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Abstract

To expand the known spectrum of genes that maintain genome stability, we screened a recently released collection of
temperature sensitive (Ts) yeast mutants for a chromosome instability (CIN) phenotype. Proteasome subunit genes
represented a major functional group, and subsequent analysis demonstrated an evolutionarily conserved role in CIN.
Analysis of individual proteasome core and lid subunit mutations showed that the CIN phenotype at semi-permissive
temperature is associated with failure of subunit localization to the nucleus. The resultant proteasome dysfunction affects
chromosome stability by impairing the kinetics of double strand break (DSB) repair. We show that the DNA repair protein
Mms22 is required for DSB repair, and recruited to chromatin in a ubiquitin-dependent manner as a result of DNA damage.
Moreover, subsequent proteasome-mediated degradation of Mms22 is necessary and sufficient for cell cycle progression
through the G2/M arrest induced by DNA damage. Our results demonstrate for the first time that a double strand break
repair protein is a proteasome target, and thus link nuclear proteasomal activity and DSB repair.
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Introduction

Genomic instability is recognized as being an important

predisposing condition that contributes to the development of

cancer [1]. A major class of genome instability is Chromosome

Instability (CIN), a phenotype that involves changes in chromosome

number and structure. Studies in yeast have shown that multiple

overlapping pathways contribute to genomic stability [2]. The

current view is that most spontaneous chromosomal rearrangements

result from DSBs created mainly during DNA replication as a result

of broken, stalled or collapsed replication forks [3]. In eukaryotes,

DSBs are repaired either by Homologous Recombination (HR) or

by Non-Homologous End Joining (NHEJ) mechanisms. Defects in

either repair pathway result in high frequencies of genomic instability

[4]. The HR pathway utilizes a homologous sequence to faithfully

restore the DNA continuity at the DSB [5]. In contrast, NHEJ is a

mechanism able to join DNA ends with no or minimal homology

[6]. Recent studies suggest a role for the proteasome in DSB repair

pathways: The Sem1/DSS1 protein is a newly identified subunit of

the 19S proteasome in both yeast and human cells. In yeast, Sem1 is

recruited to DSB sites with the 19S and 20S proteasome particles,

and is required for efficient repair of DSBs by HR and NHEJ [7].

Human DSS1 physically binds to the breast cancer susceptibility

protein BRCA2, that plays an integral role in the repair of DSBs, and

is required for its stability and function and consequently for efficient

formation of RAD51 nucleofilaments [8,9].

The Ubiquitin-Proteasome System (UPS) is the supramolecular

machinery that mediates the ubiquitin-mediated proteolysis of

damaged or misfolded proteins, or of short-lived regulatory

proteins. The 26S proteasome comprises the 20S core particle

(CP) and the 19S regulatory particle (RP), which represent the

base and lid substructures, respectively [10]. Nuclear targets that

are degraded by the proteasome include proteins involved in

pathways critical for chromosome integrity. For example,

degradation of polyubiquitinated mitotic cyclin and of the

anaphase inhibitor Pds1/securin allow sister chromatids to

dissociate at the onset of anaphase [for a review see [11]]. The

protein levels of the tumor suppressor protein p53 are also subtly

controlled by ubiquitin-mediated degradation [12].

Previous studies suggest that the amino-terminal ubiquitin-like

(Ubl) domain of Rad23 protein can recruit the proteasome for a

stimulatory role during nucleotide excision repair (NER) in S.

cerevisiae. It has also been shown that the 19S regulatory complex of

the yeast proteasome can affect nucleotide excision repair

independently of Rad23 protein [13]. Other studies suggested a

model for the regulation of Xeroderma Pigmentosum protein C

(XPC), which plays a role in the primary DNA damage sensing in

mammalian global genome NER. According to this model the
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ubiquitin-proteasome pathway has a positive regulatory role for

optimal NER in mammalian cells, and appears to act by

facilitating the recruitment of XPC to DNA damage sites [13–18].

A putative role for the proteasome at DSB sites could be to

degrade components of the DNA damage response after their

function is completed. However, so far no protein involved in DSB

repair has been described as a direct target of the proteasome.

In this paper, we describe a systematic screen of a recently

released collection of temperature- sensitive (Ts) yeast alleles [19], to

find a set of novel CIN genes. The screen and subsequent analysis of

individual mutants revealed that proteasomal subunits represent a

major functional group, with an evolutionarily conserved role in

CIN. We found that the CIN phenotype is associated with a failure

of proteasomes to localize to the nucleus in viable cells, and show

that proteasome dysfunction affects chromosome stability by

impairing the kinetics of DSB repair. We also identify the DNA

repair protein Mms22 as a proteasome target, and demonstrate that

the impaired DNA repair phenotype can be attributed to a failure in

the recruitment and subsequent degradation of ubiquitinated

chromatin-bound Mms22.

Results

CIN mutants from a new collection of Temperature
sensitive (Ts) alleles in essential genes

In this study we expanded a recent screen for mutants affecting

chromosome stability [19], by assessing the chromosome transmis-

sion fidelity (Ctf) phenotype (for details see Materials and Methods)

in an additional 208 Ts strains. The functional distribution of

the identified genes reveals that proteasome subunits are highly

represented (Figure 1A and Table S1), we therefore decided to

examine the mechanisms by which mutations in proteasome

subunits cause CIN.

Diminished levels of proteasome subunits in mammalin
cells causes CIN

To test whether the CIN phenotype associated with proteasome

dysfunction is evolutionarily conserved, we examined whether

diminished proteasome subunit levels would cause a CIN

phenotype in human cell lines. Small interfering RNAs (siRNAi)

were used to target two human proteasome core (PSMA6 and

PSMA4) and two lid subunits (PSMD4 and PSMD12) in the

HCT116 cell line. To reduce the off-target effect, each experiment

was performed with the two most effective siRNA duplexes

(pointed by black arrows in Figure S1A). As shown in Figure 1B,

relative to the controls, knockdown of Psma6, Psma4, Psmd4 and

Psmd12 resulted in an increase in the frequency of cells with DNA

contents greater than that of G2/M cells. Chromosome spreads

after targeted knockdown of PSMA6 and PSMD12 established that

the increase in DNA content is due to a dramatic increase in the

number of cells with a total chromosome number above 46

(Figure 1C). Taken together, these results suggest that the

proteasome lid and core components have a role in chromosome

stability maintenance.

Proteasome CIN mutations cause nuclear mislocalization
Previously it was established that the 26S proteasome localizes

to the nucleus [20]. Here we confirmed the nuclear localization of

the proteasomal lid and core subunits both in yeast and human

cells (Figure 2A and 2B). The CIN phenotype caused by Ts alleles

of proteasome subunits suggests that a nuclear function of the

proteasome is impaired in the mutants. Sequence analysis of the

rpn5 Ts allele reveals a single base pair insertion that introduces a

premature stop codon, resulting in truncation of 39 amino acids at

the C-terminus (Figure 2C). To analyze the localization of this

truncated form, termed rpn5DC, GFP was fused in frame at its N-

terminus. As a control, an identical N-terminal GFP fusion was

constructed for the wt RPN5 gene (both expressed from a

galactose-inducible promoter). The results show that whereas the

control GFP-Rpn5 protein localizes predominantly to the nucleus,

GFP-Rpn5DC localizes predominantly to the cytoplasm

(Figure 2D). Similar nuclear mislocalization results were obtained

for the mutated core subunit, Pup2Ts-GFP (Figure 2D). The

mislocalization of the rpn5DC mutant protein indicates that the

C-terminal domain (CTD) is important for Rpn5 nuclear

localization in yeast.

Mutated proteasome subunits affect DNA DSBs repair
kinetics

Next we wanted to address the underlying defect in proteasome

function that results in CIN. First we examined the proteasomal

CIN mutants for sensitivity to Bleomycin (bleo) [21], and to

hydroxyurea (HU)[22]. Mutants involved in DSB repair are

usually sensitive to both drugs [23,24]. We show that at semi-

restrictive temperatures all proteasome mutants display varying

degrees of sensitivity to these drugs (Figure 3A and Figure S1B).

