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Abstract

With each infectious pandemic or outbreak, the medical community feels the need

to revisit basic concepts of immunology to understand and overcome the difficult

times brought about by these infections. Regarding viruses, they have historically

been responsible for many deaths, and such a peculiarity occurs because they are

known to be obligate intracellular parasites that depend upon the host's cell ma-

chinery for their replication. Successful infection with the production of essential

viral components requires constant viral evolution as a strategy to manipulate the

cellular environment, including host internal factors, the host's nonspecific and

adaptive immune responses to viruses, the metabolic and energetic state of the

infected cell, and changes in the intracellular redox environment during the viral

infection cycle. Based on this knowledge, it is fundamental to develop new ther-

apeutic strategies for controlling viral dissemination, by means of antiviral therapies,

vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling

pathways or metabolic pathways that are altered during infection. The rapid re-

covery of altered cellular homeostasis during viral infection is still a major challenge.

Here, we review the strategies by which viruses evade the host's immune response

and potential tools used to develop more specific antiviral therapies to cure, control,

or prevent viral diseases.
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1 | INTRODUCTION

Recent studies in the immunology field have described some factors

that affect the quality and intensity of the host's immune response

when it is exposed to infections. Among them, age, gender, genetics,

and comorbidities (Fink & Klein, 2015; Hooten & Evans, 2019; Martín

et al., 2017; Yao et al., 2018), perinatal factors, and nutritional status

(Alwarawrah et al., 2018; De Medeiros et al., 2018; Obanewa &

Newell, 2017; Plaza‐Díaz et al., 2018), environmental factors

(Cannon et al., 2019), socioeconomic status (Meier et al., 2016), and
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immunological status may be determining factors for the establish-

ment of a viral infection (Zimmermann & Curtis, 2019). The con-

tribution of both viral and host factors determines vulnerability to

viral infection and pathogenesis (Zimmermann & Curtis, 2019). The

exact mechanisms of how these factors influence pathogenesis have

fundamental importance for the development of infection prevention

strategies.

For example, age can be a determining factor in the establish-

ment of a viral infection. In newborns, the immune system is im-

mature. This often represents a deficiency in immune responses,

which predisposes these individuals to certain infections with higher

pathogenicity. This is what happens when the hepatitis B virus (HBV)

is acquired vertically, in toddlers or even children, being more likely

to persist when compared to infection by this virus in adults

(Zimmermann & Curtis, 2019). In addition, the humoral response of

newborns is dependent on the vertical transmission of antibodies

during pregnancy or breastfeeding (Letson et al., 2004; Victora

et al., 2016).

Poor nutrition leads to global immunodeficiencies in children,

adolescents, and the elderly. In 2016, an estimated 159 million

children under the age of 5 years worldwide were seen to be wasted

or severely wasted and suffered from stunting. In addition, around

45% of deaths among children under the age of 5 years were linked

to undernutrition (World Health Organization, 2020). Moreover, the

number of children suffering from malnutrition in West and Central

Africa has increased at an alarming rate from 22.4 million to 29.0

million between 2000 and 2019 (UNICEF, 2020). There is a re-

lationship between undernutrition and infection, with undernutrition

compromising immune function or impairing an effective response

(Calder & Jackson, 2000). Poor nutrition leads to a reduced innate

immune response following stimulation of important receptors acti-

vated by viruses, such as the Toll‐like receptor (TLR) superfamily

(Djukic et al., 2014; Walker et al., 2011).

Genetic defects, such as mutations in nucleotide‐binding oligo-

merization domain‐like receptors (NLRs) belonging to the pattern

recognition receptor (PRR) family (Kim et al., 2016; Kuenzel et al.,

2010; Mortaz et al., 2017), can also contribute towards an ineffective

immune response.

The host's first line of defense against a vast array of potentially

pathogenic microorganisms, including viruses, is the skin and mucosa,

which form part of the innate or nonspecific immune response

(Bedeković et al., 2018; Coursaget, 2014). These anatomical barriers

are equally as important as other components of the innate and

adaptive immune responses. Local immunity then limits the spread of

viruses from the focus of infection and also plays an important role in

activation of the adaptive immune response (Carbone & Gebhardt,

2014; Desai et al., 2018).

Regarding immunological aspects, chemokines play an important

role in the regulation of immune cell migration and activation, which

is crucial for a comprehensive antiviral immune response (Alkhatib

et al., 1996). Chemokines, such as those regulated on activation,

normal T cell‐expressed and secreted (RANTES) chemokine, macro-

phage inflammatory protein 1‐alpha (MIP‐1α), and MIP 1‐beta

(MIP‐1β), are important chemokines that act through C‐C chemo-

kine receptor type 5 (CCR5). This receptor is expressed on several

immune effector cells such as natural killer (NK) cells, T cells, and

macrophages (Alkhatib et al., 1996; Kou & Kuang, 2019).

During cell activation, viruses enter the cytoplasm and generate

double‐stranded RNA (dsRNA) during replication. The infected host

cells can recognize such dsRNA and activate intrinsic antiviral sig-

naling pathways with the production of interferon (IFN) type I,

inducing multiple aspects of innate and adaptive responses

(Yoneyama & Fujita, 2008). This process is mediated by cytosolic

PRRs, such as retinoic acid‐inducible gene‐I (RIG‐I), melanoma

differentiation‐associated protein 5 (MDA5), and laboratory of

genetics and physiology protein 2 (LGP2), which are expressed in

most cutaneous cell types and in remarkably high levels following

exposure to IFN type I (Kawai & Akira, 2009).

