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Objective: To quantitatively predict children’s and adolescents’ spherical equivalent (SE) by leveraging their
variable-length historical vision records.

Design: Retrospective analysis.
Participants: Eight hundred ninety-five myopic children and adolescents aged 4 to 18 years, with a complete

ophthalmic examination and retinoscopy in cycloplegia prior to spectacle correction, were enrolled in the period
from January 1, 2008 to July 1, 2023 at the University Hospital “Sveti Duh,” Zagreb, Croatia.

Methods: A novel modification of time-aware long short-term memory (LSTM) was used to quantitatively
predict children’s and adolescents’ SE within 7 years after diagnosis.

Main Outcome Measures: The utilization of extended gate time-aware LSTM involved capturing temporal
features within irregularly sampled time series data. This approach aligned more closely with the characteristics of
fact-based data, increasing its applicability and contributing to the early identification of myopia progression.

Results: The testing set exhibited a mean absolute prediction error (MAE) of 0.10 � 0.15 diopter (D) for SE.
Lower MAE values were associated with longer sequence lengths, shorter prediction durations, older age groups,
and low myopia, while higher MAE values were observed with shorter sequence lengths, longer prediction du-
rations, younger age groups, and in premyopic or high myopic individuals, ranging from as low as 0.03 � 0.04 D
to as high as 0.45 � 0.24 D.

Conclusions: Extended gate time-aware LSTM capturing temporal features in irregularly sampled time series
data can be used to quantitatively predict children’s and adolescents’ SE within 7 years with an overall error of
0.10 � 0.15 D. This value is substantially lower than the threshold for prediction to be considered clinically
acceptable, such as a criterion of 0.75 D.
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in this article. Ophthalmology Science 2024;4:100563 ª 2024 by the American Academy of Ophthalmology. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Myopia stands as one of themost prevalent refractive errors of
the eye, affecting a substantial proportion of the global pop-
ulation. It is estimated that the prevalence of myopia will be
>50% by 2050.1 Currently, the management and therapy of
myopia aim to slow down its progression and minimize its
impact on vision.2 Spectacles are the prevailing choice for
correcting myopia, with an extensive range of newly
developed contact lenses and spectacles demonstrating
notable effectiveness in impeding its progression.3

Additionally, widely adopted and effective methods for
myopia control encompass the usage of low-dose atropine
eye drops and orthokeratology.3e5 To identify high risk
children and adolescents for more timely and effective inter-
vention, in recent years, research has increasingly focused on
predictingmyopia onset and progression, considering various
factors such as genetics, sex, age, environmental influences,
initial refractive error, and corneal shape and structure et
cetera.6e9 Collecting large-scale fact-based clinical data that
are unified and reliable is a slow and prolonged process, and
for this reason historical demographic and refractive data
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depicting myopia progression can be associated with future
changes in visual acuity.10

Utilization of big databases provides sample data for
training and refining predictive models, enhancing their
accuracy and robustness in making informed predictions.11

Understanding data and objectives, data cleaning and
preparation, exploratory data analysis, machine learning,
and predictive models are critical steps in effectively
analyzing a large database and extracting valuable insights
to support decision-making and achieving analytical objec-
tives like variable predictions.12 Analysis of big databases
engaging deep learning excels at understanding complex
nonlinear parameters and data structures. It often
outperforms traditional models in medical prediction
tasks.13e15 Nevertheless, applications of deep learning in
predicting myopia are quite limited.

Since refractive eye examination data consists of irreg-
ular and asynchronous time series data, Liu et al presented
an advanced machine learning technique capturing temporal
features in such samples, called knowledge guided
1https://doi.org/10.1016/j.xops.2024.100563
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time-aware long short-term memory (T-LSTM).16

Considering the structure of our data, we incorporated 2
time-aware gates that adjust the memory content according
to the elapsed time since the last visit and the elapsed time
since the last measured values for all variable streams,
predicting children’s and adolescents’ spherical equivalent
(SE) based on their variable-length historical vision records
up to 7 years after first examination.
Methods

