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Abstract: A COVID-19 diagnosis is primarily determined by RT-PCR or rapid lateral-flow testing,
although chest imaging has been shown to detect manifestations of the virus. This article reviews the
role of imaging (CT and X-ray), in the diagnosis of COVID-19, focusing on the published studies that
have applied artificial intelligence with the purpose of detecting COVID-19 or reaching a differential
diagnosis between various respiratory infections. In this study, ArXiv, MedRxiv, PubMed, and Google
Scholar were searched for studies using the criteria terms ‘deep learning’, ‘artificial intelligence’,
‘medical imaging’, ‘COVID-19’ and ‘SARS-CoV-2’. The identified studies were assessed using a
modified version of the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD). Twenty studies fulfilled the inclusion criteria for this review. Out
of those selected, 11 papers evaluated the use of artificial intelligence (AI) for chest X-ray and 12 for
CT. The size of datasets ranged from 239 to 19,250 images, with sensitivities, specificities and AUCs
ranging from 0.789–1.00, 0.843–1.00 and 0.850–1.00. While AI demonstrates excellent diagnostic
potential, broader application of this method is hindered by the lack of relevant comparators in
studies, sufficiently sized datasets, and independent testing.

Keywords: artificial intelligence; deep learning; medical imaging; SARS-CoV-2

1. Introduction

Coronaviruses are a group of RNA viruses that give rise to respiratory-tract and
intestinal infections [1]. Gaining high pathogenic status during the severe acute respiratory
syndrome (SARS-CoV) outbreak in 2002–2003, a new coronavirus emerged in Wuhan,
Hubei province, China in December 2019 [2]. The virus was named ‘COVID-19’ or ‘SARS-
CoV-2” and as a result of its rapid spread, was declared a pandemic by the World Health
Organization (WHO) in March 2020 [3]. As of 3 January 2022, there have been a total
of 291,721,552 cases worldwide, which is increasing at a steady rate each day [4]. The
most commonly used diagnostic test is the nasopharyngeal swab for reverse-transcriptase
polymerase chain reaction (RT-PCR). However, RT-PCR has lower than optimal sensitivity
rates. At day 1, RT-PCR has a false-negative rate of 100%; by day 4 it lowers to a rate of
67% and reaches 38% by the time of symptom onset [5]. More recently, as mass testing
has emerged, rapid lateral-flow tests have been used to detect COVID-19. The sensitivity
of these tests is dependent on the skill of the individual performing the test: laboratory
scientists perform with a sensitivity of 79%; in self-trained members of the public, this level
is 58% [6].

It is pivotal that a diagnostic test demonstrates a high sensitivity rate, particularly
for COVID-19, so that the infected individual is directed to self-isolate, thereby reducing
transmission [7]. At present, the RT-PCR testing method is the only approved method to
detect the COVID-19 disease [8]. It has been reported that medical imaging can be used to
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deliver a fast and accurate diagnosis in suspected COVID-19 patients. While it would not
be practical to image everyone in the general population, it would be particularly useful
for those seeking health-care services. This would allow for the rapid determination of the
infection status of each patient, thereby directing their isolation protocol.

Both computed tomography (CT) and X-ray of the chest are routinely used for the
diagnosis of a range of respiratory conditions, especially pneumonia. Chest X-rays are
a quick diagnostic tool for respiratory conditions and are routinely used in emergency
medicine, yielding a quick visualization of pathology. The portability of the imaging
equipment makes this favorable, particularly in severe infections. CT is more sensitive
in most settings, as well as reliable and fast, but more expensive and involves a higher
radiation dose. CT has proven to be a useful tool for the imaging of COVID-19, allowing for
the immediate detection of COVID-19. Characteristic imaging features of COVID-19 include
peripheral ground-glass opacities (GGO) and multi-lobe consolidation [9]. Medical imaging,
chest CT and X-ray have demonstrated significant success in detecting COVID-19 [10].
However, the COVID-19 pandemic has also highlighted how the health-care systems in
many countries are under immense pressure and face many challenges, including a lack of
trained radiologists. Thus, automated image analysis using artificial intelligence (AI) has
been the focus of many studies published during this pandemic.

Prior to the pandemic, the use of AI in medical imaging had been rapidly evolving,
i.e., in the past 10 years publications on AI in radiology have risen from around 100 per year
to more than 700 per year. The ‘AI’ terminology is applied when a device mimics our own
cognitive function, potentially minimizing the need for human intelligence or interaction
in specific tasks. Within the field of medical imaging, deep learning has been rapidly and
broadly applied using artificial neural networks to decode imaging data [11]. Learning
can be unsupervised, whereby the algorithm will find patterns in unlabeled data, whereas
supervised learning utilizes labels to aid in classification [12].

Deep learning (DL) is a subset of machine learning. It comprises multiple neural-
network layers to extract higher-level features from the raw input. For instance, lower
layers may identify edges and lines and higher layers identify more specialized features.
The input into each layer successively utilizes the output of its preceding layer [13]. A
specific subset of DL is explored in this review, i.e., convoluted neural networks (CNNs).
A CNN can be trained to analyze information held within an image, and is thus built to
process, segment, and consequently classify the image.

