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Waterfowl occurrence and 
residence time as indicators of H5 
and H7 avian influenza in North 
American poultry
John M. Humphreys  1,7*, Andrew M. Ramey2, David C. Douglas  2, Jennifer M. Mullinax3, 
Catherine Soos  4, Paul Link5, Patrick Walther6 & Diann J. prosser7

Avian influenza (AI) affects wild aquatic birds and poses hazards to human health, food security, and 
wildlife conservation globally. Accordingly, there is a recognized need for new methods and tools 
to help quantify the dynamic interaction between wild bird hosts and commercial poultry. Using 
satellite-marked waterfowl, we applied Bayesian joint hierarchical modeling to concurrently model 
species distributions, residency times, migration timing, and disease occurrence probability under 
an integrated animal movement and disease distribution modeling framework. Our results indicate 
that migratory waterfowl are positively related to AI occurrence over North America such that as 
waterfowl occurrence probability or residence time increase at a given location, so too does the chance 
of a commercial poultry AI outbreak. Analyses also suggest that AI occurrence probability is greatest 
during our observed waterfowl northward migration, and less during the southward migration. 
Methodologically, we found that when modeling disparate facets of disease systems at the wildlife-
agriculture interface, it is essential that multiscale spatial patterns be addressed to avoid mistakenly 
inferring a disease process or disease-environment relationship from a pattern evaluated at the 
improper spatial scale. The study offers important insights into migratory waterfowl ecology and AI 
disease dynamics that aid in better preparing for future outbreaks.

Avian influenza is a global concern and poses hazards to human health, food security, and wildlife conservation 
worldwide1,2. Domestic poultry operations are particularly vulnerable to avian influenza viruses maintained in 
wild bird hosts3–6 as the viruses may be spread to poultry7–10 via direct contact or by way of environmental con-
tamination. Once introduced into a poultry operation, avian influenza viruses of the H5 and H7 hemagglutinin 
subtype can rapidly propagate through commercial flocks and mutate to the Highly Pathogenic Avian Influenza 
(HPAI) pathotype with increased virulence1,11,12. HPAI outbreaks can inflict direct stock mortality or necessitate 
that culling protocols be implemented to minimize the risk of disease spread. In rare instances, control efforts 
may also reduce the spread of viruses potentially lethal to humans, as was shown for Goose Guangdong (GsGD) 
lineage HPAI H5N1 and H7N9 in China13,14.

Avian influenza viruses circulate among wild aquatic birds globally and taxa such as migratory waterfowl are 
considered to be natural biologic reservoirs15. Waterfowl are infected with varying virus subtypes, including those 
with the H5 and H7 hemagglutinin protein that have the potential to mutate to HPAI in poultry throughout the 
Neotropics and Nearctic16–19.

During 2014 and 2015, it appears migratory waterfowl contributed to the introduction of GsGD lineage HPAI 
H5 viruses into North America20–22 and subsequent spread in Canada and the U.S.23–26. This outbreak was the 
largest in U.S. history, affected wild and domestic birds in 21 U.S. States, resulted in the loss of approximately 50 
million poultry, and caused estimated losses of more than 3 billion US dollars27,28.
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To assess the potential role of migratory waterfowl in transporting HPAI viruses throughout central and east-
ern Asia, several studies have examined the spatial and temporal overlap of waterfowl movement trajectories or 
utilization distributions with disease occurrence locations, poultry facilities, and key waterfowl habitats3,29–33, 
however, there are a lack of comparable waterfowl movement studies investigating associations with avian influ-
enza outbreaks in the Western Hemisphere. Indeed, there is a recognized need for new methods and tools to help 
quantify the dynamic interaction between wild bird hosts and commercial poultry in North America34–36. To 
help address this knowledge gap, we developed a combined animal movement and disease distribution model to 
evaluate the spatiotemporal relationship of migratory waterfowl to H5 and H7 subtype avian influenza detections 
in commercial poultry (AIPs) within North America.

For this study, we define AIPs as being any documented outbreak or infection caused by H5 or H7 subtype 
avian influenza in commercial poultry. Our central objective was to leverage multi-year animal movement telem-
etry and poultry disease data to characterize intra-annual patterns within a complex disease system. To accom-
plish this task, we used satellite-marked blue-winged teal (Anas discors) as a representative sample of the larger 
North American dabbling duck population and applied Bayesian joint hierarchical modeling to concurrently 
model species distributions, residency times, migration timing, and AIP occurrence probability. Blue-winged 
teal were chosen as a representative waterfowl species due to their widespread distribution and suspected role in 
redistributing avian influenza viruses throughout breeding grounds in the U.S. Northern Great Plains and Canada 
and overwintering habitats in Mexico17, the Caribbean37, and Central and northern South America16,18,38. Because 
migratory behavior and habitat preferences can differ between duck species39, the selection of blue-winged teal 
as an archetypal dabbling duck species necessitates that several important caveats be considered. As examples, 
blue-winged teal have a tendency to start the spring migration later, undertake the fall migration earlier, and fly 
greater distances than other dabbling ducks40,41. These caveats are examined in the context of results’ interpreta-
tion in the closing discussion.

Essential to our proposed method was taking steps to ensure that spatial correlation between satellite-marked 
birds and AIP locations did not bias model results and that the inclusion of locally-abundant (clustered) AIP 
records did not inflate model estimates or predictions. AIP records that are aggregated in time or space may 
signify non-typical increases in disease incidence that offer special insight into the system’s ecology. Recognizing 
that disease clusters can be difficult to interpret and statistically problematic, we took steps to avoid mistakenly 
inferring a disease process or disease-environment relationship from a pattern evaluated at the improper spatial 
scale42,43. In the case of poultry AIPs, localized clusters may be borne of epidemiological mechanisms operating 
at a much finer spatial scale than those patterns arising from long-range viral dispersion by migratory birds44. For 
instance, failures in biosecurity may result in the unintentional transmission of viral pathogens among farms via 
contaminated farm equipment long after initial introduction by a wild bird26,28,45. To better differentiate between 
possible farm-to-farm transmission and novel wild bird introduction, our model was designed to accommodate 
multi-scaled spatial processes.

Materials and Methods
Animal protocols statement. The authors confirm that all methods were carried out in accordance with 
relevant guidelines and regulations and that all experimental protocols were approved by the appropriate institu-
tions and licensing committees. Protocols for capturing, handling, and instrumenting blue-winged teal included 
in this study were reviewed by institutional animal care and use committees (USGS Alaska Science Center Animal 
Care and Use Committee Animal Use permit no. 2014–5 and the University Committee on Animal Care and 
Supply University of Saskatchewan Animal Use protocol no. 20070039) and carried out under federal authority 
(US Department of the Interior Federal Bird Banding permit nos. 09072 and 23792, Federal Fish and Wildlife 
permit no. MB779238-2, Environment Canada Migratory Bird Banding permit no. 10458R).

