to determine if a drug causes an adverse 
event. However, it is possible to estimate dispropor-
tionality or calculate odds ratios to identify associations 
between drugs and adverse events [9].

Next, we identified two sex-aware molecular associa-
tion studies that used molecular biomarkers to identify 
sex-specific drug candidates or SBAEs. The first, a study 
by Kfoury et al., identified drug repositioning candidates 
not currently FDA approved for any condition that might 
benefit GBM patients [3]. This group previously reported 
that GBM is sexually dimorphic because of the variation 
in gene expression profiles between males and females 
that they associated with different survival between the 
sexes [3]. After this study, they hypothesized that the 
gene expression variation might be due to sex differ-
ences in epigenetic regulation [3]. Specifically, Kfoury 

et  al. investigated the bromodomain and extraterminal 
(BET) family of proteins, epigenetic readers of histone 
lysine acetylation [150]. Their study identified that BET 
inhibitors (JQ1 and RVX208) decreased tumor growth in 
male tumors but increased the growth in female tumors 
[150]. This study exemplifies how molecular differences 
between males and females can lead to a hypothesis 
resulting in the discovery of a drug candidate. Another 
study analyzed drug perturbation profiles from Connec-
tivity MAP, an extensive drug perturbation by cell line 
database, to determine what drugs perturbed heart-spe-
cific sex-biased genes as determined by differential gene 
expression analysis [155]. With this information about 
which drugs perturbed heart-specific sex-bias genes, they 
found sex-bias drug responses for acebutolol, tacrine, 
and metformin in rat models and further validated their 
results with clinical information from a human patient 
cohort [155]. Currently, this sex- and tissue-specific 
approach is limited to heart tissue because they only 
investigated sex-biased gene expression in heart tissue. 
However, researchers can adapt this method to develop 
more tissue-specific and sex-aware models.

One sex-aware experimental approach is the manipu-
lation of sex hormones as a therapy for a disease. Such 
manipulation is used when one sex tends to respond bet-
ter to current therapies and/or have better outcomes than 
the other. For example, in AD, which is more prevalent in 
females compared to males, leuprolide acetate, an andro-
gen deprivation therapy used for the treatment of pros-
tate cancer, has been investigated for the treatment of AD 
as it might slow the progression of the disease [156, 157]. 
This approach requires that the sex differences in disease 
outcome is due to hormone differences and not other fac-
tors (i.e., genetic or epigenetic differences) that can cause 
sex differences in disease outcome or drug response.

While most of these methods performed poorly due 
to limited, sex-balanced datasets. Future development 
of strategies to more accurately model sex-bias from 
these unbalanced datasets via methods similar to trans-
fer learning approaches done by Gao and Cui study or 
leverage new and more balanced datasets is required. 
Furthermore, sex impacts biological systems in multiple 
ways (i.e., genetics, epigenetics, etc.) [20, 33]. This means 
that computational models could be over-simplified and 
inaccurate by treating sex as a single biological variable 
instead of a factor influencing several biological vari-
ables in a drug repurposing model [158]. In addition, the 
influence of sex being understudied means that the true 
complexity of sex is unknown for developing or adjust-
ing drug repurposing methods and challenging for inter-
pretation of the drug repurposing candidates [33]. This 
is especially important to consider when sex differences 
can vary across different tissues, ethnic groups, age and 
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development groups, diseases, and perturbations [22, 
33]. It is also surprising given genomics being a common 
data source for drug repurposing methods and sex deter-
mination strongly influenced by sex chromosomes that 
there are few available methods that use genomic data 
to predict sex-aware drug repurposing candidates and 
SBAEs besides the Cui et al. study for heart and sex -spe-
cific drug repurposing candidates [155]. Also, we were 
unable to identify sex-aware methods for network or 
ligand-binding drug repurposing categories. Therefore, 
we suggest approaches to improve sex-aware drug repur-
posing for data mining, ligand-target binding prediction, 
molecular associations, and network computational drug 
repurposing categories.