The purpose of this paper is to review and evaluate the published literature on the
diagnostic performance of deep learning, i.e., CNNs, in medical imaging for COVID-19.

2. Materials and Methods

The following databases were searched: ArXiv, Google Scholar, MedRix and PubMed;
all were searched up to the date of 5 April 2021. To extract the relevant articles on AI
and COVID-19, the following search criteria were applied: ‘deep learning’, ‘artificial
intelligence’, ‘medical imaging’, ‘COVID-19’ and ‘SARS-CoV-2’. As the publication tradition
within the field of AI differs slightly from the traditional medical literature, the inclusion
of non-peer reviewed articles from these databases was also allowed. Out of the articles
found, only those that explored the use of AI with either CT or chest X-ray were selected
for review. Out of these, it was assessed whether a DL algorithm was used.

From each of the papers the following data were extracted: the number of datasets
used for training and validation, the proportion of COVID-19 scans within the dataset as
well as the sensitivity, specificity, and AUC of the proposed method. It was also noted
whether the datasets and model code were publicly available. The studies were then
categorized by imaging modality: CT or chest X-ray. Only articles containing datasets with
more than 100 images of confirmed cases of COVID-19 were included.
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As an official framework with which to assess AI studies is yet to be published, each
study in this review was assessed using a modified version of the Transparent Reporting
of a Multivariable Prediction Model (TRIPOD) [14]. This reporting statement allows for
the reporting of studies that develop, validate, or update a predictive model for diagnostic
or prognostic purposes. The TRIPOD assesses the quality of the study in 6 areas (title
and abstract, introduction, methods, results, discussion, other information). This includes
adequate reporting of the study context, purpose (e.g., validation or development), source
of data, information about participants, sample size, handling of missing data, and statis-
tical analysis. Further, the adequate reporting of model development, performance and
validation as well as limitations and study fundings are assessed.

The modified TRIPOD statement used in this review assesses 12 of 22 items that are
most relevant to AI studies [15]. This modified statement applied the following: title,
background and objectives, source of data, participants, outcome, sample size, participants,
model performance, interpretation, implications, supplementary material, and funding.
The outcome is summarized in Tables 1 and 2.

In addition to the TRIPOD assessment, an additional clinical-relevance score was
applied to all the included studies [16]:

1. Clinical relevance uncertain.
2. Potentially clinically relevant but not evaluated against a relevant comparator and

lacks independent testing.
3. Potentially clinically relevant and has demonstrated value against a relevant compara-

tor but lacks independent testing.
4. Potentially clinically relevant and has demonstrated value against a relevant compara-

tor and has been independently tested.
5. 1–4 fulfilled and ready for implementation.

Only papers with a score of 2 or higher were included in this study.
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Table 1. Modified TRIPOD assessment of X-ray studies.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[17] 2020
United
States of
America

Case
control

Detection
of
COVID-19
from X-ray

Training: 103 COVID-19 images
(GitHub COVID image dataset), :
500 non-COVID but pathological,
500 normal (Kaggle RSNA
Pneumonia Detection Challenge
dataset).
Validation:
10 COVID-19, 10 pneumonia,
10 normal (Veteran’s
administration)

X-ray pre-
annotated by
Radiogra-
pher

No Cross-
validation Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
Chest X-ray.

2 Not
disclosed

[7] 2020
United
States of
America

Case
control

Detection
of
COVID-19
from X-ray

Training: 4698, Validation 523,
Testing 580.
269 of the images COVID-19
(GitHub COVID image dataset),
3949 non-COVID pneumonia, :
1583 normal.

X-ray pre-
annotated by
Radiogra-
pher

No K-fold cross-
validation No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2
No
external
funding

[18] 2020 Israel Retros-
pective

Detection
of
COVID-19
from X-ray

Training: 2076
Testing: 350

X-ray
annotated by
Radiogra-
pher and
positive
RT-PCR test.

No Cross-
validation No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from a
portable chest
X-ray.

2 Not
disclosed

[19] 2020
United
States of
America

Case
control

Detection
of
COVID-19
from X-ray

Training: 6324, Validation: 1574, Test
1970.
34% of images healthy, 28%
non-COVID viral, 27% bacterial, 5%
COVID-19, 4% TB.

X-ray pre-
annotated by
Radiogra-
pher

No Cross-
validation No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2
No
external
funding

[20] 2020
United
States of
America

Retros-
pective

Detection
of
COVID-19
from X-ray

COVID = 455 (Cohen, 2020)
Normal = 532
Bacterial pneumonia = 492
Viral non-COVID pneu-
monia = 552 (Kaggle RSNA
Pneumonia Detection Challenge
dataset)
Split 75 training 25 validation

X-ray
annotated by
Radiogra-
pher

No
Epoch K-fold
cross-
validation

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from a
portable chest
X-ray.

2
No
external
funding
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Table 1. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[10] 2020 Bangladesh Case
control

Detection
of
COVID-19
from X-ray

Training: 17,749, of which :
232 COVID-19.
Validation: 1501, of which
51 COVID-19 positive.
Dataset (GitHub Dr Cohen, RSNA
pneumonia detection Kaggle,
COVIDx).

X-ray pre-
annotated by
Radiogra-
pher

No
K-fold cross-
validation
(10-fold).