Data Description

The dataset utilized in this study comprises 46 643 historical vision
records from 13 364 children and adolescents aged 4 to 18 years
diagnosed with refractive error and followed-up at the pediatric
ophthalmology clinics of the University Eye Department of Uni-
versity Hospital “Sveti Duh” within the period from January 1,
2008 to July 1, 2023 in Zagreb, Croatia. Patients were subjected to
a standardized assessment of visual acuity using a logarithmic vi-
sual acuity logarithm of the minimum angle of resolution inline
chart. The assessments were conducted at both near (40 cm) and
distance (3 m) settings, with evaluations performed monocularly
and binocularly. These evaluations were carried out with and
without correction, encompassing diopters (D) of spheres and
cylinders on specific axis degrees. The study included the assess-
ment of both uncorrected visual acuity and best-corrected visual
acuity. These measurements were obtained using subjective
refraction, and visual acuity was determined through retinoscopy in
cycloplegia. Tropicamide 1% (sold as Mydriacyl by Alcon Labo-
ratories Inc) was administered into each eye of the patient in a
series of 3 applications, spaced 15 minutes apart. This protocol
aimed to attain optimal mydriasis and cycloplegia for the exami-
nation. A complete ophthalmic assessment was conducted,
encompassing both slit lamp examination and indirect fundus ex-
amination. The purpose was to rule out any ocular comorbidities
and potential underlying factors contributing to myopia. Addi-
tionally, comprehensive data were gathered, including self-reported
medical history and input from legal guardians. This encompassed
details about prior ophthalmic conditions, surgeries, and any in-
stances of myopia within the family. All this information was
documented for further analysis. Ophthalmic examinations were
conducted by experienced pediatric ophthalmologists.

Inclusion criteria: children and adolescents from Central and
Southeastern Europe, aged �4 and <19 years, diagnosed with
primary myopia or compound myopic astigmatism with a mini-
mum of 2 visits, in addition to the first and last visit spaced by no
<6 months apart. Exclusion criteria: patients with eye comorbid-
ities, including mixed astigmatism, strabismus, corneal diseases,
retinopathy of prematurity, amblyopia, patients �19 years of age,
and patients allergic to cycloplegic drugs.

Adhering to the International Myopia Institute definition,17

premyopia was characterized as a state where the SE refractive
error of an eye falls within the range of >�0.50 D and �0.75 D
when ocular accommodation is at rest. Low myopia was
classified as a condition where the SE refractive error of an eye
is ��0.50 D and >�6.00 D when ocular accommodation is
relaxed. High myopia was identified as a condition in which the
SE refractive error of an eye is ��6.00 D when ocular
accommodation is relaxed.

Spherical equivalent was calculated as spherical power plus half
of the cylindrical power.
2

The dataset consisted of electronic medical records representing
initial and follow-up visits, each containing 16 distinct features.

The features included unique identifiers for each individual,
date of first and follow-up visits (check date), demographic factors
(school-age group, gender, and age), refractive characteristics
(correction method, uncorrected visual acuity, best-corrected visual
acuity, best-corrected visual acuity binocularly, baseline cyclo-
plegic SE, corrected SE, sphere, cylinder, and axis), parental
myopia status, and myopia classification. Table 1 presents baseline
statistics for both discrete and continuous variables, while Figure 1
and 2 visualize their respective distributions.

Data Preprocessing

To mitigate any potential interference stemming from the original
sequential encoding of categorical features, such as correction
method and gender, we applied one-hot encoding. This technique
creates unit vectors representing each distinct option within a
categorical feature. The dimensionality of each vector corresponds
to the total number of categories within the feature.18 For instance,
considering parental myopia as a categorical feature, a possible
one-hot encoding could represent both myopic parents as (1, 0,
0), 1 myopic parent as (0, 1, 0), and nonmyopic parent as (0, 0, 1).

