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ABSTRACT Advances in microscopy and fluorescent reporters have allowed us to detect the onset of gene
expression on a cell-by-cell basis in a systematic fashion. This information, however, is often encoded in large
repositories of images, and developing ways to extract this spatiotemporal expression data is a difficult
problem that often uses complex domain-specific methods for each individual data set. We present a more
unified approach that incorporates general previous information into a hierarchical probabilistic model to
extract spatiotemporal gene expression from 4D confocal microscopy images of developing Caenorhabditis
elegans embryos. This approach reduces the overall error rate of our automated lineage tracing pipeline by
3.8-fold, allowing us to routinely follow the C. elegans lineage to later stages of development, where
individual neuronal subspecification becomes apparent. Unlike previous methods that often use custom
approaches that are organism specific, our method uses generalized linear models and extensions of
standard reversible jump Markov chain Monte Carlo methods that can be readily extended to other organ-
isms for a variety of biological inference problems relating to cell fate specification. This modeling approach
is flexible and provides tractable avenues for incorporating additional previous information into the model
for similar difficult high-fidelity/low error tolerance image analysis problems for systematically applied
genomic experiments.
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A fundamental interest in developmental biology is to understand the
complex cascade of gene interactions that are responsible for allowing
an organism to develop from its early stages as an embryo into a fully
functional adult. A key component in this understanding lies in know-
ing when and where genes are being expressed throughout develop-
ment. Although high-throughput technologies based on cDNAs (e.g.,
RNA-seq) allow the measurement of expression for many genes across
development in a single experiment, they do not allow the practical
capture of high-resolution spatiotemporal gene expression data. Re-
cent advancements in fluorescence reporter constructs and micros-
copy, combined with high-throughput imaging, have allowed the

measurement of high-resolution (spatial and temporal) expression
data for individual genes across development—resulting in large re-
positories of image data (Hendriks et al. 2006, Hunt-Newbury et al.
2007, Tomancak et al. 2002). The data encoded in these images com-
plements the data obtained from cDNA expression data sets: where
cDNA expression data gives high coverage in the number of genes at
the cost of lower temporal and spatial resolution, image data allows
for greater-resolution data at the cost of lower coverage in the number
of genes.

Akin to other high-throughput technologies, the creation of these
image data sets requires multidisciplinary expertise in both biological
and computational methods. From a biological perspective, work
must be done in the creation, preparation, and imaging for each
individual gene. Similarly, significant computational hurdles exist in
analyzing the data: the spatiotemporal patterns are encoded in images,
and methods must be developed to extract meaningful data (Long
et al. 2012). These methods are often domain specific and highly
customized and have been developed for many model organisms,
including Drosophila (Kumar et al. 2002, Mace et al. 2010, Peng
et al. 2007), zebrafish (Zanella et al. 2010), Arabidopsis (Mace et al.
2006), and Caenorhabditis elegans (Bao et al. 2006, Santella et al.
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2010). In this article, we focus on the computational problem of de-
veloping high-fidelity methods for tracking individual cell fates across
development. Although the output of our method can be used to
address a large variety of genomic problems (e.g., natural and pheno-
typic cell fate variation), we seek to address particularly the problem of
obtaining systematic gene expression data across the embryonic de-
velopment of C. elegans.

C. elegans is a nematode with a transparent body and a cell lineage
that is invariant across wild-type worms (Sulston 1983). By the end of
embryonic development the worm produces 671 terminal cells, 113 of
which undergo cell death, resulting in a total of 558 cells at hatching
for the wild-type hermaphrodite. Upon hatching, some cells undergo
another series of divisions before the worm reaches its final adult total
of 959 somatic cells. As illustrated in Figure 1, the lineage can be
broken down into several well-defined sublineages (often referred to
through their founder cells, e.g., AB, C, D), where each individual
sublineage yields one or more cell types (e.g., muscle, hypodermal,
neuron, intestinal). Although the worm is 700 million years diverged
from humans (Vanfleteren et al. 1994), many gene regulatory path-
ways are conserved between C. elegans and humans, which, when
combined with the aforementioned attributes, makes C. elegans an
ideal organism for translational research into human diseases and
conditions such as Parkinson disease (Lakso et al. 2003), Alzheimer
disease (Ewald and Li 2010), diabetes (McKay et al. 2003), myopathy
(Rebolledo et al. 2008), and aging (Park et al. 2009).

Gene expression in C. elegans can be captured in vivo by the use of
confocal microscopy in conjunction with fluorescent reporter con-
structs (Murray et al. 2008, 2012). In this approach, a ubiquitous
histone localized green fluorescent protein construct is used to mark
the nuclei, whereas a gene specific promoter driving a red fluorescent
protein marks the expression pattern of the endogenous gene. An
automated confocal microscopy setup is then used to capture 4D
(3D space and time) images across embryonic development. To ex-
tract the expression data from these images, we need to develop robust
methods to identify and follow the individual cells throughout their
development while undergoing a variety of developmental events (e.g.,
migration, division, death). These methods, often referred to as lineage
tracing, provide the full cell identity for each individual cell, allowing
the capture of full spatiotemporal gene expression patterns.

Tracing a lineage involves both identifying and linking indi-
vidual objects (cell nuclei) across time. Lineage tracing shares many
similarities to the natural image processing problem of object
tracking, which has been intensively studied (Hu et al. 2004). Al-
though both problems must confront the issue of identifying and
linking objects over time, they each present their own challenges. In
the identification process, lineage tracing has to deal with limitations
of optics in later stages of development that often result in closely
spaced, small nuclei and attenuation effects deeper into the speci-
men that can lead to difficulty in identifying the individual nuclei.
Similarly, in object tracking, in addition to having to deal with
irregular backgrounds (e.g., shading), the objects are often 2D pro-
jections of an actual 3D scene, which can lead to difficult occlusions.
The linking process has several differences as well: in object tracking,
objects are often assumed to be independent (or weakly dependent),
and have movement characteristics that are modeled using standard
physical motion laws. Conversely, lineage tracing deals with objects
that follow a stereotypical biological process: cells divide and die off
in a very constrained pattern throughout development. These differ-
ences in detection and linking behavior limits our ability to use
traditional object tracking methods for decoding and extracting data
from the images.

Previous methods have been developed for lineage tracing and
have been used for decoding high-throughput C. elegans image data.
An early attempt at lineage tracing, StarryNite, used a separate de-
tection algorithm based on a modified watershed algorithm and a cus-
tom distance based algorithm to link the nuclei across time (Bao et al.
2006). Improvements were made for detecting the nuclei by using
a blob-slice detection algorithm based on the difference of Gaussians
(DoG) feature transform of the image with a slightly modified version
of the linking algorithm used in StarryNite (Santella et al. 2010).
Although the blob-slice method decreased the false-positive and
false-negative rates, its independent linking and detection algorithms
still led to many errors in later stages of development—where the
nuclei become closely packed and become difficult to properly ascer-
tain parent/child relationships in divisions/deaths.