Study domain and bird telemetry. Our study area encompassed North America between 14.5° and 60.0° 
North Latitude and −137.5° and −66.2° West Longitude. This area includes the conterminous United States, 
Mexico, Cuba, the Bahamas, and major portions of Canada. Forty-two adult, male blue-winged teal were cap-
tured and marked. Twelve birds were captured on their summer range in the Saskatchewan and Alberta Canadian 
Provinces during August 11–15, 2013, with the remaining thirty birds captured at wintering areas along the 
Texas and Louisiana Gulf Coast in the United States during March 17–22, 2015. All birds were marked with 
9.5 gram, solar-powered Platform Transmitter Terminals (PTTs) manufactured by Microwave Telemetry, Inc., 
Columbia, Maryland (USA) and then released in close proximity to their respective capture locations. The PTTs 
were attached using a Teflon harness secured over the sternum to have a dorsally extended antenna as outlined 
by Takekawa et al.46. The PTTs were programmed to have a regular duty cycle with a 10 hour on period every 
48 hours. We used the Argos Data Collection and Location System (CLS America, Incorporated, Largo, Maryland, 
USA) to receive transmissions, which provided Doppler-based location estimates, a movement activity indicator, 
and a class index reporting the quality of each location estimate. To prepare telemetry for statistical modeling, we 
first applied a filtering algorithm47 and then manually inspected movements and activity sensor records to exclude 
dates following likely bird mortality or PTT detachment. Locations exhibiting an unchanged activity indicator 
over two or more duty cycles were removed from the telemetry dataset. Table 1 details the bird-specific number 
of locations retained for analysis following data cleaning. Animations depicting the wild bird’s used in this study 
and downloadable telemetry data are available from the U.S. Geological Survey, Alaska Science Center, Wildlife 
Tracking Data Collection (https://doi.org/10.5066/P9Z9BA9F)48.

Environmental data. To characterize habitat and environmental conditions over the study area, we utilized 
250 meter resolution gridded soils data49, the Global Topographic 30 Arc-Second Digital Elevation Model availa-
ble from the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (https://www.usgs.
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gov/centers/eros), the 300 meter 2009 GlobCover Land Cover Maps provided by the European Space Agency 
(http://due.esrin.esa.int/page_globcover.php), and 30 meter resolution topographic roughness and topographic 
wetness indices provided by the ENVIREM dataset50. Because our goal with incorporating environmental varia-
bles was to characterize waterfowl habitat broadly and not to infer species-specific preferences or tolerances, we 
decomposed gridded soils data (17 different soil attributes) and elevation derived variables (topographical rough-
ness, topographical wetness, elevation, and slope) using separate Principal Components Analyses and selected the 
resulting first component from each to represent soil and topographical conditions respectively. The correlation of 
the retained first component to other attributes included during decomposition are provided for soils in Table 2 
and topography in Table 3. In addition to simplifying our analysis, the decomposition of variables also aided in 
avoiding multicollinearity issues during the model fitting process51. Recognizing the critical importance of wet-
lands and surface waters to waterfowl, we also calculated the Euclidean distance (km) of each telemetry location 