Molecular association and network approaches are 
promising candidates for future sex-aware drug repur-
posing methodologies. Molecular association studies 
provide molecular biomarkers that might be causal for 
different responses to drugs [155]. These methods can 
separate males and females to identify genes or other 
biomarkers to determine drug repurposing candidates 
or prioritize drugs. The GTEx study discovered that gene 
expression differences between males and females tend to 
be small [22]. An alternate approach to evaluating gene-
level sex differences or individual biomarkers would be to 
develop metagenes, signatures, or low-dimensional rep-
resentations of gene expression, DNA variation, or pro-
tein expression to identify drug repurposing candidates. 
Using low-dimensional representations of molecular pat-
terns reduces the multiple hypothesis testing burden to 
find significant differences between males and females 
[159]. These differences could be associated with drug 
response or adverse events.

As an emerging computational approach for sex-aware 
drug repurposing, network techniques developed by 
the Network Zoo have been used to build gene regula-
tory networks to identify regulatory pattern differences 
between males and females from GTEx tissue sam-
ples [151]. The authors observed larger sex differences 
between the edges in the gene regulatory networks than 
gene expression [151]. They also showed sex differ-
ences in the regulatory pattern of drug metabolism in 
colon cancer, indicating a possible sex difference in drug 
response [17]. Another network method developed by 
the Network Zoo group, ALPACA (ALtered Partitions 
Across Community Architectures), determined network 
module sex differences in breast tissues [152]. These 
differences were associated with intracellular estrogen 
receptor signaling pathways, developmental and signaling 
pathways, and pathways related to breast cancer [152]. 
While these network approaches did not identify candi-
dates for drug repurposing, sex-specific networks capture 
variation due to sex differences better than differential 

gene expression because network approaches identified 
more significant differences between edges and network 
communities (i.e., groups of related nodes and edges in 
networks) in male and female gene regulatory networks 
compared to differences in gene expression [151, 152]. 
Therefore, the use of male and female networks and cur-
rent network methods is a potential future direction.

Due to several limitations, data mining and ligand-
target binding prediction approaches are challenging to 
adapt for sex-aware drug repurposing. First, data min-
ing approaches typically require large amounts of bal-
anced data, equal male and female data points. However, 
several databases are not balanced. For example, the UK 
biobank is more female-biased (as of 2021: ~ 273,000 
females and males 229,00) while GTEx is more male-
biased (v8 release: 636 males and 312 females) [22, 160, 
161]. In addition, retroactive studies should consider 
using downsampling techniques because older clini-
cal trials did not require female subjects, biasing clinical 
studies toward male subjects [20]. For basic biomedical 
research data, human samples are slightly female-biased 
(52.1%) while mice samples are male-biased (62.5%) 
[162]. Furthermore, this bias varies between different 
biomedical research disciplines with reproductive studies 
having more female-only studies while pharmacology has 
more male-specific studies [163]. Also, studies have his-
torically failed to report the sex for their samples [162]. 
Therefore, future studies should carefully consider what 
datasets are being used and apply methods to overcome 
disproportional datasets to create sex-aware data mining 
approaches.

Ligand-target binding prediction methods could also 
be difficult to adjust for sex differences. Several studies 
have identified that sex differences can be due to gene 
regulatory and hormone signaling [22, 151]. Therefore, 
ligand-target binding prediction, a method that only 
evaluates how a ligand and target interacts, does not 
traditionally consider how other influences such as 
hormones will affect the ligand-target binding interac-
tion [164, 151]. This is also a limitation for experimen-
tal target binding assays, too. However, one potential 
avenue is to compare structures of drugs with known 
sex-bias responses to identify drugs with potential 
for sex-bias drug responses. This sex-aware approach 
is similar to Vilar et  al.’s approach, which compares 
drugs’ structures with known adverse events to iden-
tify drugs with potential for adverse events [165]. For 
molecular docking, future researchers should consider 
the expression of drug targets between the sexes. For 
example, if a target is highly expressed in one sex but 
not the other, a drug candidate from molecular dock-
ing methods might be only therapeutic in one sex. 
Also, ligand-target binding prediction methods should 
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evaluate if the drug target might be in sex-bias sub-
networks, influenced by sex-bias transcription factors, 
or regulated by sex hormones. Ideally, the develop-
ment of ligand-target methods that considers all of 
these factors before predicting candidates would be 
the most useful tool for sex-aware drug repurpos-
ing. Overall, the current methods are not sufficiently 
developed for sex-aware drug repurposing, but they 
have the potential.