We introduce a method for lineage tracing that allows the joint
detection and linkage of the nuclei through a hierarchical probabilistic
model. This hierarchical framework is able to incorporate additional
previous information and constraints in a tractable form. Probabilistic
modeling approaches to computer visions problems have become
increasingly popular, largely due to the flexibility for incorporating
previous information (Ashburner and Friston 2005, Borenstein et al.
2004, Levin and Weiss 2006, Tu et al. 2005). Much of this work has
been done in natural image processing, for whole-scene classification
or segmentation problems (Fei-Fei and Perona 2005, Leibe et al.
2008). Although enjoying increased attention in the natural image
processing community, the biological/medical computer vision com-
munities have been slow to adopt these approaches. Historically, this
delay is primarily attributed to the large computational and memory
intensive requirements of such models, which does not lend itself well
to the already computationally and memory-intensive data sets pres-
ent in the biological/medical field.

This article distinguishes itself from previous work on lineage
tracing in three major aspects. First, we design a hierarchical
probabilistic model that allows us to incorporate both a more robust
bottom-up detection method with top-down prior information on
the biological development. We refer to this model as the Statistically
Applied Lineage Tracing model, or SALT. Second, we develop
empirical reversible-jump Markov Chain Monte Carlo (RJMCMC)
methods that allow us to address detection and linkage simulta-
neously to decode the C. elegans lineage in a more unified fashion.
Finally, we validate the model and compare it with previous C.
elegans lineage methods, demonstrating that the improved detection
and reliability have allowed us to extend our lineaging capability to
later stages of embryonic development. This increase in resolution
and throughput has been paramount for our approach of obtaining
systematic genomic spatiotemporal expression data.

MATERIALS AND METHODS
Although the C. elegans lineage is often displayed in a tree-like fashion
(Figure 1A), it is also possible to represent this in a more formal
fashion as described here and shown graphically in Figure 2. Let cj,t
be the jth nucleus at time t. We refer to the collection of allmt nuclei at
time t as c:;t , and the collection of all nuclei across all times as c:;:.
Because the lineage forms a developmental tree, we can represent this
time dependence by establishing parent/children relationships; let ep (cj,t )
and ec (cj,t ) be the parent set and children set functions for cj,t. An edge
exists between two nuclei if they exist within their respective children and
parent sets Eðcj;t ; ck;tþ1Þ ¼ 1⇔ cj;t 2 epðck;tþ1Þ and ck;tþ1 2 ecðcj;tÞ.
The number of children define the developmental event (zero children
represents a death, one child is a continuation (same cell, new observed
nucleus), and two children represents a division with new daughter
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nuclei). Because divisions and deaths are important developmental
events, we further define N to be the set of all nuclei that are the
result of a division or birth in a tree cj;t 2 Njjecðepðck;tÞÞj ¼ 0; 2,
and V the set of all nuclei that die or divide cj;t 2 Vjjecðck;tÞj ¼ 0; 2.
Ni and Vi represent the start and end of a branch Bi, where we
define a branch to be the collection of all continuous children from
Ni to Vi, Bi ¼ fNi; ecðNiÞ; ecðecðNiÞÞ; . . . ;Vig. The branch identifier
Ibðcj;tÞ is used to define the relationship between a nucleus and its
containing branch: cj;t 2 Bi ⇔ Ibðcj;tÞ ¼ Bi. Completing this formali-
zation, we set ĉ to be the collection of all nuclei c:;:, edges E, branches
B, and development times o, s, ĉ = {c.,., E, B, o(e[p/c]), st}. st is the
continuous normalized development time at image capture observa-
tion t, and o(e[p/c]) is the occurrence time of the parent and children
edges respectively (described in the Methods section).

Although the previous approaches to lineage tracing had used
spheres to represent the nuclei, we use a superquadric representation
(Barr 1981). A superquadric is an extension of a sphere that includes
additional parameters that allow us to more properly model the an-
isotropic shape characteristics that are inherent to dividing nuclei.
Superquadrics have been used in the computer vision community
before, often to describe nonparametric shape models (Terzopoulos
and Metaxas 1991). A full superquadric representation would require

10 parameters: three location parameters x, y, z, three axis parameters
a1, a2, a3, two exponent parameters e1, e2, and two rotation parameters
r1,r2. We instead reduce the dimension of our superquadric to six
superquadric parameters and one additional mean parameter m (de-
scribed in the Methods section): c = (x, y, z, a1, a2, r, m). We assume
the first axis and the third axis are linked a3 = a1, the second rotation
is fixed r2 = 0, and that the minor exponent and minor axis are ratio
linked e2 = a2/a1. The first exponent parameter is fit during the
training of the model. To account for differences in physical voxel
size, all representations of coordinates and calculations are done in
physical space. Conversion between the physical coordinate space and
image space can be done using fast offset and scaling methods.

With the lineage and shape of the nuclei defined, we can introduce
a hierarchical probabilistic model that will include previous in-
formation about the development of C. elegans for high-accuracy
decoding of the lineage. Our hierarchical statistical model is composed
of two types of information: bottom-up information (information
obtained from the 4D image data sets), and top-down information
(previous constraints about the development of the organism). The
bottom-up information is composed of two different components:
a generative distribution based on the raw observed image and a dis-
criminative distribution based on the DoG feature transform space.

Figure 1 C. elegans lineage and tracing: (A) The C. elegans lineage follows an invariant division pattern, giving rise to the same 671 terminal leaf
cells during embryonic development (early embryonic development to 51 cells shown here). (B) The founder cells are responsible for establishing
individual sublineages, which produce one or more primary cell types. (C) Using confocal microscopy, we are able to trace this lineage by using
fluorescent promoter constructs to label the individual nuclei from the original images (left). The nuclei are then algorithmically decoded and
traced across time (right).
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The top-down information is composed of three different compo-
nents: a general component consisting of various topological distribu-
tions that constrain nuclei within a time point (major-axis size, spatial
interaction, nuclei number, fluorescence intensity); a linkage compo-
nent to describe the dynamics of nuclei between time points; and
a time to event component that describes the occurrence of develop-
mental events (divisions, deaths). Combined, this model allows us to
evaluate a proportional probability of any given lineage trace.

Throughout this section, we use simulated annealing methods
wrapped around standard Bayesian sampling techniques (in most
cases, a standard slice sampling method) (Neal 2003) to train the
model. The full model specification, including all previous distribu-
tions and the trained parameters, are described in Supporting Infor-
mation, File S1.