Tag Deployment Last Mortality Duration Median Sample Latitude Longitude Region

131009 8/13/2013 10/26/2013 Hunting 74 29 558 52.04 −107.10 Saskatchewan

131010 8/13/2013 3/26/2014 — 225 40 1142 52.04 −107.10 Saskatchewan

131011 8/14/2013 4/27/2015 — 620 48 2730 50.48 −112.12 Alberta

131012 8/14/2013 11/5/2013 — 83 41 464 50.48 −112.12 Alberta

131013 8/14/2013 10/24/2013 Hunting 71 37 453 52.04 −107.10 Saskatchewan

131014 8/11/2013 10/24/2013 — 73 31 523 52.04 −107.10 Saskatchewan

131015 8/12/2013 4/8/2014 — 239 43 1149 52.04 −107.10 Saskatchewan

131016 8/12/2013 1/25/2014 — 165 42 803 52.04 −107.10 Saskatchewan

131017 8/12/2013 10/21/2013 — 70 32 516 52.04 −107.10 Saskatchewan

131018 8/12/2013 10/17/2013 — 66 32 468 52.04 −107.10 Saskatchewan

131019 8/15/2013 11/29/2013 — 106 42 593 50.48 −112.12 Alberta

131020 8/15/2013 10/17/2013 — 63 39 408 50.48 −112.12 Alberta

131009 3/17/2015 10/25/2015 — 222 46 1087 30.01 −94.14 Texas

131013 3/19/2015 9/26/2015 — 191 47 898 29.61 −94.53 Texas

135841 3/17/2015 12/9/2015 Hunting 267 49 1165 30.01 −94.14 Texas

135842 3/17/2015 11/12/2015 — 240 57 816 30.01 −94.14 Texas

135843 3/17/2015 10/31/2015 — 228 47 1055 30.01 −94.14 Texas

135844 3/17/2015 5/28/2015 — 72 49 335 30.01 −94.14 Texas

135845 3/18/2015 4/28/2015 — 41 52 181 29.67 −94.44 Texas

135846 3/18/2015 10/2/2015 Hunting 198 43 1061 29.67 −94.44 Texas

135847 3/18/2015 8/17/2015 — 152 56 565 29.67 −94.44 Texas

135848 3/18/2015 10/27/2015 — 223 46 1051 29.67 −94.44 Texas

135849 3/18/2015 9/27/2016 — 559 53 2129 29.67 −94.44 Texas

135850 3/19/2015 3/31/2015 — 12 53 57 29.61 −94.53 Texas

135851 3/19/2015 5/11/2015 — 53 54 205 29.61 −94.53 Texas

135852 3/19/2015 9/30/2016 — 561 56 1918 29.61 −94.53 Texas

135853 3/19/2015 5/5/2015 — 47 53 211 29.61 −94.53 Texas

135854 3/19/2015 10/18/2015 — 213 48 938 29.61 −94.53 Texas

135855 3/22/2015 10/21/2015 — 213 48 955 30.55 −91.85 Louisiana

135856 3/22/2015 7/12/2015 — 112 48 532 30.55 −91.85 Louisiana

135857 3/22/2015 7/22/2015 — 122 51 519 30.55 −91.85 Louisiana

135858 3/22/2015 5/8/2015 — 47 47 226 30.55 −91.85 Louisiana

135859 3/22/2015 7/17/2015 — 117 46 569 30.55 −91.85 Louisiana

135860 3/22/2015 12/23/2016 — 642 50 2647 30.55 −91.85 Louisiana

135861 3/22/2015 4/13/2016 — 388 50 1338 30.55 −91.85 Louisiana

135862 3/22/2015 8/14/2015 — 145 55 528 30.55 −91.85 Louisiana

135863 3/22/2015 4/17/2015 — 26 50 125 30.55 −91.85 Louisiana

135864 3/21/2015 10/28/2015 Hunting 221 48 1019 30.46 −91.57 Louisiana

135865 3/21/2015 4/7/2015 — 17 51 89 30.46 −91.57 Louisiana

135866 3/21/2015 5/31/2015 — 71 53 290 30.46 −91.57 Louisiana

135867 3/21/2015 11/23/2015 — 247 47 1141 30.46 −91.57 Louisiana

135868 3/21/2015 4/7/2015 — 17 49 84 30.46 −91.57 Louisiana

Table 1. Telemetry summary. The PTT transmitter identifier (Tag), date of deployment (Deployment), last 
transmission date (Last), bird mortality type if known (Mortality), duration of record (Duration, days), median 
sampling interval between locations (Median, minutes), total locations (Sample), and the coordinates (Latitude, 
Longitude) and geographic region (Region) of deployment for records retained for analysis.
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to the nearest surface water class in the GlobCover land cover dataset using the Program R52 and the spatstat 
package53. As detailed in subsection 2.6, we modeled distance to water as a non-linear covariate to avoid treating 
water presence as a bird occurrence prerequisite.

Poultry and human density data. For estimates of poultry abundance, we used the chicken and duck 
raster layers from the Food and Agriculture Organization of the United Nations (FAO) Gridded Livestock data-
base54. The rasters were provided at a 0.083333 decimal degree resolution and report the number of poultry head 
per square kilometer (head/km2). Human population density estimates were obtained as a continuous raster (30 
meter) from NASA’s Socioeconomic Data Center that gave the number of persons per square kilometer (persons/
km2)55. The distribution of poultry abundance relative to our study domain is shown in Fig. 1 with telemetry 
tracks overlaid for marked birds.

Avian influenza event in poultry data. AIP data were obtained from the web-based Global Animal 
Disease Information System (EMPRES-i) maintained by the FAO (http://empres-i.fao.org/eipws3g/, accessed 
12/01/19). EMPRES-i is intended to support veterinary services and related organizations by providing access 
and analysis of global animal disease information. We initially downloaded all AIP data for the period between 
January 01, 2004 and December 01, 2019 and then filtered records to include only those with an FAO “Confirmed” 
status, geographically located within our study domain, affecting commercial poultry, and associated with virus 
subtypes having a H5 or H7 hemagglutinin surface protein. The H5 and H7 subtypes were chosen due to our 
interest in the HPAI pathotype, however, both HPAI (n = 440) and LPAI (n = 49) events were included in the 
resulting 489 record dataset. A secondary consideration in limiting the study to the H5 and H7 subtypes was 
that these subtypes are required to be reported to the World Organization for Animal Health (OIE) giving us 
some confidence in our sample. This is not the case with other virus subtypes, which are reported voluntarily 
and may therefore introduce sample bias. As a final step in preparing AIP data, we randomly selected 97 AIPs 
(approximately 20%) as a hold-out dataset to aid in later model validation. Locations of all events are shown by 
virus subtype in Fig. 2.

Attribute r (%) Description

AWCh1 −0.21 (0.01) Available water capacity (Horizon 1)

AWCh2 −0.20 (0.01) Available water capacity (Horizon 2)

AWCh3 −0.20 (0.01) Available water capacity (Horizon 3)

AWCtS −0.46 (0.03) Saturated water content

BLDFIE 0.48 (0.03) Bulk density (kg/m3)

CECSOL −0.23 (0.01) Cation exchange capacity (cmolc/kg)

CLYPPT 0.18 (0.00) Clay content mass fraction

CRFVOL −0.68 (0.15) Coarse fragments volumetric

OCDENS 0.20 (0.59) Organic carbon density (kg/m3)

OCSTHA −0.21 (0.02) Organic carbon stock (tons/ha)

ORCDRC −0.32 (0.06) Organic carbon content (g/kg)

PHIHOX 0.28 (0.03) Soil pH × 10 (H2O)

PHIKCL 0.23 (0.01) Soil pH × 10

SLTPPT 0.38 (0.02) Silt content mass fraction

SNDPPT −0.44 (0.01) Sand content mass fraction

TEXMHT −0.08 (0.01) Texture class (USDA system)

WWP1 −0.15 (0.00) Available water capacity (wilting point)

Table 2. Soils analysis. Correlation of 17 soil attributes to decomposed component retained as soil covariate. 
Soil attribute name (Attribute), Pearson correlation (r) with parenthetical proportion of variance explained (%), 
and attribute description. All correlations were significant at the α = .0 001 threshold.

Attribute r (%)

Slope −0.51 (0.00)

Elevation −0.59 (0.01)

Compound Topographic Index 0.93 (0.81)

Terrain Roughness Index −0.52 (0.18)

Table 3. Topographical analysis. Correlation of 4 topographical attributes to decomposed component retained 
as a topographical covariate. Attribute name (Attribute), Pearson correlation (r) with parenthetical proportion 
of variance explained (%), and attribute description. All correlations were significant at the α = .0 001 threshold.