These results support a previous study showing that other

proteasome mutants show sensitivity to DNA damaging agents

[7]. Moreover, Ts alleles of rpn5DC and pup2, display a synthetic

growth defect when either one is combined with rad52, a key factor

in the DSB repair pathway [25] (for details see Figure 3B).

In support of a role for the yeast proteasome in DSB repair,

previous ChIP experiments have provided evidence for the

recruitment of the proteasome to DSB sites [7]. To test whether

this phenomenon is conserved in mammalian cells, we performed

Indirect ImmunoFluorescent (IIF) on Hela cells treated with Bleo,

to look at the association of the RP subunit Psmd4 with DSB sites,

represented by 53BP1 large foci (Figure 3D). In 183/200 53BP1

large foci counted, the Psmd4 focus was peripherally associated

with the DSB site (Figure 3D). As a control we analyzed a similar

number of unchallenged cells; in this case a significantly lower

number of 53BP1 foci (44) could be detected, 21 of which were

Author Summary

Chromosome Instability (CIN) is a genome phenotype that
involves changes in chromosome number or structure, and
accounts for most malignancies. In this paper, we describe
a screen to identify a set of novel CIN genes and find that
proteasomal subunits represent a major functional group.
We show that proteasome dysfunction affects CIN by
impairing DNA double strand break (DSB) repair. Previous
studies speculated that the proteasome is required to
degrade one or more components of the DSB repair
machinery; however, until now, no such target has been
identified. Here we identify the previously described CIN
gene MMS22 as a proteasomal target. We found that, as a
result of DNA damage, Mms22 is ubiquitinated and
recruited to chromatin. Mms22 then undergoes polyubi-
quitination and subsequent proteasome-mediated degra-
dation. We also provide evidence that the degradation of
Mms22 is important for the normal course of DNA repair
and for exit from the G2/M arrest induced by DNA damage.
Our results demonstrate for the first time that a DSB repair
protein is a proteasome target, linking nuclear proteaso-
mal activity and DSB repair. The mechanism of regulation
of Mms22 may serve as a paradigm to understand how
these additional proteins are regulated by the proteasome.

Proteasome Activity and Chromosome Stability
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Figure 1. The CIN Phenotype of proteasome subunits is conserved from yeast to human cells. (A) Chromosome transmission fidelity (ctf)
phenotype of yeast mutants defective for the proteasome subunits pup2 and rpn5DC at a semi-permissive temperature (34uC) is scored by the
appearance of sectored colonies, and compared to the isogenic wt strain. (B) DNA content dot plots of asynchronous HCT116 cells following siRNA
knockdown in control, and test cases generated from cell populations harvested 5-days after transfection. HCT116 cell line, a mismatch repair-
deficient cell line, was used, as it is a chromosomally stable, near diploid colorectal cell line that does not inherently exhibit CIN. Cells were labeled
with propidium iodide and subjected to flow cytometry. Circles delineate the population of cells having .G2/M DNA contents. The graph summarizes
the relative increase in this cell population as compared to the non-targeting and GAPDH controls. (C) Scatter plot depicting the total chromosome
number distribution after targeted knockdown of PSMA6, PSMD12, or a non targeting (NT) RNAi control. Percentage of mitotic spreads with greater
than 46 chromosomes is indicated at the base of each column; (below) Representative images of DAPI-stained mitotic spreads from untransfected
cells (N = 46 chromosomes) and aneuploid cells after treatment with PSMA6 siRNA (N = 89 chromosomes).
doi:10.1371/journal.pgen.1000852.g001

Proteasome Activity and Chromosome Stability
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associated with a Psmd4 focus. As was previously shown [26,27],

these foci likely represent spontaneous DNA DSBs generated

during DNA replication. In addition, we quantitated the signals of

50 Psmd4 foci that were associated with 53BP1 as a result of Bleo

treatment; in 95% of the cases this signal was 5–10 times more

intense than the average signal representing the Psmd4 foci not

associated with 53BP1. These results provide evidence for an

association of the proteasome with DSBs sites in human cells.

In order to examine the nature of the observed difference in

DSB repair under proteasome dysfunction we studied the effect of

the well-characterized proteasome inhibitor, MG132 [28] on the

repair kinetics of a single defined chromosomal break in the yeast

genome using the strain MK203 [29] (for more details see

Figure 4A, and Materials and Methods). The strain used carried a

mutation in the PDR5 gene, to prevent the cells from pumping the

drug out of the cell [30].

As previously described [29], the control and MG132-treated

cells arrest at G2/M three hrs after DSB induction. However,

while the control cells exited from the arrest after 8 hrs, MG132-

treated cells remained arrested even 10 hrs after DSB induction

(Figure 4B). Southern blot analysis detected complete repair of the

broken chromosome by 5 hrs following induction in control cells.

In contrast, MG132-treated cells exhibited only partial repair of

the DSB. Nine hours after transfer to galactose (which induces

DSB repair), more than 30% of the cells still carry a broken

chromosome (Figure 4C). At later times this proportion is reduced,

probably due to outgrowth of cells with a repaired chromosome V.

We next examined the kinetics of formation of the gene

conversion (GC) repair product (Figure 4D). In the control cells,

GC can be detected 3.5 hrs after DSB induction, and the whole

cell population was completely repaired by 6.5 hrs. In contrast, in

MG132-treated cells only 70% of the cells exhibited repair 10 hrs

Figure 2. Proteasome subunits in yeast and mammalian cells localize to the nucleus; the Ts allele of rpn5 is truncated at the C-
terminus; proteasome CIN mutants show nucleus mislocalization of proteasome subunits. (A,B) Proteasome subunits in yeast and
mammalian cells localize to the nucleus. (C) The Ts allele of rpn5 is truncated at the C-terminus. (D) Proteasome CIN mutants show nucleus
mislocalization of proteasome subunits. The panels represent high resolution (x100) representative images of yeast or mammalian cells. A region
identified by the white box is further magnified (zoom panel). The position of the white arrow within the zoom panel delineates the line scan that
was used to quantitate the fluorescent signal intensities per pixel in the line scan graphs (right panel). Unless otherwise stated, all the images
represent a 3-D projection of x100 Z-series images extending above and below the entire nucleus. Scale bars, 3 mm. (A) Logarithmic yeast cultures
were permeabilized and DNA was DAPI stained to mark the nucleus. The panels depict the nuclear localization of the yeast Regulatory Particle (RP)
Rpn5-GFP, and Core Particle (CP) Pup2-GFP. GFP and DAPI are represented by green and red curves in the line scan graphs, respectively. (B) Nuclear
enrichment and foci colocalization of immunofluorescently labeled mammalian proteasomal subunits Psma1 (CP) and Psmd4 (RP). Cells were DAPI
stained and visualized by GFP, Texas Red (TR) and DAPI. Red and green lines represent TR and GFP, respectively. Panels represent a 3-D projection of
x100 Z-series images extending above and below the entire nucleus. (C) The rpn5-Ts allele was sequenced and its predicted translation product
aligned to the wt yeast protein Rpn5, and its human homolog, Psmd12. The truncation point of Rpn5DC is indicated by a black arrow. (D) Localization
analysis of N-terminal GFP fusion of Rpn5DC, and Rpn5 control (both expressed from a galactose-inducible promoter). The images depict the
localization of GAL1-GFP-Rpn5 vs. GAL1-GFP-Rpn5DC. GFP-Rpn5 localizes to the nucleus (overlap between the DAPI and GFP channels). Lack of
overlap in GFP-Rpn5DC indicates nuclear mislocalization. Similar results were obtained for pup2-Ts (Pup2-GFP) (compare to Figure 2A).
doi:10.1371/journal.pgen.1000852.g002
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after DSB induction (Figure 4D). Taken together, these results

demonstrate that inhibition of proteasome activity affects the

ability of yeast cells to carry out repair of a DSB, resulting in a

prolonged cell cycle arrest. Moreover, MG132-treated cells also

exhibit a higher level of CIN, measured using the a-faker-like

(ALF) genome instability test [31] (Figure 2SA).