Following the process of one-hot encoding, features were
standardized except for “ID,” which functions as a unique identifier
specific to each individual in the dataset, and “check date,”
reflecting the date of the examination, to expedite model conver-
gence. The standardization rescales the sample mean to zero
(m ¼ 0) and variance to unit (s ¼ 1),19 as

x0 ¼ x� m

s

In order to augment the sample size, the historical records of
each child or adolescent were divided into multiple samples. It was
ensured that all input data utilized for training and prediction was
recorded prior to the corresponding label (i.e., the SE value). For
example, an idividuals’s 3 records (a, b, c) belonging can be
divided into 4 distinct samples, each predicting subsequent records
within defined time intervals:
1. Record [a] predicts record [b] SE, over time interval [ab].
2. Record [a] predicts record [c] SE, over time interval [ac].
3. Record [b] predicts record [c] SE, over time interval [bc].
4. Records [a] and [b] predict record [c] SE, over the time

intervals [ab] and [bc].
The dataset was then segmented into layers based on sequence
lengths. Subsequently, each layer was partitioned into a training set
(80%), a validation set (10%), and a testing set (10%).

Extended Gate Time-Aware Long Short-Term
Memory

The recurrent neural network (RNN) architecture is proficient in
capturing long-term memory by effectively incorporating contex-
tual information. However, it grapples with the challenge of
gradient vanishing or exploding, which impacts its training and
learning process.20,21

To overcome this challenge, long short-term memory (LSTM)22

integrates short-term and long-term memory via gate control
mechanisms. However, it operates under the assumption that the
time intervals between sequential elements are uniformly distrib-
uted, thus limiting its ability to handle irregular time intervals.

Introducing time-aware LSTM, it implements time interval in-
formation based on the standard LSTM, attenuating short-term



Table 1. Study Group Baseline Feature Description

Features Statistics

School-age group Preschool (140), elementary school (1ste4th grade) (273), elementary school (5the8th grade)
(360), high school (122)

Gender Male (371), female (524)
Age (yrs) 11.20 � 3.56 [4.09, 18.95] (895)
Correction method Uncorrected (190), spectacles, glasses (1600)
UCVA (decimal) 0.71 � 0.19, [0.2, 1] (1790)
Sphere (D) �1.79 � 1.55, [�12.50, 0.25] (1790)
Cylinder (D) �0.61 � 0.72, [�5.00, 0.75] (1790)
Axis (�) With-the-rule astigmatism (1056), against-the-rule astigmatism (208), 3 oblique astigmatism, [0, 180] (40)
BCVA (decimal) 0.96 � 0.09, [0.4, 1] (1790)
BCVA binocularly (decimal) 0.99 � 0.04, [0.4, 1] (895)
Parental myopia Nonmyopic parents (514), 1 myopic parent (310), both parents myopic (71)
Myopia classification Premyopia (51), low myopia (813), high myopia (31)
Baseline cycloplegic SE (D) �1.94 � 1.63, [�11.87, 0.00] (1790)
Corrected SE (D) �1.60 � 1.56, [�11.87, 0.00] (1790)

Discrete variables: distinct category (N).
Continuous variables: mean � standard deviation, [min, max] (N). Axis values follow a bimodal distribution, so the mean value and standard deviation are
less meaningful. Therefore, we treat it as a quasi-categorical variable with 3 classes: with-the-rule astigmatism (60� � Axis � 120�), against-the-rule
astigmatism (Axis < 30� or Axis > 150�), and oblique astigmatism (30� � Axis < 60� or 120� < Axis � 150�). Detailed distribution is shown in
Figures 1 and 2.
BCVA ¼ best-corrected visual acuity; D ¼ diopters; SE ¼ spherical equivalent; UCVA ¼ uncorrected visual acuity.
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memory according to the time intervals in order to capture the
temporal dynamics of the sequential data with temporal irregular-
ity.23 Time-aware LSTM distinguishes itself from the standard
LSTM primarily through its modification of short-term memory,
which is tailored based on the time intervals between records
during the subspace decomposition of the previous time step. The
Figure 1. Baseline distributions of discrete features. School age group, gender,
individuals (N ¼ 895). Correction method and axis was counted for each eye
issue arises during the import of incomplete data. In cases where an
individual is content with their current spectacle correction, not all
historical data for that particular individual will consistently
contain retinoscopy under cycloplegia. To bypass loss of data and
complement the time-series datasets, adjustment of short-term
memory to not only time intervals between variable streams was
myopia classification, and parental myopia count was related to number of
(N ¼ 1790).
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Figure 2. Baseline distributions of continuous features. Age was related to number of individuals (N ¼ 895). Uncorrected visual acuity, BCVA, best
corrected binocular visual acuity (BCVA binocularly), sphere, and cylinder was counted for each eye (N ¼ 1790). BCVA ¼ best corrected distance visual
acuity; D ¼ diopter; UCVA ¼ uncorrected distance visual acuity.
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accomplished, but additionally, the elapsed time since the last
measured values for each variable stream was incorporated, pro-
posing extended gate time-aware LSTM (egT-LSTM).