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2
No
external
funding

[21] 2020
United
States of
America

Retros-
pective

Detection
of
COVID-19
from X-ray

Training and Testing split 75:25
randomly.
In total:
455 = COVID-19 positive (GitHub
Dr Cohen, Kaggle).
532 = Normal.
492 = Bacterial pneumonia.
552 = Non-COVID viral pneumonia.

X-ray pre-
annotated by
Radiogra-
pher and/or
a positive
RT-PCR test.

No
K-fold cross-
validation
(5-fold).

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from a
portable chest
X-ray.

2
No
external
funding

[22] 2020 Brazil Case
control

Detection
of
COVID-19
from X-ray

Training: 5715
Validation: 653
6309 images in total.
Non-COVID (Kaggle RSNA
Pneumonia Detection Challenge
dataset)
COVID-19 (25 GitHub Dr Cohen),
180 Societa Italiana di Radiologia
Medica, 248 Peshmerga Hospital
Erbil.

Positive
RT-PCR. No

K-fold Cross-
validation
(10-fold)

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray and a
full clinical his-
tory/examination.

2
No
external
funding

[23] 2020 Turkey Case
control

Detection
of
COVID-19
from X-ray

Training: 80%
Validation: 20%
125 COVID-19 (GitHub Dr Cohen),
500 normal,
500 pneumonias (chestX-ray8)

X-ray in
recovered
patients, pre-
annotated by
Radiogra-
pher.

No
K-fold Cross-
validation
(5-fold)

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2 Not
disclosed
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Table 1. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[8] 2020 Japan Case
control

Detection
of
COVID-19
from X-ray

Training: 410 COVID-19 (GitHub,
Dr Cohen), 500 non-COVID (NIH,
ChexPert)
Validation: 62 COVID-19,

X-ray pre-
annotated by
Radiogra-
pher

No
K-fold Cross-
validation
(10-fold)

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2
No
external
funding

[24] 2020
United
States of
America

Case
control

Detection
of
COVID-19
from X-ray

Training: 84 COVID-19
(Radiopaedia, Societa Italiana di
Radiologia Medica, GitHub Dr
Cohen), 83 Normal (Mooney et al.).
Testing: 25 COVID-19,
25 Normal.
Validation: 11 COVID-19,
11 Normal.

X-ray pre-
annotated by
Radiogra-
pher.

No Cross-
validation No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest X-ray.

2 Not
disclosed

Table 2. Modified TRIPOD assessment for CT studies.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[25] 2020
United
States of
America

Case
control

Detection of
COVID-19 from
chest CT, by
discriminating
between Ground
Glass Opacities in
COVID-19 and
Milliary
Tuberculosis.

606 COVID-19
303 Normal
(datasets not named)
Tested an external dataset:
112 images.

CT slides
pre-annotated
by
Radiographer

No Cross-
validation Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2

Veteran Affairs
Research Career
Scientist Award, VA
COVID Rapid
Response Support,
University of South
Florida Strategic
Investment
Program Fund,
Department of
Health, Simons
Foundation,
Microsoft and
Google.
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Table 2. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[26] 2020 China Case
control

Detection of
COVID-19 from
chest CT.

Training:
1210 COVID-19,
1985 Non-COVID.
Testing: 303 COVID-19,
495 Non-COVID.
All images from CC-CCII
(China Consortium of
chest CT Image).

CT slides pre-
annotated by
Radiographer

No
Epoch (200)
cross-
validation

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2 Not disclosed

[27] 2020 India Case
control

Detection of
COVID-19 from
chest CT.

Training: 1984
Testing: 497
2482 CT scans,
1252 COVID-19
(Kaggle—Eduardo), :
1230 for other pulmonary
disease

CT slides
pre-annotated
by
Radiographer

No
Epoch (30)
Cross
validation

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2 No external
funding

[9]

2021
(newest
ver-
sion)

Iran Case
control

Detection of
COVID-19 from
chest CT.

Training:
3023 Non-COVID, :
1773 COVID-19.
Validation: :
336 Non-COVID, :
190 COVID-19.
Testing: 744 Non-COVID,
3081 COVID-19.

CT slides
pre-annotated
by
Radiographer,
confirmed by
2 pulmonolo-
gists, correct
clinical
presentation,
positive
RT-PCR
report.

Yes, 4
experienced
radiologists.

Cross
validation Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

4 No external
funding

[28] 2020 China Case
control

Detection of
COVID-19 from
chest CT.

Training: 499 COVID-19
Validation: 131 COVID-19

CT slides
annotated by
Radiographer

No

(100
epoch’s)
cross
validation.

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2 No external
funding.
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Table 2. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[29] 2020
United
States of
America

Case
control

Detection of
COVID-19 from
chest CT.

Training: 657 COVID-19,
2628
Non-COVID.Validation:
120 COVID-19, :
477 Non-COVID.
Test: 266 COVID-19, :
1064 Non-COVID.
Mixed data obtained from
GitHub and private
Indian Hospital.

CT slides
annotated
based off
RT-PCR
reporting.

No

(50
epoch’s)
cross
validation

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2 Not disclosed

[30] 2020 China Case
control

Detection of
COVID-19 from
chest CT.