The expression of Mms22 is regulated by the
Ubiquitin-Proteasome System (UPS)

One possible explanation for the requirement of an active

proteasome to complete the DSB repair is that the proteasome

could be required to degrade one or more components of the DSB

repair machinery. We looked for potential proteasome targets with

a role in DSB repair. Such a target is expected to exhibit

phenotypes that include both CIN (similar to that of proteasomal

mutants), and sensitivity to DNA damaging agents, such as

ionizing radiation or radiomimetic drugs such as methyl

methanesulfonate (MMS). We recently used the Sacharomyces

cerevisiae deletion collection to systematically screen for mutants

exhibiting a CIN phenotype [31]. The mms22 mutant, which

shows sensitivity to several DNA damaging agents that cause DSBs

[32,33] was among the mutants exhibiting the strongest CIN

phenotype. To test whether Mms22 is a substrate of the

proteasome, a strain carrying an inducible tagged protein (GAL1-

HA-Mms22) was subjected to a promoter shutoff experiment.

Figure 4E shows that under these conditions in wt cells Mms22p is

degraded; in contrast, in the presence of MG132, the level of

Mms22 protein stays high, and appears to be degraded to a lesser

degree.

To further assess MMS22 function, we conducted a two-hybrid

screen using Mms22 as the bait. This approach identified Rtt101/

Cul8 as a protein that interacts with Mms22. We confirmed this

Figure 3. Mutated proteasome subunits affect the repair of DNA DSBs. (A) Most of proteasomal Ts mutants are sensitive to bleomycin
(bleo). Five-fold serial dilutions of the indicated proteasomal subunits mutants were spotted on YPD medium lacking or supplemented with 1.5 m/ml
of bleo. Cells were incubated at 32uC and 34uC to find the semi-permissive temperature of each Ts mutant. (B) rpn5DC and pup2 show synthetic
growth defect with rad52. To examine whether there could be a link between the proteasome and the repair of DSBs, we created and sporulated
heterozygous diploid strains containing Ts alleles of either rpn5DC and pup2 combined with rad52. Tetrad dissection showed that Ts alleles of rpn5DC
and pup2 cause a synthetic growth defect when either one is combined with rad52. The synthetic growth defect of the double mutant spores
(encircled by white squares on the YPD plate) is evident when compared to the single haploid mutants (pointed out by white or light blue arrows).
(C,D) Protesomal subunits associate with DSB markers in mammalian cells. HeLa cells were treated for 2 hrs with 5 m/ml of bleo prior to subjection to
IIF microscopy. Primary antibodies were recognized with appropriate secondary antibodies conjugated with either Alexa-fluor 488 (GFP filter), or Cy-3
(TR filter). Scale bars, 3 mm. (C) IIF to demonstrate the colocalization pattern of 53BP1 and c-H2AX in bleo-treated cells. The DSB markers 53BP1 and c-
H2AX show clear co-localization at large foci, likely to represent DSB sites. Red and green curves on the line scan graph represent 53BP1, and c-H2AX
respectively. (D) Representative images demonstrating an association of the RP subunit Psmd4 with DSB sites, represented by the large 53BP1 foci.
Red and green curves on the line scan graph represent 53BP1 and Psmd4 respectively.
doi:10.1371/journal.pgen.1000852.g003
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Figure 4. Proteasome mutants exhibit defective DSB repair kinetics; the turn over of Mms22 is regulated by the proteasome;
Mms22 plays a role in DSB repair. (A–D) Proteasome mutants exhibit defective DSB repair kinetics. (E,F) The turn over of Mms22 is regulated by
the proteasome. (G) Mms22 plays a role in DSB repair. (A) Schematic representation of MK203 (for more details see Materials and Methods, DSB repair
kinetic experiments). White rectangles represent the ura3 alleles on chromosomes II and V. A black bar within the ura3 alleles represents the HO cut
site (HOcs); a grey bar depicts the inactive HOcs-inc flanked by the BamHI (B) and EcoRI (R) restriction sites. Transfer of the cells to galactose-
containing medium results in a DSB that is repaired by homologous recombination. (B–D) DSB repair kinetics of MK203 cells in the presence of
proteasome inhibitor. MK203 pdr5 cells were grown to mid-logarithmic phase in glycerol-containing medium (gly) (no HO-induction) containing
20 mM MG132, or DMSO control. Cells were then transferred to galactose-containing medium (gal; constitutive HO-induction and DSB formation at
the URA3 locus) containing the same concentration of the drug. Samples were collected for analysis at timely intervals, and subjected to microscopic
examination and Southern blot analysis. (B) Microscopic examination of dumbbell shaped cells indicates the percentage of G2/M in the control, or
cells subjected to MG132, at each of the indicated time points. (C) Southern blot analysis and quantification graph (bottom) of the DSB repair kinetics
in MK203 cells treated with MG132. (D) PCR analysis of the kinetics of the gene conversion product formation. PCR reaction followed by BamHI
restriction digest detect the final step of the repair, which is the re-ligation of the broken ends and transfer of the two polymorphic restriction sites on
either side of the HOcs from chromosome II to chromosome V [29]. MG132 treated cells show a delay in gene conversion product formation, as
apparent from the quantification graph (bottom). (E) Western Blot detects the levels of Mms22 following a GAL1 promoter shut-off chase experiment.
The expression of GAL1-HA-Mms22 was induced by growing the cells in 2% galactose (Gal) for 3 hours (t-0). Cells were released into 2% glucose to
shut-off the expression of Mms22. Glucose was supplemented with 20 mM MG132, or with DMSO (control), Pgk1 was used as a loading control. (F)
RTT101 regulates the levels of Mms22. GAL1 shut-off chase experiment was performed as in (E), this time wt cells vs. rtt101 strains were released into
2% glucose. Ndc10 was used as a loading control. (G) Southern blot analysis and quantification graph (bottom) of the DSB repair kinetics in wt MK203
cells versus mms22.
doi:10.1371/journal.pgen.1000852.g004
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interaction by IP. Consistent with a recent study [34], we

concluded that Mms22 and Rtt101 proteins interact in vivo (Figure

S2B and S2C). Rtt101 is one of four cullins in S. cerevisiae, with

demonstrable ubiquitin ligase activity in vitro, but as yet no known

substrate in vivo [35]. Based on the physical interactions seen

between Mms22p and Rtt101, it has been suggested that Mms22

is a functional subunit of the Rtt101-based ubiquitin ligase [34].

Our results show that Mms22 is targeted by the proteasome; we

therefore hypothesized that the turnover of Mms22 could be

mediated by the Rtt101 E3 ubiquitin ligase complex. A promoter

shut-off chase was used again to analyze the stability of the Mms22

protein in the presence or absence of the Rtt101 cullin. Figure 4F

shows that Mms22p accumulated to a higher level during the

induction period in rtt101 mutants in comparison to wt cells. To

rule out the possibility that only the overexpressed proteins were

being degraded by the proteasome, and to show that similar results

can be observed in the context of endogenous levels of Mms22, we

have performed cyclohexamide chase experiments in cells

expressing Mms22-HA (Figure S2D). Western blot analysis

revealed that, as observed in the GAL-driven overexpression

experiments, Mms22 is also degraded in wt cells. Notably, Mms22

accumulated to higher levels in the presence of MG132, or in a

Drtt101 background. These results clearly demonstrate that the

turnover of Mms22 is regulated by the Ubiquitin-Proteasome

System (UPS), and mediated by the Rtt101 cullin.

Mms22 plays a role in DSB repair
mms22 cells show sensitivity to several DNA damaging agents

that cause DSBs [32,33]. To directly examine the kinetics of DSB

repair in mms22 mutants, we used the MK203 system again, to

compare repair kinetics of wt vs. mms22 cells following induction of

a DSB. As seen in cells under proteasome inhibition, mms22

mutants show a delay in the disappearance of the broken

chromosome compared to wt cells (Figure 4G). Additionally, and

also similarly to MG132-treated cells, mms22 cells show a

difference in gene conversion kinetics compared to wt cells (Figure

S2E).