Challenges and proposed solutions for using model 
systems for sex‑aware drug repurposing
Several challenges exist across basic, translational, and 
clinical research in assessing sex as a biological variable 
(SABV) in in  vitro, in  vivo, and in silico model systems 
(Fig.  2). These challenges impact sex-aware drug repur-
posing because these models are critical for identifying 
and validating drug repurposing candidates. Here we 
discuss the challenges and proposed solutions for these 
model systems.

The genomic basis of sexual differentiation is a con-
founding factor for all in vitro, in vivo, and in silico model 

Fig. 2 Proposed solutions to sex-aware drug repurposing challenges. Teal arrows are connected to cell lines models. Purple arrows are connected 
to preclinical models. Orange arrows are connected to clinical trials. Pink arrows are connected to databases
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systems. Sex chromosomes experience lower accu-
racy than autosomes for genotype arrays because of the 
homologous regions between the X and Y chromosomes 
[33]. Many previous GWAS studies that determined 
SNPs from genotyping assays removed sex chromosomes 
from their analysis [166]. This resulted in an underrep-
resentation of SNPs from sex chromosome regions in 
analyses [166]. Therefore, GWAS studies including sex 
chromsome SNPS due to improved genotyping arrays 
and analyses are needed to determine the influence of 
sex chromosomes. Additionally, several studies have 
also demonstrated poor mapping quality of sequenc-
ing data and bias from homologous regions between 
the sex chromosomes, reducing the ability to detect sex 
chromosome DNA variation and gene expression accu-
rately [33]. However, approaches are now being used 
to remedy these issues. For example, XYalign, a bioin-
formatics framework, can be applied to next-genera-
tion sequencing data to appropriately account for the 
sequence homology between the X and Y chromosome 
by inferring the sex chromosome ploidy of a sample and 
remapping the sequencing reads to the sex complement 
of the sample [167]. Another approach creates sex-spe-
cific reference genomes for sequencing read alignment 
[168]. This approach has been shown to result in more 
accurate read alignment for both traditional aligners (i.e., 
STAR, HISAT) and pseudo-aligners (i.e., Salmon) [168]. 
Correct alignment is important for DNA variants on the 
sex chromosomes because, for example, the CTPS2 and 
DLG3 X chromosome genes are known to cause differ-
ences in drug response ([169]. Further, the expression of 
these genes are correlated to the sensitivity of both plati-
nating agents carboplatin and cisplatin [169].

In vitro cell line models are important to drug repur-
posing because many drug screens and validation experi-
ments use these models for testing the efficacy and 
toxicity of drug repurposing candidates. However, some 
cell lines become “de-sexualized” after losing a Y chro-
mosome, in the case of male cell lines, or the loss of an X 
chromosome, in the case of female cell lines [170]. Addi-
tionally, after several passages (the number of times a cell 
line cultured has been harvested and reseeded), female 
iPSCs will frequently undergo inactive X erosion from 
loss of XIST expression (the long coding RNA that causes 
X inactivation) and reactivate expression of silenced 
genes on the inactive X chromosome, a process known as 
inactive X erosion [171]. Researchers can validate the sex 
of in vitro models to make their results more rigorous by 
considering SABV in cell lines. Overall, this will improve 
experimental drug repurposing screens’ ability to predict 
and validate effective and safe candidates.

Additionally, genetic and hormonal sex differences 
are also difficult to account for in  vivo animal models 

as these can vary across organisms [172]. While there 
are several benefits to in vivo models such as the ability 
to test hypotheses in dynamic biological systems, ani-
mal models are still not perfect mimics of human biol-
ogy. For instance, most animals do not follow the same 
sex determination as mammals [172]. For example, in 
the Drosophila genus of flies, XX, XXY, and XXYY flies 
are female; while XY and XO flies are male [173]. In flies, 
The Y chromosome does not impact sex determination 
and both X chromosomes remain active [173]. Another 
widely used model organism, C. elegans, has XX her-
maphrodites and XO males [173]. In addition, zebrafish 
have several different loci across the genome that deter-
mines sex [174]. Overall, all of these model organisms 
have been used in drug screens for drug repurposing 
candidates, but future studies can further investigate how 
sex difference for model organisms compare to human 
sex differences [175, 176, 177].