https://doi.org/10.1038/s41598-020-59077-1
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Statistical analysis. We constructed a two-level, spatially explicit model with shared components to evalu-
ate the spatial and temporal relationship of waterfowl to AIPs across North America. The model’s first level esti-
mated waterfowl residence time across the study area, whereas, the model’s second level provided the probability 
of an AIP as conditioned on that waterfowl residence time. More generally, our model can be represented as:
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Figure 1. Track Map. Telemetry tracks for 42 blue-winged teal over grid depicting poultry abundance54. Black 
lines show individual bird tracks, legend describes estimated number of poultry (chickens and ducks) per km2. 
To better display poultry abundance in this figure, zero was defined as less than 100 poultry/km2.
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Figure 2. Locations of Avian Influenza Events (AIP) by virus subtype. AIP cover the period 2004–2019 and 
included 440 events used for model training and 49 (20%) randomly selected for model validation. Locations 
shown in the color red signify those retained for validation.
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α β| = + ⋅ + + +y i y i X i Z i Z i e i( ) ( ) ( ) ( ) ( ) ( ) (2)shared2 1 2 2 2 2

where the first level [Eq. 1] estimates waterfowl residence time (y1) at locations i = …i n( 1, 2, 3, , ) and the sec-
ond level [Eq. 2] gives AIP probability (y2) based on the past event (H5 or H7 AI detection) occurrence or absence 
(1, 0) at location i and conditioned on waterfowl residence time (y1). This formulation offers independent inter-
cepts for each model level (αj), covariate matrices (β ⋅ Xj) for level-specific linear and fixed effects, and uncorre-
lated error terms (ej). Although independent spatial fields (Z1 and Z2) help account for spatial dependencies 
within each model level, we added a third spatial field (Zshared) to explicitly serve as a shared scaling parameter 
between model levels56,57. The shared field is a re-scaled copy of Z1 that controls for spatial autocorrelation and 
interaction occurring between waterfowl telemetry and AIP locations. As an initial step in specifying the spatial 
fields, we created a triangulated mesh over our study area using procedures described by Lindgren and Rue58. In 
addition to facilitating parameterization of the continuous spatial fields needed to account for spatial dependen-
cies, the mesh provided a computationally efficient alternative to characterizing our continent-sized study domain 
using raster grids or areal polygons. The mesh included 9,555 nodes and had an outer extension large enough to 
avoid edge effects around study area boundaries. Due to our large study area, the mesh was projected using 
three-dimensional Cartesian coordinates scaled to one Earth radius (6,371 km). As a component of sensitivity 
analyses, meshes constructed with 4,897 nodes and 12,651 nodes were also evaluated and found to exhibit a mean 
spatial effect within 10% of that estimated using 9,555 nodes; therefore, we selected the middle-ground to balance 
precision and processing time.

To accommodate the joint modeling approach, our dependent variable was structured as a bivariate matrix 
with the first column corresponding to residence times calculated from telemetry data and the second column 
being a vector of 1’s and 0’s designating a past AIP occurrence (1) or absence (0) at each location. Because bird 
and AIP locations did not always geographically coincide, our model incorporated spatial misalignments; how-
ever, this was not problematic as the model is capable of providing estimates across continuous space and for all 
locations within the study domain56. To acquire initial residence time estimates for model fitting, we disaggre-
gated individual bird telemetry tracks (Fig. 1) into 1 minute temporal intervals and then summed them based on 
mesh node proximity (i.e., “natural neighborhoods”). To achieve this, we performed a Voronoi tessellation around 
mesh nodes to identify each node’s respective area of influence56. Area of influence refers to the bounded area 
surrounding each node in which all enclosed locations share that node as their closest point59. The process used to 
disaggregate tracks into equal time intervals was adapted from Sumner60, but, modified to allow for summation of 
time intervals based on our tessellated neighborhoods as opposed to a regular grid. Each column of the bivariate 
matrix exhibited a different distribution, therefore, we specified model likelihoods as,

π∼ ∼y i a b y i( ) Gamma( , ) and ( ) Binomial( )i i i1 2

where, residence time was always a positive value with shape and scale parameters (a b,i i) such that 
µ= = ⋅a b E v Exposure/ ( )i i i i . Defining Exposure as the area of each node’s tessellated neighborhood, the 

residence-time linear predictor vi was of the form,

α β β

β

= + +

+ + .

v
Z i

log( ) Soil Topography
WetDistance ( ) (3)

i i i

i

1 1 2

3 1

here, a log link function was used with α1 as the intercept, β1 the soil variable coefficient, β2 the topography coef-
ficient, β3 the coefficient for linear distance to nearest wetland, and Z1 as the spatial field to control for spatial 
dependencies and other unobserved latencies (errors) that may have resulted from the aggregating process 
undertaken to estimate residence time.

The corresponding linear predictor for the binomially distributed AIP occurrence vector relied on the logit 
function and was specified as,

π α β β

β β

= + +

+ ⋅ + ⋅

+ +

f f
Z i Z i

logit( ) Poultry Population
Cluster Displacement

( ) ( ), (4)

i i i

i i t

shared

2 1 2

3 1 4 2 ,

2

where α2 is an intercept, β1 is the coefficient for poultry density and β2 is the human population density coeffi-
cient. As described for Eq. 2, Z2 provides a spatial field to account for domain-wide spatial dependencies and 
latencies among AIP locations, whereas, Zshared controls for the spatial relationship between AIP and waterfowl 
locations. To supplement poultry and human population density variables, we developed two additional model 
covariates; one to account for fine-scale spatial structure among AIP locations f( Cluster)1  and the second to exam-
ine the temporal relationship between seasonal waterfowl migration and the timing of AIPs f( Displacement)2 .

As shown by Fig. 2, the geographic distribution of AIPs across North America exhibits broad regional cover-
age (e.g., the Midwestern U.S.) as well as more localized or concentrated “clustering“ at some locations (e.g., 
Jalisco, Mexico or Minnesota, USA). We speculate that the epidemiological processes that gave rise to the 
fine-scaled, cluster patterns were likely different than those that instigated the broad-scale, region-wide coverage. 
More specifically, it is possible that farm-to-farm transmission or “lateral spread” produced the observed clusters, 
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whereas, the broader coverage may be better explained by waterfowl introduction (see, Discussion for further 
explanation). We chose to address these different multi-scaled spatial processes using two separate spatial covar-
iates. The spatial field (Z2) was used as a domain-wide spatial covariate, while fine-scale spatial structure associ-
ated with AIP clusters was modeled using a random walk process across AIP nearest neighbor distances (km). As 
used here, a random walk f( Cluster)1  is similar to a regression spline in that it permits distances between AIPs to 
follow a smooth, curvilinear distribution without assuming a mean response. The benefit of using the fine-scale 
spatial effect is that it quantifies the spatial variability due to proximity between AIP locations, thereby, reducing 
the model’s capacity to attribute that variation to waterfowl or other covariates.

As with clustering, a random walk was also implemented to quantify the temporal relationship between sea-
sonal waterfowl migration and the timing of AIPs. As shown in Fig. 3, summing raw AIP counts (all years, 2004–
2019) by week reveals an apparent correlative relationship of AIP timing to the mean weekly latitudinal 
displacement exhibited by waterfowl. To capture the timing of waterfowl movement as a model covariate, we 
calculated latitudinal displacement by finding the weekly mean latitude occupied by marked birds (all years, 
2013–2016) and then performing a one-week lag subtraction between weeks. The function f Displacement2  intro-
duces the resulting time-ordered vector as a non-parametric, dynamic effect that captures waterfowl latitudinal 
change at each weekly time step t = …t( 1, 2, 3, , 52).