Ubiquitination of Mms22 is induced by DNA damage in a
RTT101 dependent manner

Substrates are usually targeted for degradation by the protea-

some by polyubiquitination [10]. To test the ubiquitination levels

of Mms22, we performed the experiments described in Figure 5A

and Figure S2F. IP of Mms22-HA followed by immunoblotting

reveals an additional band which migrates slower than Mms22-

HA. This band most probably represents the ubiquitinated form of

Mms22, as revealed by successive immunoblotting with an anti-

Ubi antibody (Figure 5A). Additional proof that this band

represents ubiquitinated Mms22 was obtained by successive

immunoblotting with an anti-Myc antibody in a strain carrying

a myc-tagged version of the ubiquitin protein (Figure 2SF). The

results also show that Mms22 ubiquitination is RTT101 depen-

dent. Finally, a 4 -fold increase in Mms22 ubiquitination was

observed when cells were exposed to DNA damage, suggesting

that the ubiquitination of Mms22 plays a functional role in DNA

repair (Figure 5A).

To provide a rigorous in vivo demonstration that the ubiquiti-

nated proteins observed by Western blotting were indeed a series

of polyubiquitinated forms of Mms22, we performed the following

experiment in which the 3HA and 6HA tagged versions of Mms22

were used in parallel. Cells were grown in the presence of MMS,

and subjected to IP followed by immunoblotting with anti-HA. As

expected from the results shown in Figure 5A, treatment with

MMS led to an additional band which migrated more slowly than

the band representing Mms22. Importantly, this band changed its

electrophoretic mobility upon switching the tag on Mms22 from

3HA to 6HA, demonstrating unequivocally that it represents a

specific in vivo modification of Mms22 (Figure 5B, left). This

modification is indeed the specific ubiquitination of Mms22 as

revealed by a similar electrophoretic shift of the bands that

appeared following a successive immunoblotting with an anti-

Ubiquitin antibody (Figure 5B, right). Alignment of the anti-HA

and anti-Ubi antibody membranes, and the observed co-alignment

of the electrophoretic shifts characteristic of the differentially

tagged Mms22 protein species, indicates that the additional band

that migrates slower than Mms22-HA is the mono-ubiquitinated

form of Mms22.

Upon exposure to DNA damage Mms22 is associated
with chromatin in a RTT101- dependent manner

Genome-wide genetic interaction results have shown that

MMS22 clusters with RTT109, and ASF1 [36], two proteins

required for histone H3 modification [37]. We therefore

hypothesized that the ubiquitinatation of Mms22 may facilitate

its recruitment to chromatin upon DNA damage. To test this idea

we separated whole cell extracts (WCE) into soluble (SU) and

chromatin-bound (CHR) fractions. Fractions were then subjected

to immunoblotting using anti HA (Mms22-HA). The results

clearly show that in unchallenged cells Mms22 is mainly present at

the SU fraction (Figure 5C top). Treatment with MMS, however,

leads to an enrichment of ubiquitinated Mms22 on the chromatin-

bound fraction (Figure 5C middle). This enrichment was

significantly reduced in the absence of RTT101 or RTT109

(Figure 5C bottom and Figure S3A).

Taken together, our results suggest that the ubiquitinated form

of Mms22 on chromatin plays a functional role in dealing with

DNA damage. A similar experimental approach was used to show

chromatin enrichment of the proteasomal lid subunit Rpn5 upon

exposure to MMS (Figure 3SB), which is consistent with ChIP

analysis of proteasomal subunits at induced DSBs sites [7].

Mms22 degradation by the proteasome is important for
its function in DNA repair

DNA damage induces the recruitment of both Mms22 and the

Proteasome to chromatin, predicting that Mms22 degradation by

the proteasome plays an important role in performing DNA

repair. To test this idea we performed the experiment described in

Figure 5D. MMS treatment resulted in G2/M arrest, and a

chromatin fractionation assay revealed that Mms22 was recruited

to chromatin in the presence, or in the absence, of MG132

(Figure 5D-2 and 5D-3). These results indicate that the

recruitment of Mms22 to chromatin is proteasome-independent.

The recruitment to chromatin is not cell cycle dependent, since a

similar recruitment of Mms22 to chromatin was detected even

when cells were kept in G1 during MMS treatment (data not

shown). In contrast, the exit from the G2/M arrest following the

removal of MMS was proteasome dependent, since only removal of

MG132 from the medium led to the degradation of Mms22 from

chromatin, which was associated with the exit from the G2/M

arrest (compare 6D-5 vs. 6D-6 and 6D-7). To rule out the

possibility that the prolonged exposure to MG132 and not MMS

treatment led to the G2/M accumulation, we performed the

control experiment described in Figure S3C. We show that

samples released from the G1 arrest and constantly exposed to

MG132 continued cycling normally in contrast to samples from

a similar time point exposed to MMS+MG132 (compare

Figure 5D-5 to Figure S3C).
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Next we wanted to test whether the correlation between the

accumulation of Mms22 on chromatin, and the failure to recover

from cell cycle arrest upon DNA damage can be attributed (among

other factors) to the specific accumulation of Mms22 in cells with

defective proteasome activity. We therefore tested whether

overexpression (OE) of Mms22 (which simulates the accumulation

of Mms22 in proteasome mutants) also results in impaired

recovery from DNA damage induced by MMS. While wt cells

start to recover from the G2/M arrest 80 min after the removal of

MMS from the medium (Figure 5E top), cells that overexpress

Figure 5. Ubiquitination of Mms22 is induced by DNA damage in a RTT101 dependent manner; Mms22 is recruited to chromatin
upon DNA damage in a RTT101 dependent manner; degradation of Mms22 from chromatin is associated with exit from the DNA
damage induced G2/M arrest. (A, B) Ubiquitination of Mms22 is induced by DNA damage in a RTT101 dependent manner. (C) Mms22 is recruited
to chromatin upon DNA damage in a RTT101 dependent manner. (D,E) Degradation of Mms22 from chromatin is associated with exit from the DNA
damage induced G2/M arrest. (A) 3HA-tagged Mms22 cells were grown in the presence of 20mM MG132, with or without 0.025% MMS, and subjected
to IP. After electrophoresis on a low percentage gel (6%), the precipitated protein was blotted to a membrane which was successively immunobloted
with an anti-HA, and an anti-Ubi antibody. Black arrow labels Mms22-3HA, red arrow labels the modified form of Mms22-3HA. (B) In vivo
demonstration that the ubiquitinated proteins observed in (A). are a series of polyubiquitinated forms of Mms22. Cells carrying Mms22 tagged with
either 3HA, or 6HA were grown in the presence of 20 mM MG132, and 0.025% MMS, and subjected to IP. After electrophoresis the precipitated
proteins were blotted to membranes which were subjected to immunoblotting with anti-HA, and anti-Ubi antibodies. Black and open black arrows
label Mms22-3HA and Mms22-6HA respectively. Red and open red arrows label the mono-ubiquitinated form of Mms22-3HA and Mms22-6HA
respectively. (C) Cell extracts (WCE) were separated into supernatant (SU) and chromatin (CH) fractions. HA-tagged Mms22 was detected by
immunoblotting in wt (middle), or rtt101 deleted cells (right), treated with 0.025% MMS, and compared to the untreated wt control (left). Anti
Carboxy peptidase-Y (CPY), and Anti Acetylated Histon H4 (AcH4) served as a SU and CH fractions controls respectively. (D) (Top)-Experimental
design. Chromatin fractionation assay was performed as in (B). The quantity of Mms22 on the chromatin bound fraction is represented as percentage
of the WCE. Cells were synchronized to G1 (#1), and released from the arrest in the presence of 0.025% MMS (#2), or MMS+MG132 (#3). Next, MMS
was removed, and samples were allowed to recover in the presence (#5), or absence (#6) of MG132. Sample #6 and #7 represent a division of
sample #6 to a sample without, or with MG132 respectively. (E) Failure to degrade Mms22 impairs progression of repair, leading to prolonged cell
cycle arrest. G1 arrested cells were released into YEP-Gal medium (inducing overexpression of GAL1-MMS22 cells) containing 0.025% MMS. MMS was
washed from the G2/M arrested cells, and cells were allowed to recover in YEP-Gal or YEP-Glu (thus keeping either high or low expression levels of
Mms22 in GAL1-MMS22 cells respectively). Top panel: wt expression levels of Mms22. Middle panel: Mms22 was over-expressed (OE) before, and after
the removal of MMS. Bottom panel: Mms22 was OE before the removal of MMS, while its GAL1 promoter was shut off following MMS removal.
Samples were collected at timely intervals and subjected to FACs analysis; numbers along the red and green arrows represent the time (minutes)
since the release from the G1 arrest, or following MMS removal respectively.
doi:10.1371/journal.pgen.1000852.g005
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Mms22 were still arrested even after 110 min (Figure 5E middle).