The C‐type lectin receptors (CLRs) expressed in cutaneous

antigen‐presenting cells (APCs) can also be mentioned in this con-

text. These receptors mediate internalization of the viral ligand or of

the virus itself in intracellular compartments, leading to their de-

gradation and subsequent presentation of the antigen to APCs

(Mercer & Greber, 2013; Sandgren et al., 2010). Upon viral activa-

tion, these receptors and transcription factors that induce the pro-

duction of cytokines, such as IFN, interact as mediators of a direct

antiviral response regulating multiple aspects of innate and adaptive

immune responses.

Besides the above‐mentioned mechanisms to decrease viral in-

fection, we also can mention cell‐mediated immunity factors related

to macrophages, plasmacytoid dendritic cells (pDCs), and NK cells.

Classically activated macrophages (M1‐polarized macrophage sub-

type), when stimulated by IFN‐γ or lipopolysaccharides (LPS), induce

expression of the enzyme inducible nitric oxide synthase (iNOS or

NOS2), which produces nitric oxide (NO) (Karupiah et al., 1993;

Kobayashi, 2010; Martinez et al., 2006). Among the various physio-

logical effects of NO, we can mention its antiviral effects against

some viruses, such as Herpes simplex virus type 1 (HSV‐1), Japanese
encephalitis virus (JEV), and Dengue virus (DENV) (Croen, 1993;

Neves‐Souza et al., 2005; Saxena et al., 2000), among others. Con-

currently, alternatively activated macrophages (M2‐polarized mac-

rophage subtype) are stimulated by cytokines and are found in high

levels in human infections caused by the hepatitis C virus (HCV) and

hepatitis B virus (HBV) (Saha et al., 2016; Tsai et al., 2018).

The importance of pDCs in the context of the innate immune

response is that these cells express the TLR7 and TLR9 intracellular

receptors, which recognize viral or microbial nucleic acids (Asselin‐
Paturel & Trinchieri, 2005; Y. Liu, 2005). This happens when pDCs

secrete IFN type I, following activation of TLRs triggered by viruses

or immune complexes (Cella et al., 1999).

Despite the restrictive factors mentioned above, almost all viral

pathogens have developed mechanisms to inhibit the activation of

complement system proteins (Lambris et al., 2008) by the production

of molecules that bind to the Fc region of host immunoglobulins to

prevent immunoglobulin G (IgG)‐mediated virus neutralization

(Lilley et al., 2001; Sprague et al., 2008) and the induction of
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antibody‐dependent activities against infected cells. The binding of

antibodies to epitopes on the surface of infected cells results in ac-

tivation of the complement pathway and cell lysis (Martinez et al.,

2006; Van de Walle et al., 2003). Inhibition of its activation or

binding to viruses ensures the development of a viral infection, as we

will see in more detail throughout this review.

Within the context of the cellular immune response, the cyto-

toxic activity of peripheral NK cells occurs via its two major subtypes

of CD56 surface molecules, which have different receptors and

functional properties. The elevated and chronic production of some

viruses may impede the immune response mediated by these cells,

including affecting their interaction with dendritic cells and in some

cases affecting their interaction with virus‐specific cytotoxic T lym-

phocytes (CTLs). To escape the responses mediated by NK cells,

viruses generally regulate the expression of HLA‐A, B, and C types of

MHC class I molecules (Gianchecchi et al., 2017).

The cellular immune response mediated by CD4+ and CD8+ T

cells by the expression of MHC class II molecules on the surface of

APCs is essential for the presentation of antigenic peptides foreign

to CD4+ T cells. Viruses encode proteins that may interfere with the

expression of MHC class II antigens by negatively regulating their

transcription and/or disrupting their normal cell trafficking, inter-

fering with their presentation to naive CD4+ T cells by disrupting the

interaction between MHC class II antigens and TCRs. This is what

occurs with the human immunodeficiency virus (HIV) proteins Tat

and Nef, as described in more detail throughout this review (Cao

et al., 2018; Rivino, 2018; Yee & Poh, 2018).

In the case of MHC class I expression by CD8+ T cells, IFN type I

signaling, for example, specifically enhances the expression of MHC

class I molecules and costimulatory molecules presented by APCs

(Fitzgerald‐Bocarsly, 1993; F. Zhou, 2009). Other cytokines pro-

duced by innate immunity cells reinforce the signaling mediated by

IFN type I to ensure the expansion and function of cytotoxic CD8+ T

cells. Therefore, in acute viral infections, most viruses are eliminated

by CD8+ T cells, resulting in antigen depletion and establishment of

CD8+ T cell memory.