BOTTOM-UP INFORMATION
The bottom-up component deals with two sources of information:
the raw observed image x, and a feature transformed DoG image
d. For the raw observed image we will describe a shared dependent
generative model for all nuclei. The feature transformed image
will model the individual nuclei independently using a discrimina-
tive model. The combination of a generative and discriminative

model on two sources of information provides a more reliable and
accurate method for nuclei detection: although each individual dis-
tribution is prone to its own false-positives and false-negatives, by
combining the two approaches we can provide a more accurate
method of detection.

Generative component
The generative component is used to model the relationship between
the individual nuclei and the observed image. This relationship is
captured by allowing the nuclei to compose a shared dependent mean
field m

jgj
:;t that induces a generative distribution on the observed image.

This shared dependency from the mean field is important, as in later
stages of development, the compactness of the nuclei exceeds our
optical resolution, resulting in the appearance of overlapping and
shared fluorescence signal between nuclei.

Intuitively, the generative component describes a relationship
between the decoded nuclei and the observed image. During the
decoding process, the model will iteratively propose new additional
nuclei to the model and evaluate the proposal of the new addition. As
part of this process, an expected mean image is generated based on the
current and newly proposed nucleus (taking into account information
such as the position and intensity of nuclei). The closer the new expected
image is to the actual observed image taken with the microscope,
the more likely the model is to accept the new configuration.

We define the intensity at location i at time t of the mean field image to
be a linear combination of a background mean, and a weighted value from
every individual nucleus. mjgj

i;t ¼ m
jgj
b þ Smt

j ½ f ðcj;t ; lðmjgj
i;t ÞÞcmj;t �, lð�Þ is

a location function that returns the x, y, z location of an object (e.g.,
a voxel location). The summation occurs over the fluorescence mean
parameter cmj;t for all nuclei within this time point (mt), where
½f ðcj;t ; lðmjgj

i;t ÞÞ� is the normalized anisotropic kernel function. This
is a piecewise function that overall decreases in value the further the
pixel is from the center of the nucleus. The anisotropic nature of the
function leads to a slower decrease in the z plane than the x /y planes
to account for attenuation effects that are consistent with confocal
microscopy. A graphical representation of this distance function is
shown in Figure 3A. 4 and is described in File S1.

The mean field induces a generative distribution on the observed
image:

pðxjm; b; �Þ} L1
�
xjmjgj; b1

�
L2
�
x̂jm̂jgj; b2

�

where L1 and L2 and are modified Laplace distributions based on the
actual ðx;mÞ and first derivativeðx̂; m̂Þ respectively of the mean and
observed values. The combination of both distributions is necessary
for both sampling and accuracy reasons: L1 provides a convex sur-
face that is easy to sample individual nuclei with but is often prone
to errors in determining the minor axis and rotation, whereas L2
provides a nonconvex surface that is difficult to sample from, but is
more accurate with determining the minor axis and rotation. The
Laplace distributions are normalized to adjust the weight of the
generative model compared to all other components in the model:
because the area of the superquadric increases at the cube of the
major axis, the largest nuclei would have an �125-fold increase in
voxel contributions to the likelihood—significantly adjusting the
relative weight of the generative component to the rest of the model.
To adjust for this, additional weighting fields p1 and p2 are con-
structed similar to the mean field construction which addresses this
imbalance by reweighting the nuclei such that the largest nuclei
would have only �3-fold increase in voxel contributions than the
smallest nuclei.

Figure 2 SALT model: a condensed graphical representation of the
model. Variables are described using circles, where gray circles
represent observed data. Boxes represent multiple occurring values
and arrows describe dependencies between variables. In this repre-
sentation, we describe the lineage of the tree using a variable number
of superquadrics cj,t, where j and t are indices of the nuclei and time.
The superquadrics are linked through time as shown using the arrows,
and the aggregation over all the time points forms a tree, represented
as ĉ. We represent two types of information in our model, bottom-up
information and top-down information. The bottom-up information
contains dependencies between the image data and the lineage,
and consists of time series of 3D confocal microscopy images,
denoted xt; a feature-transformed image obtained from the original
images, denoted dt; and an induced mean field mt. The top-down
information consists of various constraints trained on prior lineage
data/experiments, and include: measures on spatial distance, size,
number, denoted s; dependencies describing how cells link through
time l; and a time to event model on the lifespan of the nuclei, e.
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Discriminative component
Although the generative component describes a relationship between
all nuclei and the raw observed image, the discriminative component
describes an independent relationship between each nucleus and the
feature transformed image. The discriminative component is more
akin to classical feature detection, as it is often used to describe
particular regions that “appear” to be a nucleus. Instead of the tradi-
tional “bag of features” approaches that are often used, we use a more
formal probabilistic approach for the discriminative model. For any
proposed nucleus, a generalized linear model is used to assign a 021
probability value on the existence of a nucleus at a given location for
any given superquadric parameters. Because the discriminative com-
ponent is often looking for subtle features of the image space, it is
often able to pick out small changes in image intensity that would
otherwise be missed. As a result, it is generally more sensitive than the
generative model, but less specific.

To fit the discriminative model, we transform the original space
into a bank of DoG images (Marr and Hildreth 1980), where db is the
bth filter bank image, b 2 Hjb ¼ a0 þ a1r; r ¼ 1; 2; . . . ; n, a0 is the
starting bank, a1 is the spacing of the banks, and n is the number of
banks. As can be seen in step 4 of Figure 3B, the feature space has
peaked values at the center of the nucleus that decrease in value as it
extends away from the nucleus. This decay differs from the generative
model because it is a strictly decreasing function based on the nor-
malized distance of the superquadric (compared with the piecewise

disjoint decreasing function). To model this decay, we define a set of
points for nucleus cj, Rjdj

cj;t that are constructed by selecting evenly
spaced points along a set of evenly angular spaced rays from the center
of nucleus x 2 Rjdj

cj;t j x ¼ Aywþ lðcj;tÞ;w ¼ f0:25; 0:5; 0:75; 1:0g, y is
a unit vector normalized to the length of the major axis, and A is an
evenly angled spaced transformation matrix described in File S1 and
shown in step 6 in Figure 3B. Because the location of the sampled
points do not lie on a standard lattice, a second-order cubic spline
interpolation method is used to calculate the values.