Extended gate time-aware LSTM unit features a forget gate, an
input gate, an output gate, and a cell state. The current state ht is
influenced by the previous state ht�1 and the current input xt.

Forget gate:24

ft ¼ s
�
Wf xt þUf ht-1þbf

�

Input gate:25,26

it ¼ s ðWixtþUiht-1 þbiÞ
~Ct ¼ tanhðWcxt þUcht-1 þbcÞ

Output gate:27,28

ot ¼ s ðWoxt þUoht-1 þ boÞ
ht ¼ ot $ tanh ðCt Þ

Cell state:29

Ct ¼ ft $ C�t-1 þ it $ ~Ct

where s and tanh represent the activation functions, W, U, and b
are the learnable parameters, and $ is the Hadamard product.

Extended gate time-aware LSTM extends LSTM with 2 time-
aware gates. The short-term time-aware gate gt is updated by the
elapsed time since the last time step, and the long-term time-aware
gate gt0 is updated by the elapsed time since last measured value for
each feature.30,31

gt ¼ sð1 =DtÞ
gt

0 ¼ s
�
Wgð1 =sðDt

0ÞÞþ bg
�

Based on the description provided in T-LSTM,23 we isolated both
the short-term and long-term memory components from the
4

preceding memory cell Ct�1, denoted as CS
t�1 and CL

t-1. Subse-
quently, we modified the short-term and long-term memory inde-
pendently using their respective time-aware gates gt and gt0. More
specifically, the short-term memory undergoes a discounting pro-
cess based on the time that has passed since the last time step,
while the long-term memory is discounted based on the time
elapsed since the last recorded values. We labeled the discounted
short-term and long-term memory cell as CDS

t�1 and CDL
t�1.

Lastly, the aggregate adjusted prior memory cell, denoted as C*t-1,
is calculated by summing the discounted short-term and long-term
memories. The computation for memory cells is expressed
as22,23,32e34:

CS
t�1 ¼ tanhðWdCt�1 þ bdÞ

CL
t�1 ¼ Ct-1 - C

St-1

CDS
t�1 ¼ CS

t�1$gt

CDL
t�1 ¼ �

CL
t�1 $ gt

0�

C�
t�1 ¼ CDL

t�1 þ CDS
t�1

where Wd and bd are the learnable parameters.

Application of egT-LSTM in Myopia Prediction

The input of each cell of egT-LSTM consists of 4 components:
clinical feature xt, elapsed time Dt since last time step, and
elapsed time Dt0 since the last measured values. The output is
the current state ht. In the myopia prediction model introduced



Table 2. The MAE of SE in the

Prediction Duration (yrs)

The MAE of SE for Different Sequence Lengths (Mean ± Standard Deviation [Sample Size]) (D)