Training: 642 COVID-19,
674 Non-COVID.
Validation: :
124 COVID-19, :
181 Non-COVID.
Test: 154 COVID-19: :
218 Non-COVID.

CT slides
pre-annotated
by 2 Radiogra-
phers (with
30+ years
experience)

Yes, 8
radiologists
(4 from
COVID-19
hospitals, :
4 from
non-covid
hospitals).

Cross
Validation Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

4 Not disclosed

[31] 2020 Belgium Case
Cotnrol

Detection of
COVID-19 from
chest CT.

Training: 80%
Testing: 20%
(CHU Sart-Tilman, CHU
Notre Dame des
Bruyeres).

CT slides
annotated
based off
RT-PCR
reporting

No (restro-
spectively
assessed
radiologists
performance
but not
simultane-
ously with
the
algorithm).

K-Fold
cross-
validation
(10-fold).

No

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2

Interreg V-A
Euregio
Meuse-Rhine, ERC
grant, European
Marie Curie Grant.
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Table 2. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[32] 2020 South
Korea

Case
Control

Detection of
COVID-10 from
chest CT.

Training: 1194 COVID-19
(Wonkwang Hospital,
Chonnam Hospital,
Societa Italiana di
Radiologia Medica), :
2799 Non-COVID (inc.
pneumonia, normal lung,
lung cancer,
non-pneumonia
pathology—all from
Wonkwang Hospital)
External testing: :
264 COVID-19(images of
COVID-19 from recently
published papers)

CT slides
pre-annotated
by
Radiographer

No

K-Fold
cross-
validation
(5-fold).

Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2

National Research
Foundation of
Korea, Ministry of
Science, ICT and
Future Planning via
Basic Science
Research Program.

[33] 2020
United
States of
America

Case
Control

Detection of
COVID-19 from
chest CT.

Training: 526 COVID-19,
533 Non-COVID
Validation: :
177 COVID-19, :
151 Non-COVID.
Testing: 326 COVID-19,
1011
N0n-COVID.COVID-19
data from single lefts:
Hubei, 2 lefts in Milan,
Tokyo, Syracuse.
Non-COVID data: Lung
image database
consortium, Syracuse,
National institute of
health USA.

CT slides
annotated
based off
RT-PCR
reporting

No Cross
validation Yes

Machine-learning
algorithm can
diagnose cases of
COVID-19 from
chest CT.

2

NIH Centre for
Intervential
Oncology,
Intramural
Research Program
of the National
Institutes of Health
and the NIH
Intramural
Targeted
Anti-COVID-19
Program.
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Table 2. Cont.

Lead
Author Year Country Study

Type Aim Dataset Reference
Standard Comparator Validation External

Testing Main Findings CRS Funding

[34] 2020
United
States of
America.

Case
Control

Detection of
COVID-19 from
chest CT.

Training: 242 COVID-19,
292 Non-COVID.
Tuning: 43 COVID-19, :
49 Non-COVID.
Testing: 134 COVID-19,
145 Non-COVID.
All data obtained from :
18 medical lefts in :
12 provinces in China.

CT slides
annotated
based off
2 × RT-PCR
reporting.

Yes, 2
radiologists.

Cross
Validation No

Demographical
information (travel,
exposure, patient
age, sex, WBC
count and
symptoms)
combined with
output from
machine-learning
algorithm can
diagnose cases of
COVID-19.

3 US NIH grant.

[35] 2020 China Retrospective
Detection of
COVID-19 from
chest CT.

Training: 1294 COVID-19,
1969 Non-COVID.
Testing: 1235 COVID-19,
1964 Non-COVID.
External testing: :
2113 COVID-19, :
2861 Non-COVID.

CT slides
annotated by
5 radiogra-
phers.

Yes, 5
radiologists.

Cross
validation Yes Not disclosed. 4 Not disclosed
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3. Results
3.1. Study Selection

The electronic search resulted in 312 studies; when duplicates were removed, this
number became 309. A total of 192 studies were excluded as irrelevant based on the title and
abstract evaluation, and the remaining 117 papers were assessed in full for inclusion, from
which a further 94 were excluded (See Figure 1: PRISMA flow chart detailing exclusion
criteria). Once the evaluation was complete, 23 studies remained.
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3.2. General Characteristics

Tables 1 and 2 detail the general characteristics of all 23 studies included in this review,
and Tables 3 and 4 summarize the findings of the studies.
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Table 3. Summary of results from AI Studies for chest X-ray COVID-19 classification.