Let ri be the ith element in set Rjdj
cj;t . We set r̂i to be the DoG value of

the discretized point normalized at the filter bank set at the nucleus
major axis a1, by the value at the center of the nucleus r0:
r̂i ¼ da1ðriÞ ∕ da1ðr0Þ. This decrease of values from the center of the
nucleus is modeled using a multivariate normal distribution:

r̂� � N
�
mjdj;Sjdj�

An anisotropic angular distance function is used to model the
expected value of the discretized values

mjdj ¼ 12b
jdj
1 Se

�
Rjdj
cj;t

�2

where SeðRjdj
cj;t Þ2 is an anisotropic distance function and b

jdj
1 is a pa-

rameter that describes the rate at which the DoG value decreases and

Figure 3 Bottom-up compo-
nents: (A) The generative com-
ponent of the model. An
expected background model
for the observed image is cre-
ated by using the set of nuclei
(2) c to induce a mean field by
allowing each nucleus to con-
tribute a localized mean to the
surrounding voxels. The contri-
bution to each voxel is shown in
(4), where the x-axis shows the
percentage of the mean, and
the y axis shows the decay
based on the normalized dis-
tance (distance/radius). The
blue line shows the decay in
the x /y plane, and the red
dotted line shows the decay in
the z plane. The resulting mean
field image (5), can be used to
form a generative distribution
on the observed image xt (6),
by using a generative Laplace
distribution (7). (B) The discrim-
inative component of the
model. The original image is
transformed into a DoG filter
bank, an example single ele-
ment/z-plane of the bank is
shown in (4). For each individual
nuclei, a discriminative function
is created by discretizing the

points along equidistant rays extending out from the center of the nuclei (6). A generalized linear model is then fit to model the normalized
decay of the DoG image as shown in (8). The y-axis is the normalized DoG value, and the x-axis is the normalized distance from the center of the
nucleus (blue/red lines are the x /y plane and z plane, respectively). By the use of a series of transformations, a probability distribution (9) can be
used to calculate a 021 probability on the existence of any point with a specific shape and location configuration.
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is show in step 8 of Figure 3B. In later stages of development, this
mean level is often distorted by closely spaced neighboring nuclei.
To account for this variability, we model a full covariance structure
that captures the dependency between closely spaced points:

S
jdj
i;j ¼ s2;jdjkjdj0 ði; jÞkjdj1 ði; jÞ þ ejdj

ejdj is an individual error that is on the diagonal only e
jdj
i;j ¼ 0; i 6¼ j

and kjdj� are correlation functions described in File S1.
We transform this generative multivariate normal distribution into

a discriminative model by converting the probability to log space and
using a generalized linear model

yjdj ¼ v
jdj
0 þ v

jdj
1 logðpðr̂:ÞÞ þ v

jdj
2 tjdjðr0Þ

pjdjðcj�Þ¼ 1 ∕
�
1þ expð2 yjdjÞ

�

v
jdj
f0;1g are parameters that affect the scaling and offset of the log

probability, whereas v
jdj
2 tjdjðr0Þ is a penalty function that ensures

that the DoG value at the center of the nucleus is above a certain
baseline value. yjdj is wrapped around a logistic regression model
that re-normalizes the value between [021], where any value greater
than 0.5 would be indicative of the presence of a cell nucleus. As the
model normalizes the DoG value to the center baseline pixel, the
sensitivity/specificity trade-off comes from v

jdj
2 tjdjðr0Þ. Small values

would pick up many of the dimly lit cells (e.g., Z2, Z3) but would
result in many false positives from image artifacts (general intensity,
cover slip). This parameter is learned while training the remainder of
the parameters.

TOP-DOWN MODEL
Although the bottom-up components deal with information from the
observed and transformed images, the top-down components deal
with information pertaining to the development of the embryo and is
obtained from previously semiautomated methods for tracing the C.
elegans lineage (Bao et al. 2006). The models are trained from a col-
lection of 4D images (large collection of 2D TIFF images) as well as
comma delimited files describing the location and parent/child rela-
tionships between nuclei. Taken together, we believe in combination
with appropriate data input transformations, the method could be
readily extended to similar lineage tracing problems in other organ-
isms. A fundamental aspect of the top-down model is a series of
components for modeling the relationships between nuclei across
time, allowing us to simultaneously predict and link the cell nuclei
during the decoding phase. The remaining top-down information
consist of previous constraints on either the detection or on relation-
ships between nuclei that allow us to improve the detection and link-
ing accuracy of the model.

Throughout development, many of the topological constraints
vary depending on the time of development (e.g., as developmental
time progresses, cells become smaller, times between divisions become
longer). To more appropriately model this, we use kernel functions to
induce time varying parameters as described in File S1. Although this
provides more accurate models for the topological constraints, it also
introduces an additional complexity during the decoding process as
the normalized development time becomes an additional parameter to
be sampled. Although the true dynamics of development can be more
properly modeled using the cell generation rather than the develop-
ment time, this approach was avoided as small errors in linking early
in development would have a cumulative effect on all remaining
daughter nuclei. An intermediate approach of using mixture models

to account for heterogeneity in nuclei generation had a similar effect,
where decoding the lineage was difficult as daughter cells would often
inherit the mistakes of its parent lineage. The coarser approach of
using development time and aggregate measures over all nuclei pro-
vided a higher and more accurate decoding.

General top-down components

The general top-down components consist of four independent
distributions on various topological constraints: nucleus size, number of
nuclei, individual fluorescence, and spatial interaction. The nucleus size
consists of two distributions based on the major and minor axis of the
nucleus. For the major axis, we use a time varying normal distribution

Ca
1 � N

�
m
jsj
t;1;s

2;jsj
t;1

�

As can be seen in Figure 4, the size of the major axis becomes
smaller as time progresses. For the minor axis, we use a fixed normal
distribution

log
�
Ca
1=C

a
2

�
� N

�
m
jsj
2 ;s

2;jsj
2

�

Like the major axis distribution, the distribution on the number of
nuclei is also a time varying normal distribution:

Mt � N
�
m
jsj
t;3;s

2;jsj
t;3

�

The individual fluorescence of each nuclei is defined as follows:

Cm
: � N

�
m
jgj
1 ;s

2;jgj
1

�

The last general top-down distribution is the spatial interaction
distribution. To prevent nuclei from directly overlapping, we use
a mixed soft/hard core penalization distribution. This distribution is
defined as:

pðcjl; �Þ ¼ exp
�
2Sj;khðcj; ckÞ

�
=Z

where hðcj;t ; ck;tÞ is a penalty function from point ci to cj:

hðcj;t ; ck;tÞ ¼

0 if Seðcj;t ; ck;tÞ. t
jsj
0

N if Seðcj;t ; ck;tÞ, t
jsj
1

ljsje
20:5

ðSeðcj;t ;ck;tÞ2t
jsj
0 Þ

ðtjsj1 2Seðcj;t ;ck;tÞÞ otherwise

8>>>>>>><
>>>>>>>:

This penalty function prevents cells from becoming too close
through stepwise constraints: as points enter a soft core distance tjsj0 ,
they become slowly penalized based on their proximity to each other
until they reach a hard core distance tjsj1 , where the penalty goes to
infinity and the probability of the configuration goes to 0.

The constraints described allow the model to eliminate strong
outliers or unexpected nuclei from the decoding. A large 4-mm radius
nucleus would be appropriate in early stages of development but would
not be expected in later stages of development; rather, the model
would be more likely to find two separate nuclei of 2 microns each.