In chronic viral infections, certain viruses can escape the host's

immune responses, becoming latent and invisible to the immune

system. Viruses such as HSV‐1, Varicella‐Zoster virus (VZV), cyto-

megalovirus (CMV), and HIV have developed latency that ensures

maintenance of the viral genome with reduced viral gene expression

and minimal activity, but at the same time persistently replicating in

host cells, causing vigorous and sustained stimulation of TCRs and

positive regulation of inhibitory receptors that lead to depletion of

CD8+ T cell effectors. In the case of HIV, it is also known that per-

sistent antigenic stimulation compromises the development of CD8+

T cell memory, allowing quiescent infection where the provirus is

maintained as an integral part of the host genome with minimal viral

replication (Grinde, 2013).

In addition to the inactivation of MHC class I and/or MHC class

II receptors, the persistent activation of T cells induces an in-

flammatory condition (Belkaid & Rouse, 2005) that can lead to tissue

or systemic damage. Influenza virus infection may induce lung in-

flammation with massive tissue damage (Julkunen et al., 2000).

The coexistence of viruses and hosts imposes an evolutionary

pressure on the immune system. As mentioned above, viruses can

interfere with the functioning of the humoral and cellular immune

responses by developing a series of immune evasion mechanisms

enabling them to avoid being recognized by the host's immune sys-

tem, for example by altering their immunodominant epitopes (epi-

tope mutations), or, in the case of chronic viral infections, by

becoming latent (McMichael et al., 2010).

Other mechanisms of viral evasion also include the inhibition of

apoptosis by the virus‐producing caspase inhibitors and virus

tropism factors. The viruses encode virocins and viroreceptors that

can act as mimetics or antagonists of their cellular counterparts, by

altering signal transduction and cellular communication for survival

of virus‐infected cells (Shirogane et al., 2019; Vieyres &

Pietschmann, 2019;). Tropism is determined by the presence of

membrane receptors in host cells, which interact with viral proteins

(antireceptors), allowing entry of the infectious agent into the cy-

toplasm, as occurs in human T cell leukemia virus type 1 (HTLV‐1),
HIV, Epstein‐Barr virus (EBV) and Herpesvirus type 8 (HHV‐8) in-
fections (Inoue et al., 2003; Jones et al., 2011; Speck et al., 2000;

Wilen et al., 2012). In addition to inhibiting apoptosis by means of

the production of caspase inhibitors, viruses can hide viral protein‐
to‐peptide processing that occurs in proteasomes present in the

cytosol. For example, the Epstein–Barr nuclear antigen 1 (EBNA1)

escapes CTL detection and encodes a mechanism to inhibit epitope

generation (Levitskaya et al., 1997).

Some mechanisms have been suggested to explain the viral

evasion of novel SARS‐CoV‐2, which involves CpG deficiency, 2'‐O‐
methylation of viral RNA, viral suppressor RNAi, and the ORF8 and

ORF3b proteins, which will be discussed further in this review.

Further to the various viral immune evasion mechanisms de-

scribed above, understanding how viruses are capable of seques-

tering host cell metabolism, by inducing increased absorption and

catabolism of nutrients in the host cell to support the production of

new progeny, is an interesting challenge that could reveal how these

evasion strategies or modulation of the host metabolism translate

into the clinical outcome of the infection, or how current therapies

could prevent the persistence of viral infection.

2 | FACTORS THAT INFLUENCE THE
IMMUNE RESPONSE

The contribution of viral and host factors determines vulnerability to

viral infection and pathogenesis. The exact mechanism of how these

factors influence pathogenesis is of fundamental importance for the

development of strategies to prevent infection.

There are some factors that affect the quality and intensity of

the host's immune response when it is exposed to viral infections, as

described below.
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2.1 | Age

Age can be a determining factor in establishing a viral infection. In

newborns, the immune system is not fully developed. The humoral

response of newborns and toddlers relies on the passive transfer of

maternal antibodies during pregnancy or breastfeeding. These anti-

bodies influence the vaccination process as they act as neutralizers

of the vaccine agent. Children are therefore vaccinated after 6

months of age, long enough to avoid interference of maternal anti-

bodies (Jakaitis & Denning, 2014).

A lot of changes in innate and adaptive immunity are common in

the aging population, reflecting a deterioration of the immune sys-

tem and leading to terms such as “immune aging” or “im-

munosenescence.” Many markers of immunosenescence stem from

the investigation of T and B cells, which show an altered pattern of

cytokines, a decrease in clonal expansion and B cell and antigen‐
specific T cell function, and a decrease in the function of APCs.

Decreased immunological functions lead to increased susceptibility

of the elderly to viral, bacterial, and fungal infections, reactivation of

pre‐existing latent viruses, and a reduced response to vaccines

(Franceschi et al., 2000; O'Connor et al., 2014).

In addition, metabolic dysfunction, impaired immune response to

new antigens and inflammatory disorders are commonly found in the

elderly and reflect a strong link between metabolic dysregulation and

immune responses. Another example of this strong link is that sev-

eral metabolic syndromes, especially obesity and diabetes, have in-

flammatory components (e.g., interleukin‐6 and advanced glycation

end products [AGEs] that trigger oxidative stress) and appear to be a

driving force behind the pathogenicity of many viral infections

(Franceschi et al., 2000; O'Connor et al., 2014).