Author Dataset Deep Learning
Model 2D/3D All Data COVID

Data
Train
All/COVID

Validation
All/COVID

TestAll/-
COVID Sensitivity Specificity AUC Dataset Code URL

[17]

COVID-19/non-
COVID
pneumo-
nia/normal

Microsoft
CustomVision 2d 1000 500 970/474 30/10 / 100 95 / Public /

[7]

COVID-19/non-
COVID
infec-
tion/normal

AIDCOV using
VGG-16 2d 5801 269 4698 523 580 99.3 99.98 n/a Public /

[18] COVID-
19/normal RetNet50 2d 2427 360 2120/84 350/178 n/a 87.1 92.4 0.94 Institutional

dataset /

[20]

COVID-
19/viral
pneumo-
nia/normal

VGG-16 2d 1034 274 724/192 / 310/82 / / 0.9978 Public /

[19]
COVID-
19/viral/bacterial
pneumonia/TB

DenseNet-201 2d 9868 494 6234/(n/a) 1574/(n/a) 1970/125 94.62 / / Public /

[8] COVID/non-
COVID HRNet 2d 1410 410 n/a / 1410/410 98.53 98.52 Public /

[21]

COVID/bacterial
pneumo-
nia/viral
pneumo-
nia/normal

VGG-16 2d 2031 445 1523/334/ / 508/111 79.0 93 0.85 Public /

[10] COVID/non-
COVID Faster R-CNN 2d 19,250 283 17,749/232 / 1501/51 97.65 95.48 / Public /
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Table 3. Cont.

Author Dataset Deep Learning
Model 2D/3D All Data COVID

Data
Train
All/COVID

Validation
All/COVID

TestAll/-
COVID Sensitivity Specificity AUC Dataset Code URL

[22]

COVID-
19/bacterial and
viral pneumo-
nia/normal

IKONOS 2d 6320 464 / / 97.7 99.3 / Public

https:
//github.com/
Biomedical-
Computing-
UFPE/Ikonos-
X-Desktop

[32]
COVID-
19/pneumonia
/normal

DarkNet-19 2d 1125 125 900/100 / 225/25 95.13 95.3 / Public

https:
//github.com/
muhammedtalo/
COVID-19

[24] COVID-19/non
COVID-19

Residual Att
Net 2d 239 120 167/84 50/25 22/11 100 96 1 Public

https:
//github.com/
vishalshar/
COVID-19
-screening-
using-RAN-on-
Xray-images

Table 4. Summary of results from AI Studies for CT COVID-19 classification.

Author Dataset Deep Learning
Model

2D
/3D All Data COVID

Data
Train
All/COVID

Validation
All/COVID

Test
All/COVID Sensitivity Specificity AUC Dataset Code URL

[25]
COVID-19/non-
COVID
disease/normal

2d 904 606 2685/2116 / 34/34 97.06 / 0.9664 Institutional
dataset /

[26]

COVID-
19/common
pneumo-
nia/normal

MNas3DNet41 3d 3993 1515 3195/1213 / 798/302 86.09 93.15 0.957 Public /

https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/Biomedical-Computing-UFPE/Ikonos-X-Desktop
https://github.com/muhammedtalo/COVID-19
https://github.com/muhammedtalo/COVID-19
https://github.com/muhammedtalo/COVID-19
https://github.com/muhammedtalo/COVID-19
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
https://github.com/vishalshar/COVID-19-screening-using-RAN-on-Xray-images
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Table 4. Cont.

Author Dataset Deep Learning
Model

2D
/3D All Data COVID

Data
Train
All/COVID

Validation
All/COVID

Test
All/COVID Sensitivity Specificity AUC Dataset Code URL

[27]
COVID-19/non-
COVID-19
disease

GLCM 2d 2483 1252 1986/1002 / 497/250 / 98.77 0.987 Public /

[9]

COVID-19/non-
COVID
pathologi-
cal/normal

Ai-corona 2d 2121 720 1764/601 / 357/119 92.4 98.3 0.989 Institutional
dataset

https:
//ai-corona.com/

[28] COVID-
19/normal DeCoVNet 3d 630 630 499 / 131 90.7 91.1 0.976 Institutional

dataset

https://github.
com/sydney0zq/
COVID-19
-detection

[30] COVID/non-
COVID COVIDNet 2d 1993 920 1316/642 522/233 894/387 92.2 98.6 0.98 Institutional

dataset /

[31] COVID/non-
COVID RadiomiX 2d 1381 181 1104/145 / 276/36 78.94 91.09 0.9398 Institutional

dataset /

[32]
COVID-
19/bacterial/viral
pneumonia

FCONet ft
ResNet-50 2d 4257 1194 3194/955 / 1063/239 99.58 100 1 Institutional

dataset e /

[33] COVID-19/non
COVID-19 Densenet-121 3d 2724 1029 1059/526 328/177 1337/326 84.0 93.0 0.949 Mixed

https:
//ngc.nvidia.
com/catalog/
containers/
nvidia:clara:
ai-COVID-19

[34] COVID-19/non-
COVID-19

Inception-
ResNet-v2 3d 905 419 534/242 92/43 279/134 82.8 84.3 0.92 Institutional

dataset

https:
//github.com/
howchihlee/
COVID19_CT

https://ai-corona.com/
https://ai-corona.com/
https://github.com/sydney0zq/COVID-19-detection
https://github.com/sydney0zq/COVID-19-detection
https://github.com/sydney0zq/COVID-19-detection
https://github.com/sydney0zq/COVID-19-detection
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://ngc.nvidia.com/catalog/containers/nvidia:clara:ai-COVID-19
https://github.com/howchihlee/COVID19_CT
https://github.com/howchihlee/COVID19_CT
https://github.com/howchihlee/COVID19_CT
https://github.com/howchihlee/COVID19_CT
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Table 4. Cont.