We used a Penalized Complexity (PC) framework61,62 for the three spatial fields Z( )j  with priors scaled to one 
Earth radius to reflect the size and projection of our 3D triangulated mesh. Because all spatial fields occurred over 
a common mesh and spatial domain, PC priors were set with both the spatial range and standard deviation quan-
tile and probability: ρ = 10  and = .ρp 0 5. The PC priors for the spatial effect were intended as non-informative 
and can be interpreted as specifying a 0.5 probability that the spatial range is within 6,371 km (i.e., one Earth 
radius). Sensitivity analyses for probability values between 0.2 and 0.8 in 0.1 increments assuming a ρ = 10  
revealed minimal change to model estimates. Flat PC priors were likewise applied for the random walk effects 
modeled as f Cluster1  and f Displacement2 , which were specified as µ = 1 and α = .0 0001. We then combined 
priors and likelihoods using Integrated Laplace Approximation63.

In addition to performing joint estimation of waterfowl residence time and AIP occurrence probability as 
described above, we also explored an alternative model formulation to jointly estimate waterfowl occurrence 
probability with AIP occurrence probability. That is, rather than using residence time to inform AIP probability, 
the alternate formulation used mere waterfowl occurrence to estimate AIP probability as a way of comparing the 
relative importance of bird presence versus the amount of time spent at a location. Under the alternative model, 
we assumed that all locations with a residence time equal to, or exceeding 24 hours constituted an occurrence 
(1) with unobserved locations (0) used to characterize background environmental conditions. To correspond 
with the derived presence-background vector, we substituted a binomial likelihood for the gamma in Eq. 3, and 
exchanged a logit link function for the log. The alternative binomial-binomial configuration included all of the 
same spatial and environmental covariates as described for the Gamma-binomial.

Figure 3. Weekly comparison of historic AI Events (AIPs) with waterfowl latitudinal displacement. Left vertical 
axis corresponds to smooth black line and represents weekly latitudinal displacement of waterfowl measured 
in degrees latitude. Horizontal axis provides the week of year. Dotted line intersecting zero signifies no net 
waterfowl displacement, with portions above zero indicating relative northward movement and portions below 
showing net southward change. Vertical axis at right corresponds to gray histogram for the weekly counts of 
all AIP summed over the period 2004–2019. Note apparent temporal correlation between waterfowl spring 
migration (Weeks 5–18) and increasing AIP as well as that between fall migration (weeks 35–42) and decreased 
AIP counts.
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Model evaluation. To evaluate model accuracy, we performed model-based estimation for each AIP loca-
tion and event time in the independent testing dataset that was randomly selected and excluded from model 
development. We calculated the percent correctly classified (PCC), sensitivity (proportion of correctly predicted 
presences), specificity (proportion of correctly predicted absences), and the area under the receiver operating 
characteristic curve (AUC) using the Presence Absence R package64, and then estimated the True Skill Statistic 
(TSS) by subtracting a value of one from the sum of the sensitivity and specificity estimates65. We also used tools 
available in the Presence Absence package to determine the probability thresholds that best maximize sensitivity, 
specificity, and the TSS. Probability thresholds were determined by comparing the input data to model estimates 
to ascertain the probability value (threshold) that best captured known disease occurrences.

In addition to validating with an independent out-of-sample testing data set, we applied a comparative 
approach to assess the overall performance of our joint waterfowl residence time and AIP occurrence probability 
model. In total, seven different models were constructed and then compared to the full joint model detailed in 
subsection 2.6, one of which (Model6) was the alternative formulation described in the closing paragraph of 
subsection 2.6. Recognizing that application of parsimony metrics to spatial models can be problematic66,67, we 
chose three different parsimony measures; the deviance information criterion (DIC), the Watanabe-Akaike infor-
mation criterion (WAIC), and the log-conditional predictive ordinate (lCPO). Generally, the DIC and WAIC are 
comparable, however, the DIC sometimes under-penalizes random effects67; thus, we opted to use both the DIC 
and WAIC as well as leave-one-out cross-validation (lCPO). Descriptions for all comparative models are provided 
with accompanying DIC, WAIC, and lCPO in the results section.

Results
Table 4 lists all models used to assess performance relative to the full model described in subsection 2.6. Note that in 
Table 4, the DIC, WAIC, and lCPO indicate improved parsimony as additional covariates were added, and that joint 
models combining waterfowl telemetry (Model5 and Model6) with AIP occurrences exhibited the best overall per-
formance. As a visual comparison, Fig. 4(A) maps the smoothed random field densities produced by the base spatial 
model with no covariates (Model1) in comparison to a spatial model with all covariates, but, excluding waterfowl 
telemetry (Model4, Fig. 4(B)), and the joint models incorporating waterfowl residence time (Model5, Fig. 4(C)) and 
occurrence probability (Model6, Fig. 4(D)). Each of the sub-figures in Fig. 4 display a zero mean domain density 
and can be interpreted in a manner similar to mapped spatial residuals. The map’s warm colors (oranges and reds) 
indicate regions where actual values are greater than those estimated by the model and cool colors (blues) highlight 
regions where actual values fall below those estimated by model. Note that random field densities for both joint 
models are reduced relative to those resulting from Model1 and Model4, but, the joint models still underestimate 
AIPs over areas in the upper Midwestern and Northwestern U.S., as well as central Mexico. Residual error indicates 
that additional factors or variables are needed to fully explain the AIPs at these locations.