2.2 | Genetic constitution

Chemokines such as RANTES, MIP‐1α, and MIP‐1β are important

chemokines that act through CCR5 (Sanchooli et al., 2014), which is a

member of the heterotrimeric G protein superfamily, and its acti-

vation results in the recruitment of proteins from cell signaling

pathways, more specifically: Rho GTPase, PI3‐Kinase, MAPK, JAK/

STAT, and PKB (Sorce et al., 2011; Wong et al., 2001). The activation

of these signaling pathways is implicated in the proliferation of im-

munological cells, the expression of inflammatory cytokines, activa-

tion of the immune system, and a protective response to viral

infections such as Influenza, CMV, HSV‐1, HSV‐2, HBV, and HCV

(Piguet & Trono, 2001). In contrast to the viruses mentioned above,

for HIV, CCR5 is a coreceptor that facilitates entry into CD4+ T cells.

A 32 base pair deletion (Δ32) in exon 1 of the CCR5 gene, which is

polymorphic in different ethnic and geographic populations, leads to

dysfunction or a decline in expression, resulting in a negative cor-

relation with the development of AIDS (Ioannidis & International

Meta‐Analysis of HIV Host Genetics, 2001).

The interactions between viral phenotypes, tropism, and the use

of coreceptors, and how these influence HIV pathogeneses are

important topics in HIV research, especially after two cases of HIV

being cured following a bone marrow transplant from a homozygous

CCR5 Δ32 donor (Brown, 2015; Gupta et al., 2020; Hütter et al.,

2009; Symons et al., 2014).

2.3 | Nutritional and immunological status

Some micronutrients have a direct relationship with the formation of

antibodies and development of the immune system:

• Vitamin A supplementation maintains intestinal integrity, reduces

the incidence of respiratory tract infections, mortality from diar-

rhea, and increases immunity. Measles depletes host vitamin A

levels, and for this reason, the measles vaccination often includes

a high dose of vitamin A (Oliveira & Rondo, 2007).

• Vitamin E: The antioxidant action of vitamin E acts on the removal

of free radicals and vitamin E supplementation improves immune

function in the elderly. It induces cell division and the production

of interleukins by naive T cells, but not by memory T cells (Glynn

et al., 2007; Grodstein et al., 2003; Institute of Medicine (US)

Panel on Dietary Antioxidants and Related Compounds, 2000).

• Vitamin D supplementation is effective in boosting the immune

response against SARS‐CoV‐2, Influenza, HIV, and DENV (Giraldo

et al., 2018; Grant et al., 2020; Jiménez‐Sousa et al., 2018).

• Zinc deficiency is implicated in reduced neutrophil and NK cell

immunity, reduced complement system activity, a decrease in T

and B cells, suppression of late hypersensitivity and cytotoxic

activity, and also reduced antibody production (Sena &

Pedrosa, 2005).

• Breastfeeding: Immune deficiency is partially offset by breast-

feeding. Breast milk has large amounts of IgA, secreted lysozyme

from macrophages, T and B cells that release IFN‐g, migration

inhibitory factors, and monocyte chemotactic factors. Thus, breast

milk actively boosts the immune system through the transfer of

antibodies and lymphocytes (Palmeira & Carneiro‐Sampaio, 2016).

3 | MECHANISMS OF NONSPECIFIC
IMMUNE RESPONSE

3.1 | Anatomical barriers and surface secretions

The skin is the host's first line of defense against a vast array of

potentially pathogenic microorganisms, including viruses. It main-

tains local immunity by limiting the spread of viruses from the focus

of infection and plays an important role in activation of the adaptive

immune response. It is composed of immature dendritic cells and

Langerhans cells present in the epidermis, which capture antigens

and then transport them to draining lymph nodes.

Of equal importance is the mucosal immune system, which

counts on lymphocytes and accessory cells to capture the antigens

acquired by the respiratory and gastrointestinal tract. Peyer's

STRUMILLO ET AL. CCell ell BBiologyiology
    IInternationalnternational

| 1127



plaques in the intestinal wall and the tonsils in the oropharynx are

also tissues of the mucosal immune system (Kawamura et al., 2014).

3.2 | Intact immune receptors and their activation
by viruses

3.2.1 | TREM‐1

The TREM‐1 receptor, belonging to the immunoglobulin variable

domain receptor (IgV) superfamily, is activated by viruses. In the

literature, studies have reported the activation and increase in ex-

pression of TREM‐1, followed by its internalization in neutrophils,

following interaction with Filovirus glycoproteins (Marburg and

Ebola); and increased expression of TREM‐1 in cells exposed to the

HIV‐1 gp41 protein and in the serum of patients infected by dengue

in the early stages of infection (Roe et al., 2014).

3.2.2 | Toll‐like receptors (TLRs)

TLRs are the best characterized among those that integrate the fa-

mily of PRRs and participate in the recognition of viral components.

TLRs contain extracellular leucine‐rich repeats that mediate the re-

cognition of their respective pathogen‐associated molecular patterns

(PAMPs).

Nucleic acids of RNA and DNA viruses, such dsRNA, single‐
stranded RNA (ssRNA), and demethylated CpG rich motifs

(CpGDNA), are considered to be PAMPs and can be recognized by

TLRs 3, 7, 8, and 9, which are located in intracellular compartments,

such as endosomes and the endoplasmic reticulum (Gantier, 2014).