Importantly, the removal of MMS together with Mms22 promoter

shutoff (leading to the degradation of Mms22, data not shown), led

to enhanced recovery from the G2/M arrest, when compared to

cells still overexpressing Mms22 (Figure 5E middle versus bottom).

Having shown that degradation of Mms22 can promote exit

from the G2/M arrest, we tested whether the specific degradation

of Mms22 is sufficient for the exit. We created yeast strains

carrying an allele of Mms22 (Mms22-T) that is expressed from its

endogenous promoter and can be cleaved by the tobacco etch

virus (TEV) protease [38,39]. This protease can be conditionally

expressed (for details see Figure 6A). Induction of the TEV

protease leads to cleavage and inactivation of the Mms22-T

protein (Figure 6A and 6B). When we conditionally expressed the

protease in the presence of MG132 in cells arrested in G2/M as a

result of MMS treatment, the cleavage of Mms22-T resulted in a

clear release from the DNA damage-induced G2/M arrest

(Figure 6C, compare top and bottom panels). Thus, degradation

of Mms22 is essential for release from the cell cycle arrest induced

by DNA damage.

Mms22 degradation by the proteasome is essential for
the progression of DNA repair

We have shown that the degradation of Mms22 is essential for

release from damage-induced cell cycle arrest. Next, we tested

whether the prolonged G2/M arrest is also associated with

Figure 6. Degradation of Mms22 is sufficient to allow exit from the DNA damage induced G2/M arrest. (A,B) Schematic representation of
the experimental design, and growth phenotypes. The TEV protease consensus cleavage site (cs) was introduced at position 2801 of Mms22 which is
expressed from its endogenous promoter (MMS22-T). The cells also contain the TEV protease under the control of the inducible GAL promoter [39].
YEP medium supplemented with 2% raffinose (raf) suppresses the expression of the TEV protease, and keeps Mms22-T functional, as indicated by its
normal growth on YEP+raf+MMS media (compare to mms22 strain). Transfer of the cells to medium containing 2% galactose (gal) results in TEV
protease induction, and the specific cleavage of Mms22-T. The inactivation of Mms22-T is indicated by its impaired growth on YEP+gal+MMS
medium. (C) G1 arrested cells were released into YEP-raf medium (which blocks the expression of the TEV-protease), containing 0.025% MMS and
20 mM MG132. MMS was then washed from the G2/M arrested cells, and cells were allowed to recover in YEP-raf (top), or YEP-gal (bottom) (intact, or
specific cleavage of Mms22-T respectively), both supplemented with MG132. Samples were collected at timely intervals and subjected to FACS
analysis. Numbers along the red and green arrows represent the time (minuets) since the release from the G1 arrest, or following the removal of MMS
respectively. (D) Temporal analysis of Mre11, Ddc2, and Rad52 focus formation following DNA damage and proteasome inhibition. Yeast strains
containing Mms22-T, GAL inducible TEV-protease, and a YFP tagged version of either Mre11, Ddc2, or Rad52 were released into non-inducing YEP-raf
medium containing 0.025% MMS and 20 mM MG132 (intact Mms22-T). Following the induction of DNA damage MMS was washed from the media,
and cells were allowed to recover in YEP-raf (left: wt levels of Mms22), YEP-raf+MG132 (middle: accumulation of intact Mms22-T), or YEP-gal+MG132
(right: inducing the specific cleavage of Mms22-T by the TEV protease). Following the removal of MMS, samples were collected at timely intervals,
fixed, and subjected to fluorescent microscopy. At each of the indicated time points at least 150 S/G2 cells (budded) were analyzed for the presence/
absence of Mre11, Ddc2, or Rad52 foci.
doi:10.1371/journal.pgen.1000852.g006
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impaired response to DNA damage. Using yeast strains tagged

with fluorescent versions of three major components of the DNA

DSB repair machinery: Mre11, Ddc2, Rad52, we conducted

temporal analysis of focus formation following DNA damage

(Figure 6D). Consistent with previous data [40] we show that

Mre11 (a member of the MRX complex) is the earliest protein to

form foci. Mre11 foci formation is followed by later recruitment of

Ddc2 (the yeast orthologue of human ATR-interacting protein

ATRIP) and the repair protein Rad52. We show (Figure 6D, left)

that in wt cells, as Rad52 and Ddc2 were recruited, Mre11 foci

disassembled. This disassembly was circumvented when cells were

exposed to a proteasome inhibitor, and led to delayed and reduced

focus formation of Rad52 (Figure 6D, middle). Remarkably, the

specific degradation of Mms22 resulted in a clear disassembly of

Mre11 foci and recovery of Rad52 foci (Figure 6D, right). Our

results demonstrate that degradation of Mms22 is essential for the

normal course of DNA DSB repair, and for the release from the

cell cycle arrest induced by DNA damage.

Discussion

We describe the first systematic screen of a recently released

resource (still under development) consisting of Ts mutants of all

essential yeast genes for which no Ts-allele had previously been

isolated [19]. Among the 40 genes identified, 8 encoded

proteasomal subunits. Genetic and biochemical analysis showed

that CIN was associated with the failure of proteosomal subunits to

localize to the nucleus, impaired kinetics of DSB repair, and failure

to turnover the DNA repair protein Mms22 targeted for

degradation by the proteasome.

Recent studies have suggested a role for the proteasome in the

repair of DSB in yeast [7], and mammalian cells [41,42]. In our

current work, we show that mutations in the proteasome subunits

rpn5DC and pup2, which cause nuclear mislocalization, are

associated with impaired DSB repair. All other proteasomal Ts

mutants tested were sensitive to drugs inducing DSBs, implying

that the proteolytic activity of the proteasome is required for DNA

repair. By examining the kinetics of DSB repair in cells treated

with the proteasome inhibitor MG132, we obtained evidence for

delayed kinetics of repair (Figure 4C). We showed that both the

disappearance of the break as well as the kinetics of formation of

the gene conversion product were delayed in treated cells

compared to untreated cells (Figure 4D). As MG132-treated cells

arrest in G2/M similarly to untreated cells, it is evident that

checkpoint regulation due to DSB is not impaired in the treated

cells. The delay in DSB repair suggests that proteasome activity

might be required for the regulation of the DNA repair machinery.

A potential role for regulation of DSB repair by the proteasome

in mammalian cells is supported by a recent study showing that

proteasome inhibition affected the choice of HR repair pathways

[41]. A different study showed that proteasome-dependent protein

degradation substantially contributes to HR but not NHEJ [42]. It

is tempting to speculate that the proteasome accumulates at sites of

DSB, and that its proteolytic activity is required to degrade one or

more components of the DSB repair machinery, or DNA damage

response/repair proteins.

To date no protein involved in DSB repair has previously been

described as a direct target of the proteasome. In this study, we

identify Mms22, a protein required for efficient repair of DSBs

(Figure 4G and Figure S2E), as a direct target of the proteasome

degradation pathway (Figure 4E and 4F and Figure 2SD). Recently,

Zaidi and colleagues [34] showed that Mms22 physically interacts

with Rtt101, and suggested that Mms22 is a functional component

of the SCFrtt101 ligase, perhaps as a substrate specificity factor.

Although our studies do not address whether Mms22 is a subunit of

SCFrtt101, we show clear evidence that Mms22 is a substrate of the

SCFrtt101 and that proteasome-mediated turnover of Mms22 is

important for the process of DNA repair.