856 | D. L. Mace et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.005918/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.005918/-/DC1/FileS1.pdf


Additionally, as the model is often accurately searching for the
most optimal solution, the previous constraints prevent the model
from searching in parameter spaces that are outside the range
expected from the developing embryo, which improves runtime
performance.

Time-dependent top-down component
The previously described components have dealt with the dependence
of nuclei within a time point, but not across time points, and can be
loosely thought of as the “detection” part of the model, but not the
“linking” part, of the model. To establish a linking relationship across
time, we model both the dynamics of the cell movement, as well as the
timing and fate of the development. For the dynamics, we model the
relationship between time points t and t + 1 using a conditional
random field to capture parent child movement constraints (e.g., cell
movement, major axis change, division angle). Our linkage compo-
nent is closely related to the time dependence of a particle filter model,
and is merely a modification with additional constraints. Conversely,
the timing and fate of the development component deals with the
eventual (sometimes unobserved) probability of a developmental
event occurring. When a cell arises from the fusion of the pronuclei
or from a division, it is “predestined” to undergo one of three de-
velopmental fates: it will divide, it will die off, or it will reach its final
differentiated cell type. A time-to-event model is used to describe the
probability and timing of these events. It is important to note that
the scope of each of these components differ. Where the dynamic
submodel considers the relationship between nuclei in adjacent time
points, the time-to-event submodel considers the aggregate relation-
ship of all cells within a branch across multiple time points.

Time-to-event component
As described, the time-to-event model deals with the timing and
occurrence of developmental events: divisions, deaths, final differen-

tiation. Time-to-event models are often used in clinical studies for
survival analysis of patients with disease (Hosmer et al. 2008). This
component can be abstractly thought of as a distribution on the de-
velopment lineage tree itself. Placing restrictions on the tree allows the
model to prevent unexpected occurrences (e.g., early cell deaths, fast
divisions, missed divisions). These constraints are crucial in later
stages of development, where the close proximity and attenuation
effects make cell divisions and cell deaths difficult to properly follow
individual nuclei across time.

A crucial requirement of the time to event model is the ability to
account for the changing characteristics of the developing embryo.
Early development is characterized by rapid divisions that quickly
establish the main founder cells responsible for the individual
sublineages. With the exception of the germline cells Z2 and Z3,
none of these cells have entered their final differentiated state, and
there are no deaths. Later in development, the organism enters
organogensis, and the time between divisions increases. Cell deaths
are common in this stage, and many cells are nearing their final
embryonic cell state. We model this using a time varying time to
event model.

Let SðBiÞ be the indicator function of the ending development event
for branch Bi, where SðBiÞ ¼ f0 ¼ division; 1 ¼ death; 2 ¼ finalg.
We describe the probability of this branch as

pðBije; �Þ ¼ p
jej
SðBiÞ;t p

jej
SðBiÞðdðBiÞÞ

where pjej
SðBiÞ is the base probability of the event, and pjejSðBiÞðdðBiÞÞ is

the probability that a branch exists with a duration length of
dðBiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðecðVÞÞ2 oðepðNÞÞp

. We introduce oð. . .Þ as the devel-
opmental timing of the start or end of the branch. These are addi-
tional parameters of the model and are sampled during the decoding
phase, bound by their respective normalized times. The base prob-
ability of an event at time t is:

Figure 4 Top-down compo-
nents: Trained parameters for
various top-down components,
x-axis refers to the normalized
time, mean levels are shown
with points, and error bars rep-
resent one standard deviation.
(A) Number of nuclei as a func-
tion of normalized time. (B) Size
of the nucleus as a function of
normalized time. (C) Time to
event model as a function of
normalized time: (top) the pro-
portional probabilities of an
event to occur; (middle) the
timing between divisions; and
(bottom) the death event
timing.
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p
jej
i;t ¼

expfri;tgP3
j expfrj;tg

The duration between events is modeled using a time varying
Gaussian distribution based on the square root of the branch duration:

pjejSðBiÞðBij�Þ} exp
�
20:5�

�
dðBiÞ2m

jej
SðBiÞ;t

�2
=s

2;jej
SðBiÞ;t

�

where m
jej
SðBiÞ;t ;s

2;jej
SðBiÞ;t are the mean and variance for the event. The

timing of what constitutes a cell death often varies based on the
literature, and can mean many things. In our representation, the
timing of cell death is the time from when a cell divides until it
essentially disappears and becomes “untrackable.” Because this tim-
ing is directly obtained from previous lineage experiments, we expect
it to vary from other definitions of cell death. The time-varying
parameters of the trained model are shown in Figure 4C.

Linkage component
The linkage component describes the dynamics of the relationships of
nuclei between neighboring time points t and t + 1. For the dynamics,
two possible configurations exist between parent and children: cells
continue on (one child), or cells divide (two children). The third
possible configuration, cell death, is not modeled as there is no cell
at time t + 1 to model the dynamics; however, the occurrence of
timing and cell death is accounted for in the time to event component.

The linkage component describes the fundamental element re-
sponsible for establishing relationships between nuclei across two time
points. In other models, this relationship is often established through
custom heuristics based on the Euclidean distance between nuclei
across time, or in the case of particle filters, previous constraints on
the dynamics of the cells movement. As we describe, our method
extends upon these approaches by developing models that describe
specific constraints on how the nuclei change over time (e.g., size,
location), and how they respond during division events (e.g., angle
of division, division distance).

The dynamics between a parent and its children varies based on
whether a nucleus is continuing on or dividing. We model individual
state specific dynamics by imposing time varying constraints on the
parent child relationships between nuclei. In the single child case
(continuation), constraints are placed on the movement of the nucleus
(expected to be small), and the change in nuclear size (also expected to
be small). For divisions, the case is more complex: the cell often
undergoes a stereotypical pattern of division in which the dynamics of
each daughter cell are dependent. To account for this dependency, we
use five features to model nuclear divisions: the movement of each
daughter nucleus (2), the change between the radius of the parent and
each child (2), the difference of the change between the radius of the
parent and each child, the difference in the movement of both
daughter nuclei, and the angle of the division. We use a conditional
random field (CRF) to link these constraints (Lafferty et al. 2001). The
CRF provides a natural way of describing links by incorporating each
individual constraint into a feature, and then fitting a feature weight:

pðct jct2 1; �Þ¼ expðcðxÞÞ
cðxÞ¼ Sn

k

�
g jljk b

jlj
k h

jlj
k ð�Þ

�

c is the summation over all possible feature functions hjljk , whereas
b
jlj
k are the individual weights for the features. g jljk is an interaction

term that accounts for some of the covariability of the division

features. For the features we use time varying squared error functions:
hjljk ¼ 2ðxjljk 2m

jlj
k Þ2 ∕ s2;jlj

k , where xjljk is an observed feature. Because
the feature functions are unnormalized log normal probabilities, and
the CRF is an exponentiated summation over these functions, the CRF
essentially becomes a weighted unnormalized product of Gaussian
distributions. We make extensions to the mean and variance to allow
it to become more generalized:

m
jlj
k ¼ l

jlj;0
k þ l

jlj;1
k;t þ l

jlj;2
k;t et;t2 1

s
2;jlj
k ¼ expfgjlj;0k þ g

jlj;1
k;t þ g

jlj;2
k;t et;t2 1g

This extends previous time varying parameter specifications to
include an additional parameter et;t2 1, which is the elapsed develop-
ment time for the link: et;t21¼ oðcj;tÞ2 oðepðcj;tÞÞ. By allowing the
model to change based on the duration between time points we pro-
vide a dynamic relationship for the model: as the spacing between
time points increases, the mean and variance of the feature space
changes (e.g., the variance on the cell movement increases while the
mean division angle decreases). This extension allows us to decode
images taken from varying time spacings of image capture. Time
varying parameter representations are shown in Figure S1.