TLR3 recognizes dsRNA, TLR7 and TLR8 recognize ssRNA, and TLR9

recognizes demethylated CpG rich motifs. TLRs 1, 2, 4, 5, and 6 are

located on the cell surface and primarily recognize components of

the bacterial cell wall and viral particles. The specialty of TLRs is to

promote the production of IFN type I and inflammatory cytokines,

leading to antiviral immunity (Figure 1) (Collins & Mossman, 2014).

TLR2 can be stimulated by various skin‐associated viruses, in-

cluding HSV, VZV, EBV, human and murine cytomegalovirus (HCMV

and MCMV), and measles virus. In many of these cases, viral sti-

mulation of TLR2 results in activation of the AP‐1 transcription

factor, which contributes to the induction of proinflammatory cyto-

kine expression (Boo & Yang, 2010).

Activation of TLR3 in Epstein–Barr infection contributes to the

release of inflammatory cytokines and viral RNA from infected cells.

Subsequently, the production of IFN type I and tumor necrosis factor

α (TNF‐α) occurs.
TLR4 may be activated by LPS derived from the membrane of

Gram‐negative bacteria, and also detects viral structural proteins

and glycoproteins. The TLR4 receptor has altered expression after

infection of human B cells by HCV (Boo & Yang, 2010).

TLR7 and TLR8 can be stimulated by Kaposi's sarcoma‐
associated Herpesvirus (KSHV), Vaccinia virus (VV), DENV, West

Nile virus (WNV), Rotavirus, and HIV‐1. TLR9 can be stimulated by

all types of Herpes, VV, and HIV‐1. These endosomal TLRs induce the

expression of IFN type I in pDCs, which are considered the profes-

sional producers of IFN and are absent in normal skin but have been

described in inflammatory skin disease lesions (Boo & Yang, 2010;

Frazão et al., 2013; Kawai & Akira, 2008).

3.2.3 | APOBEC protein family

Apolipoprotein B mRNA‐editing enzyme‐catalytic polypeptide‐like
3G (APOBEC3G or A3G) is a member of the APOBEC family of

cytidine deaminases (Salter et al., 2016; H. C. Smith et al., 2012) that

is expressed at varying levels in different cell types and is inducible

by IFNs (Bonvin et al., 2006; Thielen et al., 2010). APOBEC3G is the

main representative of the APOBEC family that has been shown to

have antiviral activity against RNA and DNA viruses, such as HIV‐1
and HBV, respectively. A3H haplotype II is another variant that has

an expression that correlates with increased anti‐HIV activity (Morse

et al., 2017). Furthermore, A3B and A3F have been suggested to

protect liver cells against HBV infection through their upregulation

F IGURE 1 Representation of TLR activation
by their respective PAMPs and the subsequent
immune response. The rectangle in the upper left
corner shows the PAMPs recognized by the
intracellular TLRs 3, 7, 8, and 9. AP‐1, activator
protein 1; dsRNA, double‐stranded RNA; IFN,
interferon; IRF, interferon regulatory factor;
MyD88, myeloid differentiation primary
response 88 protein; NF‐κB, nuclear factor kappa
B; RIG, retinoic acid‐inducible gene; ssRNA,
single‐stranded RNA; TLR, Toll‐like receptor
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mediated by IFN‐α (Bonvin et al., 2006). The antiviral effect of

APOBEC3G has been explored in a broad range of retroviruses, in-

cluding HIV‐1, where the induction of G‐to‐A hypermutation in the

nascent retroviral DNA of viral infectivity factor (Vif)‐defective
HIV‐1 has been observed (Mangeat et al., 2003; H. Zhang et al.,

2003). APOBEC3G can also bind to a retroviral RNA template or

ssDNA and inhibit the viral reverse transcriptase (RT), leading to the

production of nonviable viruses (Chemudupati et al., 2019).

3.2.4 | NOD‐like receptors

Nucleotide‐binding oligomerization domain‐like receptors (NLRs) are

PRRs that are involved in the recognition of viral PAMPs. NLRP3 is a

receptor belonging to the subfamily of NLRs that encodes the NALP3

protein, which is involved in activation of the inflammasome (Durán

et al., 2014).

3.2.5 | Retinoic acid‐inducible gene‐I (RIG‐I)‐like
receptors (RLRs)

RLRs are cytosolic receptors consisting of RIG‐I, MDA‐5, and LGP2.

They are expressed in most cutaneous cell types and are remarkably

elevated following exposure to IFN type I after viral infection. RIG‐I
is preferentially involved in the detection of short dsRNA and staple

RNA, whereas MDA‐5 is more sensitive to long dsRNA. Recognition

of viral RNA by RIG‐I and/or MDA‐5 triggers the production of IFN

type I through the adapter protein called mitochondrial antiviral

signaling protein (MAVS) and the transcription factors NF‐kB, IRF3,
and IRF7. RIG‐I is essential for immune defense against EBV,

Measles, and HIV, while MDA‐5 recognizes HSV and VV. Both RIG‐I
and MDA‐5 are activated by DENV (Bruns et al., 2012; Chiang et al.,

2014; Rodriguez et al., 2014).