The effect of MMS22 accumulation on the course of DSB repair

(Figure 6D) suggests that Mms22 activity facilitates the recruitment

of the HR machinery to DSBs. Histone modification occurs

readily at sites of DSB or UV damage [43,44] and it is becoming

increasingly clear that proper chromatin handling is essential for

successful repair. Indeed, we show that DNA damage results in

Mms22 recruitment to the chromatin bound fraction (Figure 5C).

Importantly, our results also show that recruitment of Mms22 to

chromatin is not sufficient for the normal course of DNA repair,

and that an essential step is a proteasome-mediated degradation of

Mms22. These results thus identify for the first time a proteasome

target that links proteasomal nuclear activity and DNA double

strand break repair.

We propose the following model for the mechanism by which

nuclear activity of the proteasome contributes to repair of DSBs.

DNA damage results in a SCFrtt101 E3 ubiquitin ligase-dependent

accumulation of the ubiquitinated form of Mms22 on chromatin

that, as suggested above, plays a role in dealing with DNA

damage. Subsequent degradation of ubiquitinated Mms22 by the

proteasome is an important step in completion of the DNA repair

process. Once Mms22 executes its function in DNA repair it

becomes a target for degradation by the UPS, and is removed

from chromatin. Failure to degrade Mms22 results in impaired

DNA repair and prolonged cell cycle arrest. In support of our

model, we show that reactivation of an inhibited proteasome

results in degradation of the accumulated chromatin-bound

Mms22, and in recovery from the G2 arrest induced by DNA

damage (Figure 5D).

The synthetic genetic interaction that we describe for the

proteasome and the rad52 mutant points to additional roles of the

proteasome in DNA repair. Given its central role in protein

degradation, it is indeed very likely that, in addition to Mms22, the

proteasome regulates additional proteins involved in DNA repair.

In this regard, proteasome inhibition in combination with DNA

damage probably results in the accumulation of many proteins

besides Mms22, which altogether may lead to the impaired

recovery from the cell cycle arrest. We show, however, that specific

accumulation of Mms22 by overexpression causes defects in

recovery from DNA damage-induced G2/M arrest, whereas

turnover of Mms22 after promoter shutoff allows recovery to

occur (Figure 5E). Moreover, we also show that the specific

degradation of Mms22 in the presence of proteasome inhibitor is

sufficient for the exit from the DNA damage-induced G2/M arrest

(Figure 6C). The arrest by itself was not affected by proteasome

inhibition, which is consistent with the normal kinetics of foci

formation of the checkpoint protein Ddc2. In contrast, proteasome

inhibition affected the disassembly of Mre11, which in turn

impaired the recruitment of the repair machinery, as demonstrat-

ed by the kinetics of Rad52 foci formation (Figure 6D). A similar

phenotype was previously reported for Dsae2 mutants, supporting

the notion that Sae2 is required for the transition from Mre11

binding to the recombinational repair function carried out by

Rad52 [40,45]. Our results suggest that degradation of Mms22

occurs at the same transition stage and that when this transition is

impaired, cells can no longer proceed with the normal course of

DNA repair. Suggestions about the possible activity of Mms22 at

this transition stage comes from genetic interaction data [36]. In

these studies, MMS22 clusters with RTT109, and ASF1, which are

required for histone H3 acetylation [37]. These results suggest that

Mms22, in association with Rtt109, and Asf1 are recruited to the
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sites of DNA lesions to modify their chromatin structure, perhaps

facilitating DNA resection and recruitment of downstream-acting

repair proteins such as Rad52. Recruitment of Rad52 in the form

of foci depends on the removal Mms22 from DNA by the

proteasome.

Taken together, we show that Mms22 is a proteasome target that

links nuclear proteasomal activity and DSB repair. We believe that

the CIN phenotype and impaired DNA repair caused by proteasome

dysfunction can, in part, be attributed to the specific accumulation of

Mms22. This idea is further supported by the observation that

accumulation of Mms22 sensitizes the cells to DNA damaging

agents, and results in CIN (Figure 2SA and Figure 3SD–3SF), and by

previous studies showing that mutants in genes that play roles in DSB

repair cause CIN phenotype in yeast and mammalian cells [31,46].

It is likely that additional proteasomal targets important for genome

stability await discovery. The mechanism of regulation of Mms22

may serve as a paradigm to understand how these additional proteins

are regulated by the proteasome.

Materials and Methods

Yeast strains
Yeast strains that were used for the CTF screen are the result of

backcrossing the haploid Ts strain (MATa ura3D0 leu2D0 his3D1

lys2D0 (or LYS2) met15D0 (or MET15) can1D::LEU2-MFA1pr::His3

yfeg-ts::URA3), to the Donor strain SB1 (MATa ade2-101::NAT his3

ura3 lys2 can1D mfa1D::MFA1pr-HIS3 CFVII(RAD2.d)::LYS2), and

selecting for a Lys+ spore clone (indicating the presence of

CFVII(RAD2.d)::LYS2) resistant to ClonNAT (thus carrying the

ade2-101 ochre mutation) and Ura+ (yfeg-ts::URA3) [for more details

see [19]]. Other strains that were used in this study are listed in

Table S2. The following strains were generated by crossing the

indicated strains (in brackets), and selecting for the appropriate

spores: SB162-(SB158xTs944), SB163-(SB160xTs944), SB220-

(SB158xTs670), SB223-(SB160xTs670), SB258-(SB256xSB148),

SB259-(SB256xSB147), SB175-(Ts602Xsb132). Yeast strains used

for DSB repair assay are isogenic derivatives of strain MK203

(MATa-inc ura3::HOcs lys2::ura3::HOcs-inc ade3::GALHO ade2-1 leu2-

3,112 his3-11,15 trp1-1 can1-100) [29,47], a derivative of W303. In

SB276, a TEV protease consensus cleavage site was introduced at

position 2801 of Mms22 in the strain K9127 [39] by a two-step gene

replacement.

Co-immunoprecipitations
Were preformed as previously described [48].

Chromatin fractionation assay
Was performed as previously described [49]. Cells were grown

to O.D600-0.5 in 50 ml culture. Samples were spun down in

50 ml conical tubes for 5 min, resuspended in 3 ml of 100 mM

PIPES/KOH pH 9.4, 10 mM DTT, 0.1% Na-Azide, and

incubated for 10 min at RT. Samples were then spun for 2 min.

Supernatant was aspirated off, and samples were resuspended in

2 ml of 50 mM KPi, pH 7.4, 0.6M Sorbitol, 10 mM DTT, and

transferred to 2 ml microfuge tubes. 10 ul aliquot was then diluted

in 990 ul H2O in a cuvette. 4 ul of 20 mg/ml Zymolase T-100

was added for 10 min, in 37uC water bath (tubes were gently

inverted every 2–3 minutes). After about 1 min, 10 ul aliquot was

used to measure the O.D600 (for hypotonic lysis). The O.D of the

1:100 dilutions after spheroplasting was less the 10% of the value

before. From this point on everything was done in a cold room.

Tubes were spun for 1 min, cells were then washed with 1 ml of

50 mM HEPES/KOH pH 7.5, 100 mM KCl, 2.5 mM MgCl2,

0.4M sorbitol. Tubes were spun for 1 min, and resuspended in

equal pellet volume EB (around 80 ul). 1/40 volume 10% Triton

X-100 (0.25% final, e.g. 4 ul for 160 ul suspension), was added

and cells were incubated for 3 min for lysis on ice, (vortexed

occasionally). This sample represents the whole cell extract (WCE).