DECODING THE LINEAGE
The hierarchical probabilistic representation allows us to evaluate the
probability of any given lineage as the proportional product of the
generative, discriminative, general top-down, time to event, and linkage
submodels:

pð̂cÞ} pðxĵc; g; �Þpð̂cjd; �Þpð̂cjs; �Þpð̂cjl; �Þpð̂cje; �Þ

This proportional product can be used to determine the most
probable configuration for any given 4D image series by employing
hybrid simulated annealing and RJMCMC to decode the lineage.
RJMCMC is an extension to standard MCMC methods that are often
used in trans-dimensional model selection problems such as variable
selection, mixture models and factor analysis (Green 1995). In our
particular case, the number of nuclei and their link through time is an
unknown. As a result, determining the most probable lineage becomes
a trans-dimensional model selection problem. Similar work using
RJMCMC methods have been applied in computer vision for identi-
fying cells (Al-Awadhi et al. 2011), detecting trees (Perrin et al. 2006),
plant branching (Schlecht et al. 2007), road extraction (Lacoste et al.
2010), and human tracking (Zhao et al. 2008). Although particle filters
can also be used to address the uncertainty in nuclei in the lineage,
they are known to have difficulties in high dimensional problems (558
cells at the end of embryonic development), where the number of
particles needed to accurately represent the underlying model is both
computationally and memory prohibitive (Peursum et al. 2010, Snyder
et al. 2008).

We decompose the RJMCMC methods into two distinct set of
moves: single time point RJMCMC moves, and multi-time point
RJMCMC moves. The single time point RJMCMC moves behave
similar to traditional decoding approaches such as particle filters, by
addressing each individual time point in a sequential fashion t = 1, 2,
3,. . . through a series of reversible jumps moves such as adding a point,
or removing a point within a given time point. The multi time
RJMCMCmethods are akin to back filtering methods of particle filters
in that they can occur over multiple time points and at any current or
previous time and are generally defined by moves that affect the tree
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of the lineage, such as: adding a branch to the lineage, or removing
a branch from the lineage. By combining both of these approaches, we
are able to address issues that are difficult to account for using stan-
dard sequential RJMCMC methods, such as false deaths or lack of
detecting a daughter cell during a division. The full algorithmic details
on the selection of moves, updates, and all details on empirical pro-
posals are described in File S1.

Single-time RJMCMC
The single-time steps deal with moves on a single individual time
point. These consist of six moves, four RJMCMC moves, and two
standard MCMC moves. The four RJMCMC moves are: add a point,
remove a point, split a point into two points, and merge two points
into one point. Adding a point k = mt + 1 to time point t consists of
a transition from ĉ/ĉ’, where ĉ’ ¼ ĉ[​ ck;t . To simulate an accurate
draw from the posterior of ĉ’, we draw a new set of parameters for ck;t ,
where the shape parameters are drawn from their time varying prior
distributions (uniform if no previous exists (rotation)), and the loca-
tion is drawn from an empirical proposal distribution. Standard
MCMC methods are used to update the parameters of the new point
using a slice sampler (Neal 2003) and are intermixed with a linking
step to establish parent/child relationships from the previous time
point t2 1 as described in the following linking step. After updating
the parameters and linking the parents for the point, the addition of
the new point is then accepted or rejected using the acceptance ratio
described in File S1. The remove move performs the opposite, drawing
a point j from time t from an empirical proposal and choosing either
to accept or reject the move. The merge move operates by taking two
individual points, cj,t and ck,t, and merging them into one new point,
cl,t, whose parameters are set to the mean parameters of the previous
two points. The merged point then undergoes an updating and linking
step similar to the add move and is either accepted or rejected. The
split move is the reverse of the merge move, and splits one point cl,t
into two points, cj,t and ck,t, where the new parameters are then drawn
from the previous distributions, and the location is drawn from an
orthogonal split along the location of previous points. The parameters
and parents of each new point are then sampled similarly and either
accepted or rejected. In addition to the reversible jump moves, there
are also two standard MCMC moves. The first is an update point
move, which involves updating the parameters and parents of each
individual point. The second move, is a relink area move, which uni-
formly samples a point cj;t from all points at time t, selects all points
within a radius r of cj,t, and updates their parent cell relationship.

Multi-time RJMCMC
The multi-time steps are a combination of individual single time add
and remove steps that span over multiple time points. These consists
of five moves, four RJMCMC moves, and one standard MCMC move.
The four RJMCMC moves are: add a branch, remove a branch, adjust
start of branch, and adjust end of branch. For the add a branch move,
a time point is empirically sampled and proposed to extend backward
a length of k1 � 1þ Poissonðl1Þ in time using standard MCMC
methods to update the parameters for each individual time point. A
new configuration is then selected by empirically choosing a branch
length from all possible branches ĉ19; . . . ; ĉk9 based on their individual
probabilities. To maintain balance with the deletion move, the selected
branch then undergoes a relinking step, where the end of the new
branch is adjusted as described below. The new adjusted branch ĉ9 is
then accepted or rejected based on the standard acceptance ratio. The
remove branch proceeds in the opposite fashion: a uniformly selected
branch Bi is selected from the lineage, and undergoes a relinking of

the right side of the branch. All points within this branch are then
removed from the lineage "c 2 Bi. The new configuration, ĉ9 then
undergoes a similar acceptance ratio.

The adjust start and end branch moves involve extending or
contracting the start or end of a particular branch of the lineage tree. Let
Bi be a randomly selected branch of the lineage. The start relinking of Bi

involves proposing to add or remove a length of k2 � 1þ Poissonðl1Þ
elements of the branch. The move is considered in both directions for
both relinking steps, which results in 2�k2 þ 1 possible moves (the
relinking of the left, right, or the current state). The new state of the
model is then selected from the empirical probabilities of all possible
moves.