Author Dataset Deep Learning
Model

2D
/3D All Data COVID

Data
Train
All/COVID

Validation
All/COVID

Test
All/COVID Sensitivity Specificity AUC Dataset Code URL

[35]

COVID-
19/viral
pneumo-
nia/bacterial
pneumo-
nia/influenza

OpenCovidDetector2d 11,356 3084 2688/751 / 6337/2333 87.03 96.60 0.9781 Public

https:
//github.com/
ChenWWWeixiang/
diagnosis_covid1
9

[29] COVID-19/non
COVID-19 U-Net 2d 5212

(slices) 275 3285/657 597/120 1330/266 96.3 93.6 / Public /

https://github.com/ChenWWWeixiang/diagnosis_covid19
https://github.com/ChenWWWeixiang/diagnosis_covid19
https://github.com/ChenWWWeixiang/diagnosis_covid19
https://github.com/ChenWWWeixiang/diagnosis_covid19
https://github.com/ChenWWWeixiang/diagnosis_covid19


Diagnostics 2022, 12, 869 16 of 22

All of the studies were retrospective case-control or cohort studies. The majority
were from the United States of America 10/23 (43%) and China 4/23 (17%). Other studies
were from: Bangladesh (1/23), Belgium (1/23), Brazil (1/23), India (1/23), Iran (1/23),
Israel (1/23), Japan (1/23), Korea (1/23) and Turkey (1/23). The majority of the studies
received no external funding (9/23), or it was not disclosed (9/23); for those studies that
did receive external funding, four were funded by national health bodies, and one was
commercially funded.

Out of the 23 studies, 22 shared some of the same datasets (Table 5) as well as the same
model structure (Table 6).

Table 5. The share of datasets amongst studies.

Dataset Name Study Used

Kaggle RSNA Pneumonia Detection challenge dataset [8,17]

NIH [33]

SUNY [33]

LIDC [33,35]

CC-CCII [35]

Tianchi-Alibaba [35]

MosMedData [35]

Cohen database [10,17,21]

Italian society of Medical and Interventional Radiology [32]

WKUH (Wonkwang University hospital) [32]

CNUH (Chonnam National University Hospital) [32]

COVID-19-CT-dataset [29]

MDH (MasihDaneshvari Hospital) [9]

Peshmerga Hospital Erbil [22]

Table 6. Deep learning methods (CNN) used across all studies.

Network Name Study Used

HRNetHRNet [8]

Microsoft CustomVisionMicrosoft
CustomVision [17]

GLCMGLCM [27]

ResNetResNet [18,24,32,34,35]

RadioMixRadioMix [31]

UNetUNet [28,29]

VGGVGG [7,10,20,21,24]

DenseNetDenseNet [19,26,30,33]

DarkNetDarkNet [23,25]

EfficientNetEfficientNet [9]



Diagnostics 2022, 12, 869 17 of 22

3.3. Aim and Methodology

All of the studies applied deep learning with image input for diagnosing COVID-19.
The studies could be further divided according to the following objectives:

1. The detection of and screening for COVID-19 (binary classification)
2. Forming a differential diagnosis between COVID-19 pneumonia and other viral or

bacterial pneumonia (multiclass classification).

Out of the 23 studies, 11/23 studies used a binary classification; of these, 2/23 char-
acterized COVID-19/normal and 9/23 characterized COVID-19/non-COVID. The remain-
ing 12 studies utilized multi-class classification, of which 5/23 characterized COVID-
19/bacterial pneumonia/viral pneumonia. The last 7/23 characterized COVID-19/non-
COVID infection/normal.

3.4. Reference Standard and Comparator

The reference standard for the studies was varied; 15/23 studies used a ground truth
label based on a radiologist’s annotation, 2/23 used RT-PCR test results to assign labels,
and 6/23 used a mix of both radiologist review and RT-PCR results.

Out of the 23 studies, four compared the performance of AI with a relevant comparator,
i.e., a radiologist with varying years of experience.

3.5. Validation and Testing

Validation methods are used to assess the robustness of a proposed model. Internal
validation utilizes data from the original training source and external validation tests the
performance of the model on a dataset from a new independent source. All studies applied
internal validation, where the dataset was split into two for training and testing. The
majority of the studies operated with a train-and-test format, dividing the dataset in two.
In addition, some studies performed k-fold cross validation. Out of the 23 studies, seven
studies performed external validation using an independent dataset.

3.6. Clinical Relevance and Main Findings

All 23 studies were scored using the previously mentioned clinical-relevance score.
The relevance score of 2 was the most common as most of the studies lacked a relevant
clinical comparator and only compared the AI performance against other algorithms.

Out of the 23, 11 studies used chest X-rays to assess for COVID-19; all the chest-X-ray
studies scored 2 in clinical relevance due to the lack of a relevant comparator, and 1/11 [17]
performed external validation in an independent dataset.

The remaining 12/23 studies assessed the use of chest CT, of which 4/12 ([9]) included
a relevant comparator. Therefore, four of the papers managed to score higher than 2 in
terms of the clinical-relevance score. Out of these four papers, three papers ([30]) were
allocated a score of 4 as they also included independent testing.