20 ul sample was removed and 20 ul of SDS loading buffer was

added (WCE). 100 ul EBX-S was prepared in separate microfuge

tubes. 100 ul of whole cell extracts were laid onto the EBX-S, and

microfuge tubes were spun for 10 min. The resulted fractions

represent a white chromatin pellet (CHR), the clear sucrose layer,

and above a yellow supernatant fraction (SUP). 20 ul of SDS

loading buffer was added to 20 ul of the SUP fraction (SUP). The

rest of supernatant and sucrose buffer were then aspirated. The

chromatin pellet was resuspended in 100 ul EBX, and spun for

5 min. Supernatant was aspirated off, and chromatin pellet was

resuspended again in 100 ul EBX. 20 ul sample was then removed

and added to 20 ul of SDS loading buffer (CHR). EB: 50 mM

HEPES/KOH pH 7.5, 100 mM KCl, 2.5 mM MgCl2, 1 mM

DTT, 20 ug/ml leupeptin, 2 mM benzamidine, 2 ug/ml aproti-

nin, 0.2 mg/ml bacitracin, 2 ug/ml pepstatin A, 1 mM PMSF

(add it just before use). EBX: EB +0.25% Triton X-100. EBX-S:

EBX +30% Sucrose.

Immunofluorescent labeling
Cells were plated onto sterilized glass coverslips so that they

were 50% to 80% confluent on the following day. Subsequent to

fixation for 5 min at 25uC with fresh 4.0% paraformaldehyde,

cells were permeabilized with phosphate-buffered saline (PBS; pH

7.5) containing 0.5% Triton X-100 for 5 min. Cells were washed

twice with PBS and subjected to sequential series of 30-min

incubations with appropriate primary and secondary antibodies.

Wash steps consisted of a single wash with PBS containing 0.1%

Triton X-100 and two washes with PBS. The following primary

antibodies were used: anti Psmd4 (Abcam ab20239), Psma1

(Abcam ab3325), anti 53BP1 (Abcam ab21083) and anti cH2AX

(Abcam ab18311). Primary antibodies were recognized with

appropriate mouse or rabbit secondary antibodies conjugated

with either Alexa-fluor 488 or Cyanin-3 (Cy-3) (MolecularProbes,

and the Jackson ImmunoResearch Laboratories respectively).

Coverslips were mounted onto slides containing approximately

10 ml of a 90% glycerol-PBS–based medium containing 1 mg/mL

parapheylenediamine and 0.5 mg/ml DAPI. Image acquisition

and processing was preformed as detailed previously [50] using a

Zeiss Axioplan 2 digital imaging microscope equipped with a 663

(1.3 numerical aperture) and a x100 (1.4 numerical aperture) plan-

apochromat oil-immersion lens, a Coolsnap HQ cooled charge-

coupled device camera (Roper Scientific), and Metamorph

imaging software (Universal Imaging Corp).

The following procedures were performed as previously
described [51], in brief:

Cell culture and siRNA transfection. HCT116 and Hela

cells were cultured in McCoy’s 5A and DMEM medium

supplemented with 10% FBS in a 37uC humidified incubator

containing 5% CO2. siRNA duplexes targeting PSMA6, PSMD12,

PSMD4 and PSMA4 were purchased from Dharmacon. Transient

transfection of HCT116 or Hela cells was performed using

DharmaFECT 1 reagent as described by the manufacturer

(Dharmacon).

Western blot analysis. To confirm protein knockdown and

identify the most effective siRNA duplexes for each target,

Western blots were conducted on proteins extracted from

asynchronous and subconfluent cells 4 days post-transfection.

Following protein transfer nitrocellulose membranes were blotted

using the following Antibodies: anti PSMD4 (Abcam ab20239),
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anti PSMA4 (Abcam ab55625) and anti PSMA6 (Abcam ab2265).

Alpha-tubulin mouse monoclonal antibody (Abcam ab7291) and

GAPDH (Abcam ab9485) were used as a loading control.

Flow cytometry. Duplicate populations of asynchronous and

subconfluent cells were harvested five days post-transfection,

washed with PBS and permeablized with 70% Ethanol before

PI-labeling. Cells were briefly sonicated to render a single cell

suspension immediately before DNA content analysis.

Chromosome spreads and painting. To enrich for mitotic

chromosomes, subconfluent cells were treated with KaryoMAX

colcemid (0.1 mg/ml; Gibco) for 2 h before harvesting. Cells were

trypsinized, pelleted (800 rpm, 5 min) and resuspended in hypotonic

solution (75 mM KCl) for 5 min at room temperature. Cells were

pelleted (5 min) and resuspended in freshly made methanol:glacial

acetic acid (3:1), added drop-wise. Cells were repelleted (5 min), and

resuspended in methanol:glacial acetic acid as above. Two or three

drops of suspended cells were applied to pre-cleaned blood smear

glass slides.

CTF assay. CTF assay was performed as detailed previously

[19,31]. Each Ts allele was tested in a wide range of semi-and non-

permissive temperatures (25uC, 30uC, 32uC, 34uC, and 37uC).

Colony sectoring phenotypes were scored qualitatively as mild,

intermediate and severe (indicated as 1, 2, and 3, respectively in

Table S1).

cDNA isolation and RNA analysis. Was performed to verify

the knock down of PSMD12 as a result of siRNAi treatment. RNAs

were extracted with a RNeasy Mini Kit (Qiagen). 350 ng of RNA

were use for a first strand DNA synthesis (Invitrogen). cDNA was

used as a template to detect the RNA levels of PSMD12 (Forward

primer: TTTGTCTATTTGTAAGCACT/Reverse Primer: TTA-

AAAGATCCTTGTATTTG) and, GAPDH (Forward primer:

TGACAACAGCCTCAAGATCA; Reverse Primer: CATCCA-

CAGTCTTCTGGGTG).

DSB repair kinetic experiments. Were performed as

previously described [29,47]. In brief, the S. cerevisiae haploid test

strain contains two copies of the URA3 gene. One copy, located on

chromosome V, carries the recognition site for the yeast HO site

specific endonuclease (ura3-HOcs). The second copy, located on

chromosome II, carries a similar site containing a single-base-pair

mutation that prevents recognition by the HO endonuclease (ura3-

HOcs-inc). In addition, the ura3 alleles differ at two restriction sites,

located to the left (BamHI) and to the right (EcoRI) of the HOcs-inc

insertion. These polymorphisms are used to follow the transfer of

information between the chromosomes. In these strains, the HO-

endonuclease gene is under the transcriptional control of the GAL1

promoter. When cells are transferred to a galactose containing

medium, the HO-endonuclease creates a single DSB. The broken

chromosome is then repaired by a mechanism that copies the HOcs-

inc information together with the flanking markers, resulting in a gene

conversion event.

Media and growth conditions. Saccharomyces cerevisiae strains

were grown at 30uC, unless specified otherwise. Standard YEP

medium (1% yeast extract, 2% Bacto Peptone) supplemented with

3% glycerol (YEPGly), 2% galactose (YEPGal), or 2% dextrose

(YEPD) was used for nonselective growth. 1.8% Bacto Agar was

added for solid media.

DSB induction experiments. Single colonies were resus-

pended in rich YEPGly medium, grown to logarithmic phase,

centrifuged and resuspended in YEPGly with and without 20 mM

MG132 (CALBIOCHEM) for 2 hrs, followed by centrifugation

and resuspension in YEPGal with and without 20 mM MG132. At

timely intervals, samples were collected for FACS analysis, cells

were inspected for cell cycle stage, and DNA was extracted and

subjected to the different assays.

Southern blot analysis for DSB repair kinetics experi-

ments. Was carried out as described previously [47]. The

experiments shown in Figure 4 are reproducible, with a SD of

about 10%. Rather than adding error bars to each of the data

points presented, we show a representative example.

PCR assays. Portions (5 ng) of genomic DNA were amplified

in each sample. Reactions were allowed to proceed to cycle 35.

Taq polymerase was used in standard reaction conditions. The

sequence of individual primers are available upon request.

Quantitation of results. Southern blot images were

acquired by exposing the hybridized membrane to a standard

X-ray film (FUJI) followed by scanning of the film to the

computer.

Gel images were acquired by filming the EtBr stained gel under

UV light.

Ethidium bromide-stained agarose gels and Southern blots were

quantified using the GelQuant computer program (DNR Bio-

imaging systems).