1 2 3 4 5

0.25 0.26 � 0.16 (13)* 0.05 � 0.05 (9)* 0.02 � 0.02 (4)* 0.01 � 0.00 (1)*
0.5 0.12 � 0.13 (268) 0.09 � 0.07 (886) 0.03 � 0.04 (113) 0.03 � 0.04 (92)
0.75 0.10 � 0.13 (839) 0.06 � 0.06 (1404) 0.06 � 0.06 (452) 0.06 � 0.07 (196) 0.03 � 0.01 (2)*
1 0.14 � 0.15 (546) 0.08 � 0.07 (1092) 0.06 � 0.07 (1202) 0.06 � 0.06 (465) 0.05 � 0.06 (52)
1.5 0.15 � 0.16 (302) 0.09 � 0.10 (796) 0.05 � 0.08 (515) 0.06 � 0.07 (520) 0.06 � 0.08 (78)
2 0.15 � 0.16 (210) 0.11 � 0.11 (432) 0.09 � 0.1 (369) 0.065 � 0.082 (211) 0.04 � 0.04 (135)
3 0.18 � 0.21 (130) 0.13 � 0.15 (314) 0.10 � 0.11 (248) 0.10 � 0.11 (115) 0.07 � 0.10 (307)
4 0.20 � 0.20 (115) 0.16 � 0.20 (228) 0.13 � 0.15 (169) 0.14 � 0.15 (92) 0.12 � 0.16 (285)
5 0.29 � 0.27 (205) 0.21 � 0.18 (140) 0.13 � 0.15 (160) 0.13 � 0.15 (105) 0.12 � 0.18 (69)
6 0.34 � 0.31 (203) 0.25 � 0.20 (85) 0.19 � 0.22 (93) 0.19 � 0.20 (95) 0.15 � 0.20 (81)
7 0.45 � 0.24 (81) 0.30 � 0.23 (60) 0.20 � 0.21 (72) 0.18 � 0.18 (90) 0.15 � 0.16 (59)
Summary 0.17 � 0.23 (2912) 0.09 � 0.15 (5446) 0.08 � 0.12 (3397) 0.07 � 0.1 (1982) 0.09 � 0.09 (1068)

D ¼ diopters; egT-LSTM ¼ extended gate time-aware long short-term memory; MAE ¼ mean absolute error; SE ¼ spherical equivalent.
*Represents that the sample size is too small (<50) to be a solid reference.
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in this paper, we incorporate 2 time-aware gates, modifying the
input of each cell to include information about both time in-
tervals. The time-aware gate for long-term memory operates as
a time decay function, modifying the long-term memory based
on the duration since the last measurement of the respective
clinical parameter, Dt0. The short-term time-aware gate, which
is the second time gate, operates as a time decay function for
adapting short-term memory. It calculates the elapsed time
since the previous time step, Dt. Both the long and short time-
aware gates regulate the flow of prior short or long-term
memories into the present memory. The inputs fall into 2
categories, records and time intervals. An individual’s record is
represented by an n 	 16 matrix, encompassing n instances.
Within each instance, there are 16 distinct features.
Figure 3. The architecture of egT-LSTM cell (left); red represents the unique
prediction layers (right) combine all the hidden states learned from egT-LSTM a
egT-LSTM ¼ extended gate time-aware long short-term memory; LSTM ¼ lon
Correspondingly, the time intervals for each individual are
represented as a vector containing n time interval values. The
last time interval value aligns with the prediction duration. The
resultant output corresponds to the subsequent state htþ1. Ul-
timately, the last-step prediction involves passing this output
through a fully connected neural network. The model’s archi-
tecture is illustrated in Figure 3.

In the context of myopia prediction, modifying the value of
the last time interval facilitates the prediction of SE values at
future instances. The training parameters of the model are as
follows: Learning Rate ¼ 0.001, Batch Size ¼ 256, Optimizer
is Adam Optimizer, Epochs ¼ 500, RNN Layers ¼ 1, T-
LSTM Hidden Size ¼ 1024, and Early Stopping
Patience ¼ 10.
gates in egT-LSTM and blue represents the original gates in LSTM. The
nd the static features, such as patient demographics, for the final prediction.
g short-term memory; SE ¼ spherical equivalent.
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Testing Set for egT-LSTM

The MAE of SE for Different Sequence Lengths (Mean ± Standard Deviation [Sample Size]) (D) Summary
6 7 8 9

0.15 � 0.18 (27)*
0.08 � 0.12 (1359)
0.07 � 0.08 (2893)