Parent/child linking step
The parent child relinking step is a sampling step for linking parent/
child relationships. For a cell cj;t , we propose to link it to a parent cell
at time point t2 1. Let Qj;t be the set of all points at time t2 1 that
are within a radius r � Nðmjlj

d ;s
2;jlj
d Þ of point cj;t , where the mean and

variance are the expected mean and variance from the distance feature of
the division link CRF. For each point in the proposed set, ck;t21 2 Qj;t ,
with configuration ĉk, we let

rj;k ¼
p
�
ĉk
����

SjQi;t j
m pð̂cmj�Þ

be the normalized proposed probability of a new parent. A parent is
empirically selected from these normalized probabilities. Additional
empirical moves are also used to allow for switching moves and for
relinking past/future events, and are discussed in File S1.

General parameters
In addition to the parameters for the nuclei and their links, we sample
the normalized development time for each time point in the series. Let
st be the observed normalized time for time point t. A linear model is
then fit to st: st = b0 + b1t, where b0 is the starting normalized offset
time, and b1 is the spacing between time points. The parameters are fit
using a weighted posterior that is proportional to the prior cell num-
ber distribution of the initially seeded data described in File S1 as well
as the cell number distribution of the decoded data and the generative
time varying components of the full model (time to event, major axis,
and cell numbers). These parameters are updated throughout the
decoding of the model.

Replica exchange model
To improve performance and increase convergence, a local replica
exchange model is used (Cheng et al. 2005). Throughout the decoding
process, a series of l possible chains are run, where each individual
chain has separate parameters ĉq; q ¼ f1; . . . ; lg, with their own tem-
perature aq ¼ Tk. For each decoding move (single and multi time),
standard updates are mixed with replica exchange moves, where the
temperature of each individual chain are proposed to exchange. Let
q, r be two individual replicas, with individual temperatures aq ¼ Tm,
and ar ¼ Tn. A proposal is made to swap the temperatures of particles
q; r with acceptance probability

aðaq ¼ Tm/Tn; ar ¼ Tn/TmÞ ¼ pð̂cqÞTnpð̂crÞTm

pð̂cqÞTmpð̂crÞTn

The acceptance or rejection of each decoding move is performed
on the lowest temperature replica:
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a
�
ĉiðT

kÞ; ĉiðT
kÞ9
�

where iðTkÞ is the replica indicator of the lowest temperature ele-
ment (the kth temperature). After the acceptance or rejection, the
individual replicas are all synchronized to the lowest temperature
replica: ĉi ¼ ĉiðT

kÞ; i ¼ f1; . . . ; lg. The local replica exchange model
allows us to more thoroughly explore the configuration space of the
lineage without getting stuck in local optima.

Postanalysis curation and expression determination
After the image series has been processed as described, a final manual
curation step takes place where individual errors are corrected as
described in Boyle et al. (2006). As part of this curation step, auto-
mated methods are run that provide the final cell lineage name using
a rule-based system and quantification of the expression across the
whole lineage.

RESULTS
We have developed a method to identify nuclei and trace the cell
lineage of the developing C. elegans embryo from 4D (3D space and
time) confocal microscopy images. Our method differs from previous
cell lineage tracing approaches by incorporating prior constraints
about C. elegans embryonic development into the tracing problem.
These constraints are designed to correct many of the errors prevalent
in earlier approaches by more explicitly taking into account the nat-
ural patterns inherit to development (e.g., expected angle of division,
timing between divisions). We modeled these constraints using com-
mon statistical approaches and use general aggregate measures across
the population of cells to provide a more extensible model. In addi-
tion, we also integrate the often two-step approaches for cell lineage
tracing (identifying nuclei in a first pass, and then linking nuclei
through time in a second pass) into a single unified method. This
unified approach, when combined with the previous constraints,
allows us to correct for many of the errors that were common with
previous methods in later stages of development.

Validation and accuracy
To assess the performance of this unified approach, we compared our
model (SALT) to the two previous full embryonic methods for C.
elegans lineage tracing of StarryNite referred to as WaterShed-
StarryNite (WS-SN) (Bao et al. 2006), and BlobSlice-StarryNite (BS-
SN) (Santella et al. 2010). Although other methods have also attempted
to address this lineage problem (Carranza et al. 2011, Giurumescu et al.
2012, Kang et al. 2012) all have error rates on par with the original
WS-SN, with none approaching the BS-SN method. Additionally,
none of these methods have been evaluated beyond early/mid embry-
onic development. As we demonstrate, our method is a significant
improvement over both the WS-SN and BS-SN methods at both early
and later stages of embryonic development.

We established a quantifiable measure for the accuracy of each
method by creating a test set of 12 image series evaluated at two
different time stages: the 350-cell stage (245 normalized time, right
after the 8th, but before the 9th AB lineage division), and the 550 (550
total visible cells, some of which are undergoing cell death)-cell stage
(335 normalized time, right after the 9th, but before the 10th AB
lineage division). The 550-cell stage was chosen as an easily identifi-
able embryonic development time needed to address the varying
biological experiment ranges of the individual image series. The error
rate for each individual series was assessed on two types of errors:
detection errors (expected cells that are missing, or new unexpected

cells) and linking errors (e.g., incorrect assignment of daughter cells
during division, change of naming between time points). To provide
a standardized method for evaluation, each individual method is au-
tomatically compared to fully curated data sets as described in detail
in Supplemental Methods. Full results of all three methods are shown
in Figure 5 and a detailed breakdown and analysis on the types of
linking errors are described in File S1.

Our approach outperformed the previous methods in both
detection and linking errors. In earlier stages of development (350
cells), both SALT and BS-SN performed similarly in detection abilities,
with a near-identical number of detection errors (6.8 vs. 7.3). How-
ever, in linking the nuclei, SALT performed better, having a 4.9-fold
reduction in errors (10.8 vs. 52.8). In later stages of development (550
cells), both the detection and linking of SALT were significantly im-
proved compared with the other methods. Our approach had a 2.2-
fold reduction in detection errors (49.6 vs. 106.8), as well as a 4.5-fold
reduction in linking errors (119.0 vs. 536.7) for an overall 3.8-fold
reduction compared with BS-SN.

The error rate is an important measure of quality because these
errors must be corrected through manual curation to obtain an
accurate lineage tracing and hence expression pattern. This step is
critical since even a single error early in development can cause
a cascade effect throughout the remainder of the lineage. A decrease in
the number of errors translates into a decrease in editing time for
a given developmental stage and also allows us to curate our data sets
to later stages of embryonic development. Our evaluation of the
editing effort in this paper is based on the number of curation steps
required to correct mis-specifications in the lineage. The previously
reported edits from WS-SN at the 350-cell stage required a combined
225 curation steps to establish the correct lineage. By contrast, our
method required 18 curations at the 350 cell stage, and only 168
curations at the 550-cell stage. Thus, our method effectively performs
better at the 550-cell stage than WS-SN at the 350-cell stage, requiring
25% fewer corrections. This significant improvement allows us to
follow spatiotemporal gene expression data out to later stages of
development than previously possible.