Studies using X-ray found overall good detection rates of GGO and lobular consolida-
tion to deduce a diagnosis of COVID-19. The studies demonstrated diagnostic accuracy,
with a sensitivity range of 79–100% and a specificity range of 92–99%. However, none of
the X-ray studies included a relevant comparator, so it cannot be assessed whether the
algorithm was on par with the diagnostic ability of a radiologist. Among the studies using
CT, four included a relevant comparator [9]. The results of these studies are described
below and in Table 7.

In the four studies that included a relevant comparator, the AI algorithm outperformed
the radiologist. Only [34] reported one incidence where the radiologist outperformed the
algorithm, i.e., the radiologist performed better at binary classification of pneumonia and
non-pneumonia. The average experience of the radiologists in these four studies ranged
from 6–11 years; the mean experience was 8.6 years. The use of an algorithm generally
demonstrated an increase in both the sensitivity and specificity.
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Table 7. Overview of AI and radiologist performance in studies with radiologist as comparator.

Study
AI Performance Radiologist Performance Additional

Information
Experience of the
RadiologistSensitivity Specificity Sensitivity Specificity

[9] 0.92 0.97 0.90 0.88

Time taken to assess
one image:
AI→2.02 s.
Radiologist→58.0 s.

4 radiologists,
average experience
9.25 years.

[30] 0.92 0.99 0.77 0.90
4 radiologists,
average experience
11.25 years.

[35] 0.98 0.91 0.96 0.72

Time taken to assess
one image:
AI→2.73 s.
Radiologist→390 s.
All 5 radiologists had a
n average of 8 years
experience.

5 radiologists,
average experience of
8 years.

[34] 0.84 0.83 0.75 0.94
2 radiologists,
average experience of
6 years.

Two studies [9] supplied information about the time taken for the algorithm to assess
a dataset/image versus that of the relevant comparator. Both studies reported much faster
evaluation times with the algorithm performing up to 142 times quicker than a human.

When assessing model performance between the two imaging modalities, calculating the
median and respective interquartile ranges, the performance of models using X-ray was more
consistent (see Figure 2, a boxplot demonstrating the smaller interquartile range). This may
be due to the ease of 2D image processing, and the lack of a requirement for segmentation
layers in the network or slice selection. The reporting of significant differences between the
performances of the model and the radiologist was only provided by [34], where there was no
reported significant difference for the model used in the study.
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4. Discussion

The aim of this study was to provide an overview and evaluation of the literature
published thus far on the utilization of AI on CT/chest-X-ray for the diagnosis of COVID-19.

The selected papers utilized deep-learning techniques with transfer learning, which
assisted in making up for small-dataset limitations. Those studies that utilized transfer-
learning methods were able to achieve high accuracies in diagnosis by employing previous
image-analysis algorithms. All studies were assessed for potential bias, scored for clinical
relevance, and evaluated using a modified TRIPOD assessment [15].

Compared to most AI studies in chest X-ray/CT, the datasets of those included in this
review had a significantly smaller population; the average pathological dataset (in this
case COVID-19 positive) for chest X-ray was: 340 images (range: 120–500, median: 360).
Similarly, for chest CT the average dataset size was: 985 images (range 181–3084, median:
820). With fewer data available, the algorithms may not be trained or tested as thoroughly
as in other AI studies. The average proportion of COVID-19 images in the datasets was
34%. This means that most of the dataset, 66%, is comprised of non/alternative-pathogenic
images. This can potentially overestimate the sensitivity and positive predictive value of
the algorithms as the proportion of positive cases in a typical clinical setting is likely to be
much smaller.

All the included studies were retrospective studies. There is a lack of prospective
testing, and no clinical trials were identified in the search. This is likely due to the recency
of the COVID-19 pandemic rather than the newness of DL, as clinical studies are more
prevalent in other applications of DL. One challenge that was common to all the studies was
the small datasets available. As COVID-19 has only been around since the later part of 2019,
there are relatively few images of COVID-19 patients available at individual institutions
and public databases. A few of the studies even used the same databases (Table 6). This
is a weakness, as the algorithms trained on a certain dataset may not be able to perform
equally well when applied to different data [36]. For example, when data comes from only
one demographic region, it may not perform as well on different demographics, which
emphasizes the need for independent testing. This risk of bias is further enhanced by the
lack of external validation among the papers reviewed.

Smaller datasets make it difficult to assess the reproducibility of the algorithm perfor-
mance. While some studies pooled data from several public datasets, this does decrease
transparency with regard to the origin and character of the image data. Another review
of the application of AI to diagnose COVID-19 reported that the high risk of bias in most
of their papers was a result of the small sample size of COVID-19 images [22]. However,
small datasets are not exclusive to AI studies in COVID-19; an AI study on pulmonary
nodules assessed an average sample size of images from only 186 patients [16].

Images included within the studies have been sourced from numerous public repos-
itories and taken from publications [32]. It is likely that these images show extreme and
interesting cases of COVID-19 that may be easier for the algorithm to detect. Further, in
several studies datasets were expanded via image augmentation and the formation of
iterations. Out of the 23 studies, only 6 performed independent testing with an external
dataset (26%). Performance in externally validated studies was calculated at an average
sensitivity and specificity of 93%. The average sensitivity and specificity in studies that
did not externally validate their model were 92% and 94%. Thus, the externally validated
models seem to work equally well on hitherto unseen data, which is reassuring. This lack
of external validation has also been reported in another recent review on the topic [37];
only 13/62 (20%) assessed their algorithms on independent datasets. High performance
in external testing proves that the model is generalizable to other patient populations,
and in its absence it is difficult to tell how the model will perform if transitioned into
clinical practice.