Tables 5 and 6 summarize model covariates for the waterfowl residence time and occurrence probability mod-
els jointly fit with AIP occurrence probability. Observe that the soils covariate is important as judged by its credi-
ble intervals for both Model5 and Model6, whereas, the topography covariate is not. The soils and topography 
covariates likely correlate to waterfowl habitat preferences, but, this variation is better captured by soils than by 
topography. Soils and topography have been successfully used to model wetland occurrence probability in other 
studies68. The distance to water covariate is negative for both models suggesting that as distance from water 
increases, both waterfowl occurrence probability and waterfowl residence time decrease. Coefficients for poultry 
abundance are similar across models signifying an approximate 52.9% [(1/(1 + exp(0.12))) × 100%] increase in 
AIP occurrence probability for every additional 100,000 poultry head/km2 above the domain average while hold-
ing all other covariates constant. The f Cluster1  effect is plotted in Fig. 5 and indicates that the probability of an 
AIP occurrence increases non-linearly as proximity to a known AIP decreases below approximately 300 km. More 
simply, the closer a location is to a detection of H5 or H7 subtype influenza virus, the more likely it is to be subject 
to an AIP itself. The lower credible interval in Fig. 5 is inclusive of zero at distances greater than about 170 km, 
meaning that there is a low posterior probability of equal occurrence odds at longer distances. Figure 6 displays 
the functional relationship of AIP occurrence to time-structured waterfowl latitudinal displacement. The effect is 
important over most of the year and suggests that the greatest probability of an AIP occurs at approximately the 
18th week of the year (late April - early May), a period largely coinciding with the peak of northward mean water-
fowl latitudinal displacement (spring migration, see Fig. 3).

Model DIC WAIC lCPO Description

Model1 2134.42 1963.92 0.178 Space Only

Model2 1247.12 1215.90 0.062 Space + Clustering

Model3 1114.29 1084.77 0.054 Space + Time

Model4 1039.38 1019.96 0.051 Space + Time + Covariates

Model5 842.08 824.30 0.043 Joint Model (Duration)

Model6 836.47 821.35 0.042 Joint Model (Occurrence)

Model7 3710.55 3715.98 0.184 Non-Spatial + Covariates

Table 4. AIP model comparison. Deviance information criterion (DIC), Watanabe-Akaike information criterion 
(WAIC), and log-conditional predictive ordinate (lCPO). Lower values indicate improved parsimony. Joint models 
displayed in this table, metrics reflect the AIP occurrence probability level of the model only (Eq. 2).
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Of particular interest in Tables 5 and 6 are the shared spatial fields (Zshared) that represent the relationship of 
waterfowl telemetry to AIP occurrence probability. The shared fields for both the waterfowl residence time and 
occurrence probability joint models are estimated to be positive, with 95% credible intervals that exclude zero. In 

20°N
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50°N

A B

120°W 100°W 80°W

C D

-2 0 2 4 6 8 10

Figure 4. Random field density comparison. Spatial field resulting from the (A) base model (Model1), (B) 
base model with clustering effect and other covariates, (C) joint-model for residence time (Model5), and (D) 
joint-model for occurrence (Model6). Red areas highlight where models under predict AIP, cooler blue regions 
indicate where models over predict. Maps are plotted on the same scale using the same palette and can be 
interpreted as “mapped residuals”. Note that random field densities for models incorporating telemetry (C,D) 
are reduced relative to models without telemetry (A,B), but, even the telemetry models underestimate AIPs 
over several areas in the upper Midwestern and Northwestern U.S., as well as in central Mexico. Residual error 
indicates that additional factors or variables are needed to fully explain the AIPs at these locations.

Mean SD Q025 Q975

Intercept1 (α1, Eq. 3) 1.66 0.24 1.18 2.13

Intercept2 (α2, Eq. 4) −8.06 1.2 −10.42 −5.71

Soils 0.19 0.07 0.06 0.32

Topography −0.10 0.18 −0.47 0.27

Distance to wetland −0.02 0.01 −0.04 −0.01

Poultry abundance 0.12 0.03 0.06 0.18

Human population 0.05 0.01 0.02 0.07

Gamma precision 2.17 0.27 1.70 2.73

Range Z1 0.09 0.03 0.05 0.15

SD Z1 0.89 0.15 0.64 1.21

Range Z2 0.25 0.10 0.12 0.50

SD Z2 1.39 0.39 0.81 2.32

f Cluster1
0.10 0.04 0.05 0.19

f Displacement2
0.76 0.27 0.36 1.41

Zshared 0.56 0.25 0.05 1.04

Table 5. Joint model (Model5, residence time) effects and hyperparameters. Mean, standard deviation (SD) and 
95% Credible Interval. Coefficients are on the logit scale (logarithm of odds ratio).
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Mean SD Q025 Q975

Intercept1 (α1, Eq. 3) −6.15 0.64 −7.40 −4.90

Intercept2 (α2, Eq. 4) −8.02 1.20 −10.37 −5.67

Soils 0.36 0.14 0.09 0.65

Topography 0.23 0.30 0.36 0.81

Distance to wetland −0.03 0.01 −0.05 −0.01

Poultry abundance 0.12 0.03 0.06 0.19

Human population 0.05 0.01 0.02 0.07

Range Z1 0.15 0.04 0.09 0.25

SD Z1 3.98 0.66 2.86 5.45

Range Z2 0.25 0.10 0.12 0.51

SD Z2 1.35 0.38 0.79 2.26

f Cluster1
0.10 0.04 0.04 0.19

f Displacement2
0.77 0.27 0.36 1.42

Zshared 0.13 0.08 0.04 0.30

Table 6. Joint model (Model6, occurrence probability) effects and hyperparameters. Mean, standard deviation 
(SD) and 95% Credible Interval. Coefficients are on the logit scale (logarithm of odds ratio).

Figure 5. Model estimated clustering covariate. Non-linear, smooth line describes AIP probability as a function 
of proximity to other, adjacently located AIP occurrences. Vertical axis provides probability (logit scale) and 
the horizontal axis gives distance in kilometers. Dashed gray lines display 95% Credible Interval. Note that the 
credible interval includes zero at distances greater than approximately 170 km.

Figure 6. Model estimated temporal effect. Non-linear response of AIP probability as a function of time-
structured bird latitudinal displacement. Vertical axis provides probability (logit scale) and the horizontal axis 
gives time in weeks. Dashed gray lines display 95% Credible Interval. Note that the credible interval includes 
zero between Weeks 20–35, a time period corresponding with the waterfowl breeding season.
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the instance of Model6, the Zshared estimate is interpreted to indicate that if the probability of waterfowl occur-
rence at a location is 0.5, then the probability of an AIP is greater than 0.5 while controlling for all other model 
covariates. More precisely, at locations having a 0.5 waterfowl occurrence probability, the chance of an AIP is 
53.2% [(1/(1 + exp(0.13))) × 100%] while controlling for all other covariates. As the occurrence probability of 
waterfowl increases above 0.5, the chance of an AIP likewise increases above 53.2%. In the case of Model5, the 
Zshared estimate translates to a 63.6% [(1/(1 + exp(0.56))) × 100%] chance of an AIP at locations exhibiting the 
domain-wide mean waterfowl residence time of 8.6 days while holding all else constant. A greater AIP likelihood 
is expected for locations with longer waterfowl residence time. Combining all covariates, AIP probability can be 
estimated for any week of the year and any location within our study area; Fig. 7 displays the relative chance of an 
AIP for North America for select weeks of the year.