Detecting expression in final differentiated cells
Extending our lineage capabilities to the 550-cell (335 time) point
allows us to address biological questions that would not be possible
with earlier approaches. At the 350-cell (245 time) point, many of the
cells still require one or more divisions before they reach their
terminal embryonic cell fate. The majority of this final differentiation
occurs in the AB lineage, where the last remaining division often
signifies the specialization of a cell into one of many different subclasses
of neurons. Proper specialization of the neuronal sublineage is an
intricate process and involves many different genes acting in a complex
cascade of gene transcription (Hobert et al. 2010). With the extension
of lineaging to the 550-cell point, nearly all the individual cells have
reached their final state of differentiation in embryonic development.

To illustrate the importance of this increase in fidelity, we show the
expression profile of an individual gene, ttx-3, at both the previous
limit of 350 cells as well as at 550 cells obtained with our new method.
ttx-3 is a transcription factor required for proper functioning of the
thermosensory and olifactory response, and is responsible for cell fate
specification for a subset of the neurons (Bertrand and Hobert 2009).
As can be seen in Figure 6, data at 350 cells fails to capture any of the
mid/late onset expression for ttx-3. In contrast, our method is capable
of detecting the onset of expression that occurs in 12 cells near or after
the final cell fate decision. These 12 cells are composed of the six
previously detected cells: AINL, AINR, AIYL, AIYR, SMDDL, SMDDR
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(Bertrand and Hobert 2009), as well as the ASKR and ASKL cells and
four cell deaths. As can be seen in Figure 6, ASKL and ASKR appear in
both technical replicates and we expect this may relate to differences
in detection sensitivity, differences in constructs, or possibly differences
in integration sites.

To provide an estimate of how many genes are differentially
expressed in late stages of development that our method would be
able to detect, we looked at the next closest representation of
spatiotemporal data in C. elegans: tissue-specific expression data
obtained from fluorescence-activated cell-sorted data (Spencer
et al. 2011). Using a precompiled list of genes with significant
expression, we filtered for genes that have no expression in early
embryonic expression, but have differential expression in later
embryonic stages. Although this filtering provides a stringent cri-
teria for detecting differential late gene expression, we were still
left with 4456 potential genes that are candidates for late-onset
differential expression. This list, encompassing nearly 25% of the
genome, illustrates the importance of having high-fidelity robust
methods for our systematic approach to obtain genomic level ex-
pression data throughout embryonic development.

DISCUSSION
By incorporating general prior constraints into the model and
simultaneously addressing detection and linking, we have de-
veloped a robust method that has significantly reduced the error
rate for lineage tracing applied to 4D confocal microscopy images.
Our model is more accurate than previous approaches, with an
overall reduction in errors of 10.4-fold and 3.8-fold compared with
the WS-SN and BS-SN versions. This increase in accuracy has
allowed us to follow spatiotemporal gene expression to later stages
of development, providing greater resolution data for differentially
expressed genes.

Although our method has increased performance in both detection
and linking at later stages of development, we expect the increased
performance in detection is not the result of an improved detector, but
rather from the combined integration of prior data with a unified
detection and linking method. Many of the detection errors in later
stages can be corrected by accounting for prior constraints and
dependency between time: false-positive results are prevented by the
general constraints on division appearances and timings, and false
negatives are prevented from expectations on deaths. The importance
of this integration becomes even more apparent when dealing with
assigning relationships to nuclei between time points further on in
development. In these later time stages, the nuclei are small and
tightly spaced, creating irregular division patterns that often cannot be
explained by simple proximity relationships. Many of these issues are
often corrected at later sampling times, when constraints on division
timing and the presence of new information allows the model to
correct previous mis-assignments.

Full 4D imaging of developmental organisms has become in-
creasingly important, and methods to trace the lineage are paramount
for biological discovery. Although our current application of cell
lineage tracing has been for the direct purposes of obtaining high-
resolution systematic gene expression data, robust methods for
following cell identity are applicable to a variety of problems and are
critical for understanding phenotypic variation through detailed
quantifiable measures (cell movement, cell2cell interaction, cell cycle).
The benefits of high-fidelity lineage tracing become more apparent
when considering organisms or processes with variant cell fate, such
as cancer progression, where these quantifiable measures would pro-
vide us with a more fine grained analysis of the underlying mecha-
nisms that is not possible with other high throughput methods.

The methods used in our model are generalized linear models that
are extensions of standard hierarchical statistical models, with slight

Figure 5 Error rate evaluation. (A) The evaluation was performed at the 245 Sulston time (350 visible nuclei) and 335 Sulston time (550 visible
nuclei). 3D representation of the nuclei are shown, colors are identical to colors used in Figure 1. (B) Comparison of three methods: our method
(SALT), Blob Slice-StarryNite (BS-SN), and WaterShed-StarryNite (WS-SN). The method was evaluated for two types of errors, detection and
linking. Lower bars represent fewer errors and greater accuracy.

Volume 3 May 2013 | Cell Lineage Tracing in C. Elegans | 861



modifications to the RJMCMC to allow for empirical Bayesian proposal
distributions. With modifications to account for increased variance from
more complicated lineages, as well as performance modifications to
account for increased number of nuclei (discussed below), all of the
bottom-up and top-down distributions used in this model have a direct
application to other model organism. Additionally, we expect the more
formal probabilistic structure to be amendable to incorporating
additional previous information on the development of the organism
(e.g., joint lineage tracing of the nuclei with segmentation of the cell wall/
membrane), expanding our ability to address new biological problems.

We note that although our method outperformed both WS-SN
and BS-SN in accuracy, it does have a drawback in its runtime
performance. The total computational and runtime demands of our
model are �22 hours and 12 GB of ram for the 550 cell (335 time)
stage. This is in contrast to WS-SN’s requirement of 30 minutes and
200 MB of ram for the same stage. This runtime performance re-
quirement would be prohibitive for more complicated model organ-
isms such as zebrafish, which contains tens of thousands of cells
(Keller et al. 2008). Extensive profiling and runtime simulations
suggest, however, that the majority of this performance requirement
comes from the overhead of accessing the memory of the observed
and featured transformed image from the bottom up components.
Recent work has shown that the increased memory bandwidth
speeds and massive parallel capabilities of graphical processing units
would be a more practical solution for these methods (Suchard et al.
2010). To explore this possibility, these methods were rewritten in

OpenCL and run separately— resulting in a 25- to 100-fold increase in
throughput when executed on the graphical processing unit. These
results are encouraging and suggest that when combined with other
modifications (e.g., finely tuned proposal mechanisms), such improve-
ments would be capable of addressing the increased computational
demands for more complicated organisms.
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