0.02 � 0.011 (4)* 0.08 � 0.08 (3361)
0.06 � 0.06 (18)* 0.08 � 0.10 (2229)
0.04 � 0.07 (64) 0.03 � 0.06 (11)* 0.09 � 0.12 (1432)
0.06 � 0.07 (84) 0.05 � 0.08 (23)* 0.10 � 0.14 (1221)
0.10 � 0.14 (168) 0.11 � 0.12 (52) 0.13 � 0.15 (1109)
0.11 � 0.16 (105) 0.14 � 0.14 (63) 0.15 � 0.02 (3)* 0.18 � 0.21 (853)
0.15 � 0.18 (63) 0.14 � 0.14 (55) 0.15 � 0.16 (57) 0.11 � 0.06 (5)* 0.22 � 0.22 (737)
0.15 � 0.15 (12)* 0.14 � 0.14 (11)* 0.12 � 0.10 (8)* 0.11 � 0.12 (9)* 0.24 � 0.24 (402)
0.09 � 0.12 (518) 0.11 � 0.13 (215) 0.15 � 0.14 (71) 0.11 � 0.11 (14)* 0.10 � 0.15 (15623)
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Metrics

The model’s prediction performance is assessed using the mean
absolute error (MAE), calculated as the average of the absolute
deviations, as:35

MAE ¼ 1
m

Xm

i¼ 1

jðyi � �yiÞj

It takes values in the range of [0,þN). A smaller MAE suggests a
more accurate model.

Statistical Analysis

Analysis of variance was utilized to compare means among distinct
age and myopia groups, as well as to evaluate disparities in per-
formance across various models. Data processing and statistical
analyses were performed in R software (version 4.0.3, https://
www.r-project.org/) and Python 3.7 (Python Software Foundation,
http://www.python.org).

Ethics Declarations

The experimental protocol was established according to the ethical
guidelines of the Declaration of Helsinki and was approved by the
ethics committee of University Hospital “Sveti Duh,” Zagreb,
Croatia and the School of Medicine of the University of Zagreb,
Croatia. Given the retrospective nature of the study, informed
consent was not required.

Results

The cleaned dataset contains 10 170 eyes (samples) of 895
children and adolescents. Each sample is associated with 2
to 10 records. The number of samples with 2, 3, 4, 5, 6, 7,
8, 9, and 10 records is 208, 210, 216, 250, 228, 196, 210,
130, and 142, respectively. The time span between the first
and last record for any given sample ranged from 0.25 years
(�0.25 years) to 7 years (>6 years, <8 years). After data
preprocessing, the dataset comprises an increased number
of samples, reaching a total of 156 230. Sample sizes for 1,
2 ,3, 4, 5, 6, 7, 8, and 9 sequence lengths were as follows:
6

23 296, 43 571, 27 179, 15 859, 8546, 4141, 1720, 558, and
114, respectively.

TheMAEof future SEwas 0.10� 0.15Don the testing set.
Stratified MAE is shown in Table 2. Overall best prediction
was achieved when prediction is accomplished with 4
sequence lengths, where average MAE was 0.07 � 0.01 D,
ranging from 0.03 � 0.04 D for 0.5 years of prediction to
0.18 � 0.18 D for a 7 years prediction. Lowest prediction
was achieved with just 1 sequence length, ranging from
0.10 � 0.13 D for 0.75 years to 0.45 � 0.24 D for 7 years
prediction duration. Regarding 4 to 6, 7 to 9, 10 to 12, 13 to
15, and 15 to 18 age groups, average MAE and standard
deviations were 0.12 � 0.12 D, 0.1 � 0.13 D, 0.08 � 0.11
D, 0.08 � 0.13 D, and 0.05 � 0.08 D (P < 0.001),
respectively. Based on the classification of myopia, MAE
and standard deviations for premyopia, low myopia, and
high myopia were 0.14 � 0.15 D, 0.10 � 0.14 D, and
0.16 � 0.17 D (P < 0.001), respectively. Illustrative
examples are provided for 4 cases, Figure 4. In general,
when the sequence is lengthened and the prediction time is
shortened, the prediction error tends to decrease. An MAE
of <0.75 D in the context of SE is considered as a
prediction that meets clinical acceptability standards.35,36