Model validation results are summarized in Table 7, which provides the PCC, Sensitivity, Specificity, AUC, and 
TSS for the hold-out data randomly partitioned during preliminary analysis. Statistics are provided for the three 
AIP presence thresholds determined to maximize Sensitivity, Specificity, and the TSS. To supplement Table 7, 
Table 8 further describes the validation dataset by providing the count of each virus subtype retained for evalua-
tion as well as the average estimate and probability of cluster membership at each location.

Discussion
Considering forty-two marked blue-winged teal as representative natural host waterfowl, we applied advanced 
temporal modeling techniques to evaluate the location and timing of waterfowl movement and space-use (1) 
relative to avian influenza events (AIP) across North America between 2004 and 2019 and (2) confirmed as 
resulting from viruses having the H5 or H7 hemagglutinin surface protein. While our primary goal was to utilize 
multi-year animal movement telemetry and disease event data to characterize intra-annual patterns, we also 
emphasized methodological facets to guard against attributing avian influenza detections to waterfowl when 
they are better explained by mere spatial proximity or membership to the AIP clusters in our sample. To accom-
plish these goals, we developed a dynamic joint (waterfowl-AIP) temporal model with shared components. Our 

Figure 7. Mapped AIP probabilities predicted by joint-model (Model5). Weeks 7, 15, 18, 23, 33, and 51 of the 
year are labeled as A through F respectively. Color coding and legend reflect relative probability (0.00–1.00) of 
H5 or H7 occurrence in North American Poultry with darker colors signifying increased likelihood. Note that C 
representing week 18 of the year (late April – early May) was predicted to exhibit the greatest AIP probability.

Threshold PCC Sensitivity Specificity AUC TSS

0.50 0.81 0.95 0.67 0.96 0.61

0.74 0.90 0.89 0.91 0.96 0.80

0.76 0.90 0.88 0.91 0.96 0.79

Table 7. Model validation summary. Percent Correctly Classified (PCC) at given Threshold. Model sensitivity, 
specificity, and the AUC are scaled from 0 to 1. The TSS score is ranged from −1 to 1. Higher scores signify 
improved performance for all metrics.
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combined animal movement and disease distribution framework was sufficiently flexible to accommodate a large 
study domain and enabled us to account for cumulative error across what might typically be approached as indi-
vidual or separate analyses.

Results indicate that the presence of migratory waterfowl is positively related to AIP occurrence within North 
America. As waterfowl occurrence probability or residence time increase at a given location, so too does the chance 
of an AIP. This conclusion is supported by estimates for the shared spatial fields (see, Zshared, Tables 5 and 6),  
which were specifically implemented to account for spatial interaction between waterfowl and AIP locations. The 
95% credible intervals for the shared fields included with both the waterfowl residence time (Model5) and occur-
rence probability (Model6) models indicate that waterfowl presence improves the model’s ability to estimate AIPs 
and that inclusion of movement telemetry increases parsimony (Table 4). Importantly, our inferred support for 
waterfowl improving AIP estimation is made after accounting for the week-specific, latitudinal displacement of 
migratory birds (Model3), poultry abundance (Model4), and AIP clustering (Model2). While our approach indi-
cates that waterfowl presence and residence time were associated with North American AIPs during 2004–2019, 
we cannot conclude that any individual AIP was the direct result of wild bird to poultry viral spillover. Given that 
HPAI phenotypes are recognized as only evolving in domestic poultry, it is probable that associations between 
waterfowl presence and AIPs are a function of LPAI H5 and H7 spillover from wild birds to domestic poultry, or 
that the spatiotemporal associations resulted from other unidentified and unmeasured factors.

Regarding AIP clusters, we speculate that not all69 of the clustered AIPs visibly apparent (Fig. 2) over portions 
of Mexico (e.g., Jalisco) and the upper Midwestern U.S. (e.g., Minnesota) represent independent introductions 
of avian influenza by wild birds. Given the compact spatial arrangement of the events, relative incident tim-
ing (Fig. 3)70,71, and the commonality of virus subtypes at each location (e.g., H7N3 in Jalisco, H5N2 in Upper 
Midwest), we conjecture that AIP clusters likely stemmed from some combination of mechanical (i.e., shared 
farm equipment, staff movement between farms, etc.) and environmental (i.e., common water, soil, and air) trans-
mission28,72. This interpretation is consistent with recent genetic analyses showing viral relatedness among H5N2 
HPAI outbreaks in the Midwest26,69 and among H7N3 HPAI outbreaks in Mexico17. In the absence of extensive 
genetic sampling and lacking information detailing farm-specific operational practices, the current study is insuf-
ficient in itself to assess the tenability of a “farm-to-farm” or “lateral spread” disease cluster hypothesis directly, 
but, from a modeling context we propose Tobler’s Law73 as an accessible heuristic to account for the spatial pat-
terns that sometimes arise from disease and epidemiological processes. The constructed covariate we designed 
to quantify fine-scale spatial structure is a statistical implementation of Tobler’s Law in that it assigns a cluster 
membership probability to all locations in the study area based on proximity to a neighboring AIP. To paraphrase 
Tobler from an epidemiological perspective, we assumed that “nearer outbreaks are more related than distant 
outbreaks”. If a detection is better explained by being in close proximity to another AIP than it is by waterfowl 
occurrence, then the risk of inferring an independent introduction by waterfowl is inherently reduced.

The timing of seasonal waterfowl migration was also found to be an AIP indicator. The time-structured covar-
iate reflecting bird net latitudinal displacement was important as shown by 95% credible intervals (Fig. 6) and 
improved model parsimony (Model3, Table 4). Model results suggest that AIP occurrence probability is greatest 
during the months of April and May, a period coincident with peak blue-winged teal northward movement, and 
less during the months of September and October, which is the peak of observed southward movement. Stated 
differently, the chance of an AIP occurring in North America is greatest during the spring migration, less during 
the fall migration, and generally insignificant during the waterfowl breeding and overwintering seasons. More 
generally, the temporal relationship of waterfowl to past AIPs suggests that the chance of avian influenza being 
introduced into a U.S. poultry facility steadily increases between February and May and then rapidly decreases 
for the remainder of the year. Although increased hatchling abundances and bird aggregation at pre-migration 
staging areas through the late-breeding and fall seasons (August and September) are thought to contribute to a 
generally higher AI prevalence in dabbling ducks broadly, this spatiotemporal pattern may not be as consistent 
for blue-winged teal specifically. Having a reputation for early departure and long flight distances, vast numbers 
of blue-winged teal have already vacated pre-migration staging areas and arrived at migration stop-over sites or 
overwintering habitats by August and September40,74. Having experienced reduced rates of virus exposure prior 
to autumn migration, immunologically naïve blue-winged teal may help maintain AI at lower latitude locations 