3.2.6 | C‐type lectin receptors (CLRs)

Most CLRs are expressed on cutaneous APCs, such as Langerhans

cells, dendritic cells, and macrophages, and recognize mannose, fu-

cose, and glycosylated structures of viruses (Bermejo‐Jambrina et al.,

2018). These receptors mediate internalization of the viral ligand or

the virus itself into intracellular compartments, leading to their de-

gradation and subsequent presentation of the antigen to APCs. CLRs

activate distinct signaling pathways through kinases, such as spleen

tyrosine kinase and Src kinase, which modulate the induction of

specific cytokines (Lowell, 2011).

Most CLR studies are targeted at HIV‐1. For HIV‐1 infection, the

virus needs to bind to CD4, and co‐receptors (CCR5 or CXCR4)

expressed on T cells and macrophages. In addition, HIV‐1 can bind to

different CLRs that are also expressed in these cells. There are two

main mechanisms of transmission of HIV‐1 between cells. The first of

these mechanisms is a cis infection, where target cells are infected

with progeny virions via CD4 and coreceptors, and the viruses are

released by productively infected cells (Coleman et al., 2013). The

other mechanism consists of trans‐infection, which occurs via a CLR‐
mediated immune synapse or exosomal pathway, where target cells

are infected by virions that are captured by surrounding donor cells,

and the viruses do not exhibit productive infection. CLRs of the DC‐
SIGN, MR, and CLEC4A types promote cis‐infection by increasing

interaction between the glycoprotein gp120 present in the HIV‐1
envelope and CD4, but also facilitate viral capture and trans‐
infection in CD4+ T cells (Kawamura, 2016; Lambert et al., 2011).

3.3 | Production of IFN

All organisms have developed protection mechanisms against attack

by pathogens. Mammals and other species have evolved to recognize

conservative patterns of invading pathogens and produce IFN ra-

pidly. The transcription factors IRF3 and IRF7 are important to

produce IFN type I and controlling viral infections (Levy et al., 2011).

These mediators show direct antiviral action and regulate multiple

aspects of innate and adaptive immune responses. IFN type I, in

addition to directly suppressing viral replication, also regulates the

CD8+ T cell response. IRF3 is activated by recognizing PAMPs, such

as nucleic acids or LPS. The RIG‐I signaling pathways and TLRs and

RLRs converge for the activation of IRF3. RIG‐I and MDA‐5 re-

cognize RNA viruses that activate the adapter molecule IPS‐1, which

is required for the activation of IRF3, to promote the production of

IFN type I. The rapid production of IFN induces hundreds of IFN‐
stimulated genes (ISGs) that function collectively to block all aspects

of the virus life cycle. If viruses succeed in blocking IFN production,

an innate IFN‐independent response occurs. This response allows the

cell to respond to stimuli involving low virus concentrations without

the consequences that IFN could cause in the host, such as the in-

filtration of various cells of the immune system into the infected

tissue or organ, which would lead to a marked inflammatory condi-

tion (Boo & Yang, 2010; Levy et al., 2011; Ysebrant de Lendonck

et al., 2014).

3.4 | The complement system

Complement proteins are part of the innate immunity that provides

the first line of defense against a wide variety of microorganisms.

Almost all pathogens have developed mechanisms to inhibit the ac-

tion of the complement, preventing its activation or attachment to

the virus.

The classical pathway of the complement system eliminates in-

fected cells by activating the complement cascade, resulting in the

formation of pores in target cells. Host cells are protected against

the action of the complement system by the expression of comple-

ment activation regulators (RCA) in their membranes. These RCAs

negatively regulate complement activity, inhibiting the formation of

C3 (C3 convertase) activation enzymes and preventing the formation
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of the membrane attack complex (Pratheek et al., 2013;

Ricklin, 2012).

3.5 | Macrophages and dendritic cells

Macrophages can adopt a variety of active phenotypes, depending on

the cellular environment in which they are found. Classically acti-

vated macrophages (M1‐polarized macrophage subtype), when sti-

mulated by IFN‐γ or LPS, induce expression of the enzyme inducible

nitric oxide synthase (iNOS or NOS2), which produces NO

(Figure 2a) (Buzzo et al., 2017). Evidence shows that DC glycolytic

upregulation is controlled by two distinct pathways; an early burst of

glycolysis that is NO–independent, and a sustained commitment to

glycolysis in NO‐producing DC subsets (Thwe & Amiel, 2017). NO is

a short‐lived gas molecule that causes both physiological and pa-

thological effects. Among the various physiological effects of NO, we

can mention the induction of death of intracellular pathogens, in-

cluding viruses. NO causes antiviral effects against HSV‐1, VV,

Indiana vesiculovirus (VSV), JEV, and DENV, among others (Akaike &

Maeda, 2000; Myint et al., 2014; Trottier et al., 2005).

This molecule is important in cells or tissues infected by certain

viruses that reduce the expression of MHC class I and/or class II

molecules. Its effect is independent of the immune recognition of

infected cells through T cells. Studies in the literature have evaluated

the effect of NO on infections caused by HCMV and DENV.

For example, recent studies have demonstrated that HCMV pro-

motes the differentiation of a subset of specific monocytes. This

differentiation induces activation of the cellular signal transducer

and transcription activator 3 (STAT3) with consequent generation of

high levels of NO, to silence the immediate transcription of HCMV

and to promote viral latency. These results demonstrate that through

activation of the STAT3–iNOS–NO axis, HCMV differentiates human

hematopoietic progenitor cells into a subgroup of im-

munosuppressive monocytes that are long‐lived due to viral latency

(Zhu et al., 2018). Regarding the DENV infection, the replication of

NO‐sensitive DENV is inhibited by NO production leading to lower

virus load and consequently milder dengue disease (dengue fever).