Comparing egT-LSTM with models that can capture
temporal tendency, T-LSTM and LSTM, it has been
affirmed that egT-LSTM has overall best prediction per-
formance, Table 3. Given that LSTM does not inherently
handle time intervals, we treat the time intervals as an
extra feature incorporated into the input records.
Consequently, the input record for an individual in these
models is represented as an n 	 17 matrix. An example of
using egT-LSTM and T-LSTM with the same record set is
shown in Figure 5. The reason why egT-LSTM and
T-LSTM outperform LSTM is that the preceding models
can effectively capture temporal trends by individually
processing temporal features, and additionally egT-LSTM
compared with T-LSTM, additionally modifying the long-
term memory based on the duration since the last mea-
surement of the respective clinical parameter reduces the

https://www.r-project.org/
https://www.r-project.org/
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Figure 4. Four case examples of SE prediction using egT-LSTM. In each example, the curve except the starting point means the predicted value, and the
red data points denote the true values. The demographic and refractive characteristics of the 4 cases were consistent with the most prevalent characteristics
observed within the study sample, excluding the baseline SE. These factors included the baseline age group of 10 to 12 years, female gender, initial pre-
scription of spectacle correction during the first visit, and the specific profile of low myopic individuals with nonmyopic parents. D ¼ diopter; egT-
LSTM ¼ extended gate time-aware long short-term memory; SE ¼ spherical equivalent.
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impact of sparse records on trend fluctuations, lowering
MAE, respectively.
Discussion

To the best of our knowledge, this is the first study
achieving quantitative prediction of SE as far as 7 years in
the future utilizing RNN models. Additionally, this is the
first study on a European population that quantitatively
predicts future SE.

Scarce data exist on quantitative predictions of future SE.
Only 2 studies conducted in children and adolescents in
China have achieved corresponding predictions. Lin et al,35

engaging random forest algorithm, successfully predicted
future SE quantitatively in a study involving almost
130 000 individuals in Guangdong, China, 2018. The
MAE for SE prediction over 1 to 8 years ranged from
Table 3. Comparison of the M

Model

The MAE of SE for Different Sequence Len

1 2 3 4 5

egT-LSTM 0.17 � 0.23 0.09 � 0.15 0.08 � 0.12 0.07 � 0.10 0.09 � 0
T-LSTM 0.19 � 0.25 0.10 � 0.16 0.08 � 0.13 0.08 � 0.10 0.10 � 0
LSTM 0.21 � 0.28 0.13 � 0.16 0.08 � 0.14 0.09 � 0.11 0.11 � 0
P-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.00

ANOVA was used to test the significance of difference between groups.
Bolded values represent statistically significant values.
ANOVA ¼ analysis of variance; D ¼ diopters; egT-LSTM ¼ extended gate
MAE ¼ mean absolute error; SE ¼ spherical equivalent; T-LSTM ¼ time-awa
0.25 to 0.80 D. Quantitative SE prediction implementing
RNN was first described by Huang et al.37 Processing data
from 37 586 children and adolescents aged 6 to 20 years
in Chengdu, China, it achieved prediction within 2 and a
half years. The MAE on the testing set was 0.10 � 0.14
D, ranging from 0.04 � 0.05 D to 0.19 � 0.17 D
considering varying historical record lengths and
prediction durations. Comparing different models, RNN
achieved lower MAE in comparison to random forest
algorithm due to irregular time interval distribution and
variable record lengths that challenge for effectively
utilizing temporal information with traditional methods.37

Implementing T-LSTM enables adept handling of data
sequences with differing lengths. It excels in capturing
temporal patterns by processing temporal features
separately, even in cases of irregular time intervals.
Taking advantage of separate processing of irregular
temporal features, this paper enforced egT-LSTM, with an
AEs of Different Models

gths (Mean ± Standard Deviation) (D)