Another challenge for in vivo models is sex differences 
in human phenotypes might not be present in a given 
model organism. For example, the longevity between 
males and females varies significantly between species 
and human females, similar to yellow baboons, tend 
to live longer [178]. Mice, a common model organism 
in biomedical research, also demonstrate variations in 
longevity [179]. For some mouse strains, the males live 
longer (ie., 129S1, NOD.B10, and NZW), but in others 
the females live longer (ie., B10 and P) [179]. However, 
if mouse strains are pooled together, mice do not show 
a sex difference in longevity [179]. Another considera-
tion is hormone differences between humans and model 
organisms. One study compared rats, mice, and humans 
by measuring sex hormone levels at different points in 
development [180]. They found that these sex hormones 
peak at different developmental stages for each organ-
ism [180]. Also, rodents have estrous cycles in which 
the uterine lining is reabsorbed instead of removed, 
such as in the menstrual cycle in human females [181]. 
At a later age (around 9–12  months), the estrous cycle 
becomes irregular and acyclic, similar to human meno-
pause, but there is evidence of mature ovulatory folli-
cles, neo-oogenesis, and no extreme decline of estrogen 
levels in rodents [181]. The lack of mature follicles and 
the significant decline of estrogen levels are hallmarks 
of human menopause [181]. Currently, there are three 
different rodent models for menopause, including the 
ovary-intact model to investigate the aging hypotha-
lamic-pituitary–gonadal axis, ovariectomy, and the use of 
4-vinylcyclohexene diepoxide, which reduces the fertility 
in rodents, mimics the transitional menopause in humans 
[181]. Overall, how well model organisms reflect sex dif-
ferences in humans across different contexts needs fur-
ther investigation. For example, a recent study suggested 
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that sex-bias gene expression in the proximal tubule cells 
of kidney in humans did not match sex-bias gene expres-
sion in mouse proximal tubule cells [182]. With the kid-
ney being an important organ for drug metabolism, this 
finding can have a major implication for the modeling of 
drug responses in mice.

In vivo animal studies have historically excluded female 
animals from many study designs, resulting in less female 
data [183]. For example, in publicly available gene expres-
sion data (RNA-Seq and Microarray), 62.5% of labeled 
mice gene expression samples are male [162]. Stated 
reasons for excluding female animal models include the 
perceived need to account for the estrous cycle in female 
rodents, increase sample sizes of female subjects for sta-
tistical power, and increased time and costs associated 
with these factors [164, 184, 185,  186]. Recently, stud-
ies have reported that hormonal fluctuations in animal 
models do not necessarily lead to increased variability 
in results for either of the sexes [164, 184–186]. There-
fore, well-powered studies can be designed with minimal 
increase in sample sizes (i.e., 14–33%) that still observe 
the effects of and interactions between two independ-
ent variables [187]. Studies can do this by employing 
factorial study designs which utilize a 2-way analysis of 
variance (ANOVA) to discern outcomes due to sex dif-
ferences from those that result from experimentation 
[183, 187, 188, 189]. Another approach to further under-
stand the impact of sex chromosomes compared to hor-
mones in mice models is the use of designed studies with 
models that can discern the effects of sex chromosomes 
from those of gonadal hormones. For example, hormonal 
influences can be minimized by using functionally gona-
dectomized mice, such as the Sf1 knockout mouse [190, 
191], sex hormone receptor knockout mouce [192, 193], 
or the four-core genotypes model [191, 194, 195]. In this 
model, the Sry gene is moved from the Y chromosome to 
an autosome to generate four genotypes: XXF (XX mice 
with ovaries), XXM (XX mice with testes), XYF (XY mice 
with ovaries), and XYM (XY mice with testes) [191, 194, 
195]. Not only does this allow for observation of gonadal 
hormone effects separately from sex chromosome effects, 
but it also identifies sex chromosome influences on non-
gonadal tissues [191]. In the future, in  vivo studies can 
incorporate other factors such as development/aging and 
reproductive events (i.e., puberty, pregnancy, and meno-
pause). These events have hormone fluctuations that can 
also impact sex-bias transcriptomic regulation and drug 
responses [19, 196].