Yousefzadeh et al. performed external validation using data that the model had
previously classified into multiple classes, but rediverted the images into binary groups [9].
There was one example where the model’s generalizability was tested, whereby a dataset



Diagnostics 2022, 12, 869 20 of 22

of exclusively asymptotic patients was fed through the model. This selection of images was
far more likely to be representative of those found in the community [25], permitting sound
assessment of the model when reviewing images of less-extreme cases of COVID-19. The
validation of a model on a set of low-quality images from recently published papers was
also performed in order to assess the stability of the model [32], which could potentially be
used for machines of poorer quality or for images captured with poor resolution/contrast.

Most studies lacked a relevant comparator. In this instance, the relevant comparator is
not a PCR test, but a human comparator (i.e., radiologist) who is assessing the same image.
Studies omitting a human comparator can cause the performance of the AI model to appear
better than it is. Thus, it is important to contrast the performance of the new AI system to
current practice prior to implementation in order to assess how the model may best serve
in clinical practice. Only 5 of the 23 studies included a human comparator. With each study
there was a varying degree of experience of the radiologist, which consequently influenced
the degree of success the algorithm was perceived to have. Those with more experience
rivaled the performance of the AI more closely, whereas junior radiologists may inflate the
capability of the model. It is important for these studies to establish whether the machine
is made to aid trainees, non-experts, or specialists. The average reader experience in the
study by Mei et al. was just over 5 years senior to those in the paper by Liu et al., yet both
yielded similar diagnostic accuracies. This suggests that the experience of the radiologist
may not influence the ability to diagnose COVID-19, as it is a new pathology with new
disease manifestations.

Studies will often aim for their algorithm to outperform that of a radiologist; however,
it is important to note that an algorithm can still be of use even if it does not outperform
an experienced radiologist. AI can still be used to lower the clinical burden, performing
tasks with a similar accuracy at faster speeds. Studies by Yousefzadeh [9] and Jin [35]
both assessed the speed at which their algorithms could perform, and both were much
quicker than human analysis. In general, the included studies tended to pitch AI vs. human
interpretation when perhaps a synergistic approach would have yielded greater benefit.
Incorporating AI into a COVID-19 diagnosis could mean faster, more accurate diagnoses
that incorporate various pieces of clinical information.

There are several limitations to this review. Following a comprehensive search for
papers assessing the use of AI in reaching a COVID-19 diagnosis, it is possible that not all
papers were included. As all publications on COVID-19 are new and further studies are
published at a high speed, this review cannot claim to be up to date. In addition, a number
of the papers at the time of writing are still pre-prints.

This review highlights a number of biases present in the literature, e.g., small sample
size, potential for image duplication, differing image quality, extreme cases included in
dataset, as also discussed by Roberts [37], and these biases limit the ability to translate AI
into clinical practice.

As COVID-19 continues to pose a significant threat to health, more people are requiring
both screening and testing. RT-PCR remains the current ‘gold standard’ for diagnosis;
however, there are limitations in turnaround time, with test results taking anywhere
between 3 h and 72 h, depending on price paid or priority assigned to turnaround. Rapid
testing in the form of lateral-flow tests can bridge limitations in turnaround time and PCR
supply, but they are unreliable for a diagnosis in primary care. A diagnosis in health care
must be accurate in order to direct the isolation protocol and triage. AI programs have the
potential to serve as an accurate and rapid aid in diagnosis.

AI can be developed to analyze the same findings that experienced radiologists can
also extract. In addition, AI can also detect manifestations of disease that may not be
obvious to the human eye, in turn increasing the sensitivity of image review. Once the
limitations of small datasets, lack of relevant comparators and a clear standard reporting
have been overcome [16], the use of AI can be extended beyond just formulating a diagnosis,
it can also make predictions about the course and severity of the disease. Some of the AI
models can match similar presentations with those it has previously assessed and share
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information about the experience of the disease course and outcome. It is essential that
sensitivity rates of these AI models are high in all incidences in order to ensure there are no
false negatives, and that everyone needing to self-isolate is informed to do so. AI is also
able to monitor the long-term manifestations of lung diseases. If AI can be implemented
alongside ‘traditional’ methods of diagnosis, then perhaps faster, definitive, and accu-
rate instructions can be determined for self-isolation protocol and identifying patients at
high risk.

5. Conclusions

This review summarizes the published research on AI systems for COVID-19 detection
on CT and chest X-ray. The presented studies report promising results for the automated
diagnosis of COVID-19 by both modalities using deep-learning methods. However, while
AI shows a promising diagnostic potential, this area of research does suffer from small
datasets as well as the lack of a relevant clinical comparator and external validation, giving
rise to a high risk of bias that limits its transferability into clinical practice. Thus, future
research should include relevant clinical comparison and external validation in order to
increase the likelihood of new AI systems being deployed in fields that are of the greatest
benefit to patients.
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