However, NO‐resistant DENV is virulent with a higher replication

rate and stronger influence on host genetic response (involving cy-

tokines/chemokines and the activation of T cells, B cells, platelets,

and inflammatory cells) as compared to NO‐susceptible DENV

(Chaturvedi & Nagar, 2009).

Alternatively, activated macrophages (M2‐polarized macrophage

subtype) are stimulated by cytokines, such as IL‐4 or IL‐13, and express

arginase 1 (Arg1), which hydrolyzes L‐arginine to L‐ornithine and urea

(Atri et al., 2018; Briken & Mosser, 2011). These macrophages are

found at high levels in human infections caused by the HCV, HBV,

H5N1, and H1N1 viruses, and, consequently, produce substantial

amounts of Arg1. The enhanced production of Arg1 is associated with

viral persistence and progression of the immunopathology caused by

these viruses (Figure 2a) (Burrack & Morrison, 2014).

F IGURE 2 Mechanisms of nonspecific immune response mediated by cells. (a) M1‐polarized macrophage subtype and M2‐polarized
macrophage subtype stimulation leading to distinct responses related to viral persistence and progression. (b) Dendritic cell response after
activation of TLRs. (c) Deregulation of the interaction between NK cells and dendritic cells leading to viral disease progression. Arg1, arginase 1;
DENV, dengue virus; H1N1, swine influenza virus A; H5N1, avian influenza virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human
immunodeficiency virus; HSV, herpes simplex virus type 1; IFN, Interferon; IL, interleukin; JEV, japanese encephalitis virus; LPS,
lipopolysaccharide; NK, natural killer cells; NO; nitric oxide; NOS2, nitric oxide synthase 2; VSV, Indiana vesiculovirus; VV, vaccinia virus
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pDCs are APCs specialized in secreting IFN type I through the

activation of TLRs, triggered by viruses or immune complexes. They

express the TLR7 and TLR9 intracellular receptors, which recognize

viral or microbial nucleic acids (Figure 2b) (Reizis et al., 2011;

Simpson et al., 2016).

3.6 | NK cells

NK cells exhibit cytotoxic activity and induce the release of the cy-

tokines IFN‐γ, TNF, GM‐CSF, and the chemokines CCL3/MIP1‐α,
CCL4/MIP1‐β, and CCL5/RANTES upon activation of these cells by

the virus. Peripheral NK cells have on their surface two major sub-

types of the CD56 molecule, called CD56 bright (light, bright, or

luminous) and CD56 dim (murky and dark), which have distinct re-

ceptors and functional properties. There is also a subtype detected at

a low frequency in healthy individuals, called CD56 neg (negative).

The latter circulates in large quantities in HIV‐1 infected individuals.

Although NK cells are not infected by HIV‐1, high and chronic virus

production impedes the immune response mediated by these cells,

including their interaction with dendritic cells that are responsible

for presenting HIV‐1 antigens to T cells (Figure 2c) (Lugli et al.,

2014). The deregulation of the interaction between NK cells and

dendritic cells contributes to the spread of the virus to secondary

lymphoid organs, thereby facilitating disease progression. HCV,

HCMV, Hantavirus, and EBV also stimulate increased circulating le-

vels of CD56 neg NK cells in the host (Pollmann et al., 2017).

4 | MECHANISMS OF ACQUIRED IMMUNE
RESPONSE

4.1 | Humoral immune response

Antibodies and peptides of the complement system are essential for

the elimination or neutralization of viral particles. They act by in-

hibiting the entry of viruses into the host cell, prevent their spread in

the body, and act to prevent reinfections as we shall see below.

Antibodies efficiently neutralize viral antigens. The upper air-

ways have large amounts of IgA and IgM, which neutralize re-

spiratory viruses such as influenza (Figure 3a). The production of IgM

occurs early during the immune response and precedes development

of the response mediated by the class exchange of IgG and IgA im-

munoglobulins as a result of infection or vaccination (Figure 3a)

(Baumgarth, 2013).

Only influenza A and B cause outbreaks of pandemics and severe

disease (Couch & Kasel, 1983). These viruses have two surface an-

tigenic proteins; hemagglutinin (HA or H) and neuraminidase (NA or

N), with 16 subtypes of HA and 9 of NA having been described

(Fouchier et al., 2005). Antigenic drift occurs as a result of point

mutations in influenza A and B viruses and causes small, gradually

accumulating changes in the structure of HA and NA. Antigenic drift

in influenza A viruses is associated with a positive selection of

spontaneous mutants with neutralizing antibodies (Bush et al., 1999).