Genome-wide yeast-two-hybrid screens. MMS22, was

cloned into pOBD2 as described in [52]. The Gal4p-Mms22p-

DNA binding domain fusion protein was functional as determined

by rescuing sensitivity of mms22D to 0.2M HU, 10 mg/ml

camptothecin and 0.01% MMS (data not shown). Genome-wide

two-hybrid screens were performed as described in [53]. Briefly,

each screen was performed in duplicate, and positives that were

identified twice were put into a mini-array for retest. Some

reproducible positives were observed in many different screens

with baits of unrelated function. These were considered as

common false positives and were excluded from further analyses.

Supporting Information

Figure S1 Western Blot analysis and RT–PCR to confirm

human proteasomal subunits knockdown, and sensitivity of

proteasomal CIN mutants to Hydroxyurea (HU). (A) Western

Blot analysis and RT–PCR to confirm human proteasomal

subunits knockdown. (B) Sensitivity of proteasomal CIN mutants

to Hydroxyurea (HU). (A) siRNA-mediated knockdown of the

indicated human proteasomal subunits in HCT116 cells examined

by Western blot, or by RT–PCR (for PSMD12). Arrows at the top

of each blot represent the siRNAs chosen for further analysis. A

non-targeting siRNA control is also shown (NT siRNA). Anti-

tubulin or GAPDH were used as loading controls. (B) Five-fold

serial dilutions of the indicated proteasomal subunits mutants were

spotted on YPD medium lacking or supplemented with 150 Mm

of HU. Cells were incubated at 32uC and 34uC to find the semi-

permissive temperature of each Ts mutant.

Found at: doi:10.1371/journal.pgen.1000852.s001 (0.99 MB TIF)

Figure S2 CIN phenotype of MK203 under proteasome

inhibition; Mms22 and Rtt101 physically interact; the expression

of Mms22 is regulated by the Ubiquitin-Proteasome System (UPS);

Mms22 plays a role in DSB repair; ubiquitination of Mms22 is

induced by DNA damage. (A) CIN phenotype of MK203 under

proteasome inhibition. (B,C) Mms22 and Rtt101 physically

interact. (D) The expression of Mms22 is regulated by the

Ubiquitin-Proteasome System (UPS). (E) Mms22 plays a role in

DSB repair. (F) Ubiquitination of Mms22 is induced by DNA

damage. (A) a-like faker (ALF) assay reveals that MK203 cells

under proteasome partial inhibition exhibit a higher level of CIN.

ALF is based on the fact that the default mating type in yeast is

MATa. If the MATa of MK203 lose the MATa locus (due to the

loss of chromosome III), they mate with a MATa tester as MATa,

and are thus called ‘‘a-like fakers.’’ Two patches of a MATa
MK203 and control strains (wt Alpha, and bim1) were grown in the
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presence of galactose supplemented with MG132. These strains

were replica plated on a lawn of MATa tester strain. Growing

colonies are the indication of the ability to mate with the tester

strains. The ALF phenotype of MK203 is evident when compared

to the wt control. (B) Yeast-two-hybrid interactions using the bait

protein Mms22p. The mini array shown here represent re-tests of

interactions that were identified in at least two genome wide

screens. Each strain contains a different pOAD fusion protein.

Positives interactors are indicated in yellow. A strain containing an

empty pOAD was used as a negative control. MIG1 is a common

false positive. (C) Mms22 and Rtt101 Co-ImmunoPrecipitation

(IP). Doubly tagged Mms22-13Myc/Rtt101-3HA haploid strains

and the singly tagged Mms22-13Myc control strain were subjected

to IP with anti-Myc antibody. Whole Cell protein extracts (WCE),

and IP samples, were subjected to immunoblotting with anti-Myc

and anti-HA antibodies. In contrast to the single tagged control,

Mms22-13Myc co-IPed with Rtt101-3HA. (D) Cyclohexamide

chase experiments in cells expressing Mms22-HA. 100 mg/ml of

Cyclohexamide was added to logarithmically growing samples (t-0)

together with either DMSO control (left), 20 mM MG132 (middle)

or DMSO in rtt101 deletion background (right). Samples were

collected at timely intervals, and Western blot analysis was used to

detect the levels of Mmss22-HA. Pgk1 was used as a loading

control. (E) PCR analysis of gene conversion product formation

kinetics in mms22 cells, and DMSO control. Treated cells show

delayed gene conversion product formation, as apparent from the

quantification graph (bottom). (F) Ubiquitination of Mms22 is

induced by DNA damage in a RTT101 dependent manner. Cells

carrying 3HA-tagged Mms22 and 3Myc-Ubi (or a non tagged Ubi

control), were grown in the presence of 20 mM MG132, and

0.025% MMS, and subjected to IP. After electrophoresis, the

precipitated Mms22-HA protein was blotted to a membrane and

immunobloted with an anti-HA antibody. Black arrow labels

Mms22-3HA. Red or black stars represent Mms22-HA modified

with the endogenous Ubi or Ubi-3Myc respectively, as revealed by

successive immunoblotting with Anti-myc antibody. A red arrow

labels the mono-ubiquitinated form of Mms22-HA.

Found at: doi:10.1371/journal.pgen.1000852.s002 (0.96 MB TIF)

Figure S3 Mms22 is recruited to chromatin upon DNA damage

in a RTT109 dependent manner; recruitment of Rpn5 to

chromatin upon DNA damage; A control for the experiment

described in Figure 5D; accumulation of Mms22 sensitizes the cells

to DNA damaging agents, and results in CIN. (A) Mms22 is

recruited to chromatin upon DNA damage in a RTT109

dependent manner. (B) Recruitment of Rpn5 to chromatin upon

DNA damage. (C) A control for the experiment described in

Figure 5D. (D–F) Accumulation of Mms22 sensitizes the cells to

DNA damaging agents, and results in CIN. (A) Experimental

details are as in Figure 5C. Cell extracts (WCE) were separated

into supernatant (SU) and chromatin (CH) fractions. Mms22 was

detected by immunoblotting. Anti Carboxy peptidase-Y (CPY),

and Anti Acetylated Histon H4 (AcH4) served as a SU and CH

fractions controls respectively. (B) Experimental details are as in

Figure 5C. (C) MMS treatment and not the prolonged exposure to

MG132 treatment led to G2/M the accumulation and recruitment

of Mms22 to chromatin. Cells were synchronized to G1 (5D#1)

and released from the arrest in the presence of 20Mm MG132. A

sample was collected at a time point similar to the sample shown in

Figure 5D-5. FACs analysis and chromatin fractionation assay

clearly show that cells exposed to MG132 only continued cycling

normally, and Mms22 was mainly present at the SUP fraction in

contrast to samples from a similar time point that was first exposed

to MMS+MG132 (Figure 5D-5). (D) a-like faker (ALF) assay

reveals that over expression (OE) of Mms22 results in Chromo-

somal instability. ALF was performed as described in Figure S2A.

Two patches of a MATa cells OE Mms22, and control strains (wt

Alpha, and bim1) were replica plated on a lawn of MATa tester

strain. Growing colonies are the indication of the ability to mate

with the tester strains. The ALF phenotype of OE Mms22 is

evident when compared to the wt control. (E, F) Overexpression of

Mms22 results in growth defects in the presence of DNA

damaging agents. Serial dilutions of the indicated strains were

spotted on the indicated media (E) Overexpression (OE) of Mms22

affects growth upon induction of a specific DSB. Plating on

galactose induced a DSB at the HOcs, together with the OE of the

Mms22 protein. (F) Mms22 OE results in growth defect on media

supplemented with the indicated drugs. Overexpression of Mms22

in a rtt101D mutant shows the same sensitivity as the single rtt101D
mutant, as expected from an epistatic interaction.

Found at: doi:10.1371/journal.pgen.1000852.s003 (1.88 MB TIF)

Table S1 Genes identified through ts mutants that affect CIN,

quantification of the CIN phenotype, and E-value of their human

homolog.

Found at: doi:10.1371/journal.pgen.1000852.s004 (0.07 MB

DOC)

Table S2 Yeast strains used in this study.

Found at: doi:10.1371/journal.pgen.1000852.s005 (0.06 MB

DOC)
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