The biological impact of sex extends also to impacts 
on in silico modeling of biological systems. The exclu-
sion of female animals in preclinical studies [183] and the 
low enrollment of female patients in clinical trials [197, 
198] have led to a decrease in data for female subjects 

and underpowered statistical results for retrospective 
analyses desegregated by sex [183]. There are also the 
problems of underreporting (not including the distribu-
tion of sex across samples) and pooling (acknowledging 
that both sexes were used in the study but the study did 
not analyze data for the impact of sex) [184, 199]. With 
the recent implementation of NIH’s SABV policy in 2016, 
underreporting of sex has decreased between 2009 and 
2019 from 16 to 6% in biomedical research articles [163]. 
However, sample pooling is still common in studies with 
both male and female samples (42% in 2019 and 50% in 
2009) [163]. Both underreporting and pooling reduce the 
reproducibility and transparency of scientific research 
because it masks biological differences between the sexes 
[184, 199]. This leads to data accuracy issues and misin-
terpretation of the results from the study [184, 199]. With 
genomic data, there are ways to infer sex if the study does 
not report them. Researchers can identify the ploidy of 
the X chromosome or develop sex marker sequences 
from sex chromosome nucleotide sequences [167, 200]. 
Another method developed by Fylnn et al. identified the 
sex of a sample by the use of an elastic net machine learn-
ing classifier [162]. This classifier had an accuracy of 91% 
in microarray and 88% in RNA-seq human gene expres-
sion data [162]. With sufficiently powered data from both 
male and female subjects across basic, translational, and 
clinical research, increased quality data will improve in 
silico models and thus the precision and efficacy of sex-
aware drug repurposing approaches.

Perspectives and significance
We envision sex-aware drug repurposing as a standard 
analysis used in drug repurposing research due to the 
overwhelming evidence that sex is important for drug 
response. Even if a disease does not show a known sex 
difference, the variation of drug responses between the 
sexes warrants investigations of SBAEs and drugs that 
might have sex-specific therapeutic effects. While sev-
eral drug repurposing strategies attempt to find drug 
candidates without the influence of sex, sex-aware drug 
repurposing identifies drug candidates that will have dif-
ferential effects between the sexes by either having vari-
ations in therapeutic effects between the sexes or cause 
an adverse event in one sex (i.e., SBAEs). In this review, 
we highlight several FDA-approved drugs and drug can-
didates that have different therapeutic effects, such as the 
BET inhibitor drug candidate for GBM [150]. A poten-
tial impact of sex-aware drug repurposing (and sex-aware 
drug discovery not discussed in this review) would be 
more drugs being approved for only one sex for non-sex-
specific conditions due to the difference in therapeutic 
effectiveness or to avoid an adverse event. Several drugs 
are only FDA-approved for a condition that occurs in one 
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sex (i.e., ovarian or testicular cancer), but in 2019, an HIV 
prevention medication, Descovy, was approved for cis-
gender men and transgender women due to a large clini-
cal trial with just cisgender men and transgender women 
[201]. While there is justified criticism for the approval 
of a drug for a specific gender/sex due to the underrepre-
sentation of females in a clinical trial, this case highlights 
that the FDA can approve drugs in a sex and gender-
specific manner even though the condition is not sex or 
gender-specific [201]. Another future consequence of 
sex-aware drug repurposing is the practice of adjusting 
dosage based on sex-specific pharmacokinetic or phar-
macodynamics, as suggested for the FDA Ambien exam-
ple discussed earlier [51]. We believe as sex-aware drug 
repurposing expands and develops that (1) there should 
be standards or guidelines for doctors to aid in differen-
tiating prescriptions between the sexes, (2) drug manu-
facturers should inform clinicians about sex differences 
on dosage, efficacious, and side effects, and (3) govern-
ment agencies like the FDA should require SBAEs and 
sex-specific dosage be on labels and information packets 
for patients. Currently, many government agencies are 
encouraging these changes to happen [202, 203]. Finally, 
we hypothesize that the development of sex-aware drug 
repurposing methods is the first step in improving drug 
repurposing and drug discovery methods.

Conclusion
Here we described sex-aware drug repurposing and 
discussed the challenges and future of sex-aware drug 
repurposing. Drug repurposing is a valuable method for 
identifying drug candidates for FDA approval because 
of its ability to prioritize efficacious drug candidates at a 
reduced cost compared to traditional drug discovery [1, 
83]. However, various drugs have male and female-bias 
responses and adverse events [14, 49]. This variation in 
drug response arises because of various sex differences 
in genetic, epigenetic, hormonal, immunological, meta-
bolic, and environmental factors [33]. Several compu-
tational drug repurposing approaches exist or are being 
developed to identify or prioritize drug candidates for 
both sexes [7, 11, 17, 25, 149, 150, 152, 155]. This can lead 
to improved therapeutic options and prevent adverse 
events for patients. In addition, these drug candidates 
could provide novel insights into disease manifestation, 
progression, and underlying mechanisms. This can be 
beneficial to understanding and treating diseases, such 
as in the case of the BET inhibitor for GBM discussed 
[150]. Unfortunately, the validation of these drug candi-
dates is limited by existing preclinical models [162, 184]. 
Therefore, in line with NIH policy, future studies should 
routinely investigate how including sex as a biological 
variable influences study design.