Subtype Estimate (95% CI) Cluster (95% CI) Count

H5N1 HPAI 1.00 (1.00, 1.00) 0.99 (0.99, 0.99) 1

H5N1 LPAI 0.98 (0.98, 0.98) 0.79 (0.79, 0.79) 1

H5N2 HPAI 0.90 (0.85, 0.94) 0.61 (0.52, 0.69) 46

H5N2 LPAI 0.72 (−0.34, 1.79) 0.67 (−0.10, 1.44) 3

H7N1 LPAI 0.97 (0.97, 0.97) 0.79 (0.79, 0.79) 1

H7N3 HPAI 0.87 (0.80, 0.95) 0.76 (0.66, 0.85) 38

H7N3 LPAI 0.78 (−1.98, 3.54) 0.80 (−1.67, 3.26) 2

H7N8 LPAI 0.80 (0.14, 1.46) 0.51 (−0.76, 1.77) 2

H7N9 LPAI 0.72 (0.29, 1.15) 0.52 (−0.08, 1.11) 3

Table 8. Predictive accuracy by virus subtype. Model estimated event probability (Estimate), probability that 
the event belonged to a cluster (Cluster), and the count of testing samples randomly selected from original 
dataset.
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throughout the non-breeding period and potentially redistribute virus during the spring migration40,41,75. As it 
relates to both the timing and degree of clustering shown in our AIP sample, it is important to note that models 
underestimate AIP probability over several areas in the upper Midwest and northwestern U.S., as well as in central 
Mexico (Fig. 4(C,D)). This indicates that additional factors or variables are needed to fully explain the epidemi-
ological processes at these locations. Remaining error may be due to delayed surveillance or event reporting, 
environmental persistence, post-introduction redistribution by wild birds, farm-specific operational practices, 
species-specific virus relationships, or other unmodeled factors.

Geographically, several regions appear particularly vulnerable to an AIP. In the U.S., the states of Mississippi, 
Alabama, and Georgia in the Southeast exhibit elevated risk from February through April (Fig. 7). The Delmarva 
Peninsula on the East Coast shows an increased chance of a poultry influenza event during the second half of 
March through April as does the southern Great Lakes Region and central California on the West Coast. By com-
parison to the U.S., model estimates indicate relatively lower AIP probabilities for southern Canada and Mexico. 
Although Southwestern Ontario and the Montreal vicinity show increased risk at the height of waterfowl spring 
migration (Fig. 7(C)), AIP suitability in Canada falls below 15% for the remainder of the year. In Mexico, the 
highest AIP probability was estimated for the second-half of January and first part of February when conditions 
were approximately 30% suitable for an AIP along the western-most edge of the Mexican Plateau between Jalisco 
in the north and Puebla to the south. This estimated period of highest AIP probability in Mexico coincides with 
the timing of blue-winged teal staging for the spring migration.

Although validation evidenced overall good model performance (Tables 7 and 8), comparing model estimated 
AIP probabilities to the full disease occurrence dataset used as input (Fig. 2) suggests that the model’s ability to 
capture past AIPs varied by virus subtype. More specifically, waterfowl space use and migration timing show 
greater correspondence to past H7 AIPs than to those of H5 origin. The majority of H5 events (e.g., H5N2 and 
H5N8) incorporated into our analyses were sampled from the outbreaks in 2014–2015 that affected 21 States 
across the Northwestern and Midwestern U.S.27, but, as discussed with respect to possible farm-to-farm transmis-
sion above, estimated AIP occurrence across these regions is generally very low (Fig. 7) and considerable residual 
error remains (Fig. 4) at these locations. By comparison, AIP probabilities in the vicinity of past H7 events (e.g., 
H7N3 and H7N9) are considerably higher. This tendency may be a reflection of blue-winged teal being more 
commonly infected with H7 subtype viruses during spring as compared to H5 viruses18. In short, model results 
provide additional support that blue-winged teal were unlikely acting as a vector of HPAI during the 2014–2015 
H5N2 and H5N8 outbreaks across the U.S.71; however, findings may add support to the notion that this species 
could introduce H7 subtype viruses to domestic poultry during the spring migration.

Our study could be improved in at least a couple regards. First, despite having intended our marked 
blue-winged teal as representative of the larger North American dabbling duck population, we acknowledge that 
migratory movement behavior may vary even within a species and that our study likely exhibits species-specific 
sample bias. As discussed above, the tendency for blue-winged teal to be early and long-distance flyers may have 
important implications for AI disease ecology and the representativeness of the species as an archetypal dabbling 
duck. We likewise recognize that bird-virus associations are often species-specific due to co-adaptation and vari-
able physiological and immunological tolerances. Studies drawing on a larger sample size or incorporating differ-
ent duck species under a comparative framework may be better suited to infer waterfowl-AIP relationships over 
such a heterogeneous study area. Studies aimed at investigating waterfowl-AIP dynamics by either choosing a 
wider range of focal bird species or being more selective in the virus subtypes examined would certainly be worth-
while. Secondly, the analysis of a large spatial domain may offer insight into long-distance animal movement 
and virus transmission potential, but, it also restricts data precision and availability. For example, the Gridded 
Livestock database that was used to estimate poultry abundance was essential to our study, but, had focused on 
a smaller geographic area in the U.S., we would have gained access to more recent and detailed information to 
characterize poultry locations and abundances.

In closing, we believe that the spatial and temporal relationship of blue-winged teal to past AIPs offers impor-
tant insights into migratory waterfowl ecology and avian influenza disease dynamics that can aid in better prepar-
ing for future AIPs. Being able to anticipate the geographic locations and times most vulnerable to avian influenza 
outbreaks would be an asset to the domestic poultry industry and those oversight agencies responsible for disease 
surveillance and response. Additionally, we hope that the methodological approach presented in this study will 
motivate future research into modeling disparate facets of disease systems at the wildlife-agriculture interface.

Data availability
All analysis and modeling were performed using the open-source R language for statistical computing52 with 
freely-available data. Wild bird telemetry, environmental data, and avian influenza detections can be accessed 
using web addresses provided in the Materials and Methods Section.
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