Summary6 7 8 9

.09 0.09 � 0.12 0.11 � 0.13 0.15 � 0.14 0.11 � 0.11 0.10 � 0.15

.10 0.11 � 0.13 0.13 � 0.13 0.16 � 0.16 0.12 � 0.11 0.11 � 0.16

.11 0.12 � 0.13 0.14 � 0.14 0.18 � 0.17 0.13 � 0.18 0.13 � 0.17
1 < 0.001 0.01 0.04 0.12 < 0.001

time-aware long short-term memory; LSTM ¼ long short-term memory;
re long short-term memory.
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Figure 5. A case example of SE prediction using T-LSTM, left figure, and egT-LSTM, right figure. In each example, the curve except the starting point
means the predicted value, and the red data points denote the true value. Based on the initial parameters that suggested potential rapid myopia progression
(both parents myopic, a preschool-aged female child, aged 6e7 years) and with incomplete follow-up data and irregular attendance at scheduled follow-ups,
this case exemplifies how the egT-LSTM model can provide more stable predictions of SE in asynchronous and sparse records, compared with the T-LSTM
model. D ¼ diopters; egT-LSTM ¼ extended gate time-aware long short-term memory; SE ¼ spherical equivalent; T-LSTM ¼ time-aware long short-term
memory.
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additional time-aware trait. Gathering extensive, reliable
fact-based clinical data on a large scale is a time-consuming
and gradual process.10 As a result, best quantitative SE
prediction models utilize historical demographic and
refractive data. Because of consistently linked sparse
records and varying time intervals between measurements,
we proposed adjustment of short-term memory to not only
time intervals between variable streams, but also the elapsed
time since the last measured values for each variable stream.
Comparing T-LSTM and egT-LSTM on similar patient re-
cords, less fluctuations and lower MAE was obtained using
egT-LSTM, Figure 5.

The meaningfulness of a prediction is contingent upon its
precision and timely arrival, granting an extra clinical
advantage. As demonstrated by our results, egT-LSTM ach-
ieves a clinically acceptable prediction35,36 as far as 7 years in
the future. Despite statistically significant differences inMAE
across various age or myopia classification groups, these
differences fall below the threshold of objective refraction
measurement error at group levels.38 Thus, from a clinical
perspective, these variations are insignificant. It is important
to note the substantial variability observed in objective
refraction measurement error at the individual level.38 This
underscores the crucial need for precise "long-term"
predictions that are of utmost importance, especially
considering the potential side effects of current myopia
control treatments, which, while effective, require careful
and effective utilization.5,39 Moreover, early and accurate
prediction of myopia during its initial stages is crucial to
optimize the benefits of treatment. At the moment, using
TensorBoard, a software named MyopiaMomentum is
under development. Based on the initial examination
variables, the model would generate numerical and
graphical predictions of myopia progression.

The current study has some limitations. Firstly, the num-
ber of myopic individuals in the Republic of Croatia is
significantly lower than in Asian countries. However, the
long follow-up period and inclusion of just primary myopic
8

individuals enabled high sample numbers after data pre-
processing. Secondly, implementation of ocular biometric
data could improve accuracy of egT-LSTM even more;
however, our model achieved similar prediction accuracy36

even without axial length measurements and corneal
curvature, which is in concordance to other recent studies
on myopia prediction.40 Thirdly, myopia progression is
related to many other factors like time spent outdoors, near
work activity time, digital screen time, and degree of room
illumination.41 Nonetheless, our dataset is limited to visual
screening records and parental myopia data, as other
environmental data records were not accessible for this
study. Utilizing multimodal learning, which incorporates
vision records and various quantitative environmental data,
could enhance prediction accuracy even further.

Our study introduced a novel approach using egT-LSTM
to accurately forecast SE progression in myopic children
and adolescents over a 7-year span. By precisely predicting
SE evolution, the model enables early detection of myopia
progression, facilitating timely interventions crucial for
effective myopia prevention and management strategies.
This innovative use of egT-LSTM underscores deep learn-
ing’s ability to capture intricate temporal patterns in irreg-
ularly sampled time series data, aligning more closely with
fact-based data characteristics and thereby enhancing its
applicability. These advancements offer promising avenues
for further refinement in myopia prediction and control
strategies. Furthermore, acknowledging serious re-
percussions of untreated myopia underscores the importance
of our quantitative SE prediction model in assisting in-
dividuals at risk of rapid progression and enabling targeted
interventions. This substantially contributes to the over-
arching objective of myopia prevention and control. The
adoption of egT-LSTM represents a substantial leap for-
ward, enabling the extraction of temporal features from
complex datasets and thereby improving the applicability
and precision of myopia prediction models amidst the
intricate nature of myopia progression.
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