There is an urgent need to address the following: (1) 
the lack of balanced data to develop accurate models for 
sex-aware drug repurposing, (2) the need for a variety of 
improved sex-aware drug repurposing methods, and (3) 
the scarcity of studies relating to sex differences and vari-
ation in drug response between the sexes. Increased rep-
resentation of females in biomedical research and clinical 
trials through balanced sex studies or female-only stud-
ies is needed to improve drug repurposing approaches. 
While some methods are available to overcome limited 
datasets [7, 11, 17, 25, 149, 150, 152, 155], ultimately sta-
tistically powered datasets provide more accurate mod-
eling and predictions. Furthermore, one of the sex-aware 
drug repurposing methods that investigated pharma-
cokinetic sex differences (i.e., Zucker and Prendergast) 
did not find many male-bias adverse events based on 
pharmacokinetics [14]. We hypothesize that male-bias 
adverse events due to pharmacokinetics have already 
been addressed in the early phases of clinical trials due to 
males being the majority of subjects. However, due to the 
underrepresentation of female subjects, pharmacokinetic 
sex differences are not identified in early clinical stud-
ies, which might be the reason the Zucker and Prender-
gast study only identified female-biased adverse events. 
This highlights the importance of sex-balanced studies 
and clinical trials. In addition, the current methods are 
inadequate for exploring sex-aware drug repurposing 
and have performance limitations due to the data types 
used. Also, while sex-aware methods for data mining and 
molecular association approaches have been developed, 
there is a lack of sex-aware drug repurposing approaches 
that apply ligand-target binding prediction and network 
methods. The development of novel approaches is cru-
cial for identifying future drug repurposing candidates 
for both sexes. In addition, the field needs sex-aware drug 
repurposing approaches for different omics data such as 
epigenetics, metabolomics, etc., which have been ben-
eficial in other drug repurposing methods that do not 
consider sex [87, 114]. The current sex-aware methods 
are biased towards clinical, genomic, and transcriptomic 
input data. Lastly, there is a need for more studies that 
focus on sex differences across all diseases (if the dis-
ease occurs in both sexes). Even five years after the US 
National Institutes of Health required studies to consider 
sex as a biological variable, there are still many under-
studied aspects surrounding sex differences and how they 
affect drug response [163, 204]. The information about 
sex differences could inspire and improve drug repurpos-
ing methods in the future.

Upon reflection, one promising sign that sex-aware 
methods will improve the field of drug repurposing is 
how tissue-aware drug repurposing has improved the 
field. While sex is an essential factor in drug response, 
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other factors such as tissue differences, aging, develop-
ment, race, social, and environmental factors are also 
important to consider for drug repurposing methods. For 
example, a study investigated tissue-specific genetic fea-
tures of drug target genes (i.e., tissue specificity of gene 
expression, Mendelian association, phenotype, and tis-
sue-level effects of genome-wide associations loci driven 
by eQTLs, and genetic constraint) [16]. They discovered 
that these tissue-specific features resulted in a 2.6 more 
significant risk of side effects, and drug development 
and repurposing studies could use these tissue-specific 
genetic features to help evaluate drugs [16]. Overall, the 
use of tissue-specific gene expression improved drug 
safety and efficacy predictions in multiple studies [16, 
205]. This indicates that as drug repurposing expands to 
account for sex differences, drug safety and efficacy pre-
dictions will also improve for both sexes.

In conclusion, the development of sex-aware drug 
repurposing methods is essential but challenging due to 
the understudied complexity of sex differences. We rec-
ognize these challenges for sex-aware drug repurposing, 
but its potential for biomedical research and patient care 
outweighs the difficulties. In the future, sex-aware drug 
repurposing will identify safer and more efficacious drug 
candidates for both males and females.
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