Such variants of the virus are no longer neutralized by antibodies, in

contrast to the original viruses. Antigenic drift is observed among

F IGURE 3 Mechanisms of an acquired immune response against viruses. (a) Antibodies produced by B cells neutralize viral antigens.
(b) The HIV‐1 Tat and Nef proteins interfere with MHC class II molecules, and as a consequence disrupt the generation of virus‐specific
CD4+ T cells essential to an effective antiviral immune response. (c) Specific cytokines stimulate the CD8+ T cell‐mediated response. HCV
chronic infection causes sustained stimulation of TCR and positive regulation of inhibitory receptors that lead to the depletion of CD8+ T cell
effectors. APC, antigen‐presenting cell; HCV, hepatitis C virus; Nef, negative regulatory factor; Tat, trans‐activator of transcription
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poultry viruses and is less pronounced in viruses that infect humans.

Mutations in the nucleotide sequences of the HA and NA segments

of human viruses occur with a frequency of less than 1% per year.

However, it has been shown that single point mutations in one of the

antigenic HA sites may be sufficient for antigenic variations (Wiley &

Skehel, 1987). As a result of the emergence of the A/California/04/

2009 (or A(H1N1) pdm09) pandemic strain in 2009, which differed in

antigenic properties from all previous H1 serotype strains, the cur-

rent H1 component became part of the current vaccines. In addition

to hemagglutinin, antigenic drift has also been observed for neur-

aminidase and correlates with amino acid changes (Colman & Ward,

1985). The antigenic shift includes major antigenic changes, as a

result of which HA and NA become different from circulating var-

iants and enter the human population. Typically, this generates new

subtypes of the virus, which have not yet circulated among people,

before the appearance of a pandemic. These newly formed proteins

are immunogenically different from those in previously circulating

strains and cause a high infectious level of new viruses in naive

populations, leading to a pandemic (Trifonov et al., 2009).

4.2 | Cellular immune response

Among the cellular immune responses, we can highlight those

mediated by CD4+ and CD8+ T cells.

4.2.1 | CD4+ T cells

Expression of MHC class II molecules on the surface of APCs is

essential for the presentation of antigenic peptides foreign to CD4+

T cells. Inhibition of virus‐induced MHC class II antigen presentation

interferes in the generation of virus‐specific CD4+ T cells, and con-

sequently, in the induction of an effective antiviral immune response.

Viruses encode proteins that may interfere in the expression of MHC

class II antigens by negatively regulating their transcription and/or

disrupting their normal cell trafficking, interfering with their pre-

sentation to naive CD4+ T cells by disrupting the interaction be-

tween MHC class II antigens and TCR (Su & Davis, 2013).

The HIV‐1 Tat protein competes with the transcriptional MHC

class II transcriptant (CIITA) at the transcriptional level and represses

the expression of genes encoding MHC class II antigens. Another way

to subvert antigen presentation is by altering the intracellular traf-

ficking of class II antigens. HIV Nef protein causes decreased expression

of mature MHC class II molecules and increased expression of im-

mature MHC class II molecules on the plasma membrane surface of

CD4+ T cells (Figure 3b) (Dalrymple & Mackow, 2014).

4.2.2 | CD8+ T cells

CD8+ T cells are essential for the effective control of most viral

infections. The initiation and expansion of the CD8+ T cell‐mediated

antiviral response are largely dependent on the innate immune re-

sponse. The latter is rapidly triggered and promotes the link between

various PRRs and viral products.

IFN type I signaling specifically enhances the expression of MHC

class I molecules and costimulatory molecules present in APCs. IFN

can also act directly on increasing the proliferation of CD8+ T cells.

Other cytokines produced by innate immunity cells reinforce sig-

naling mediated by IFN type I to ensure the expansion and function

of cytotoxic CD8+ T cells (Mescher et al., 2006). IL‐12 produced by

macrophages and dendritic cells induces the expression of T‐bet
transcription factor (T‐box expressed on T cells) (Joshi et al., 2007).

Induction of T‐bet expression in CD8+ T cells is essential for the

generation of cytotoxic antiviral effector functions (Singh et al.,

2017). Other cytokines expressed by innate immunity cells, such as

TNF, IL‐15, and IL‐18 also stimulate the CD8+ T cell‐mediated re-

sponse (Figure 3c) (N. Zhang & Bevan, 2011).

In acute infection, most viruses are eliminated by CD8+ T cells,

resulting in antigen depletion and CD8+ T cell memory development,

which can be long lasting and mediate rapid and effective responses

to subsequent viral exposure.

In a chronic viral infection, CD8+ T cell specificity is determined by

the nature of the infection itself. Certain viruses have developed latency

that ensures maintenance of the viral genome with reduced viral gene

expression and minimal active viral replication (Allen et al., 2011). This

quiescent colonization of the host is associated with very low levels of

viral antigens, appropriate development of T‐cell memory, and main-

tenance of CD8+ T cell effectors that are stimulated by occasional

expression of the viral antigen as a result of reactivation of the virus

(Abbott et al., 2013). In contrast, HCV has active replication throughout

its life cycle. This persistent replication in a host with chronic infection

causes vigorous and sustained stimulation of TCR and positive regula-

tion of inhibitory receptors that lead to the depletion of CD8+ T cell

effectors, which is characterized by decreased cytokine production,

attenuated proliferation, and apoptosis (Dustin, 2017; Naseem et al.,

2018) (Figure 3c). In addition, antigenic and persistent stimulation

compromises the development of CD8+ T cell memory (Naseem et al.,

2018; Urbani et al., 2002). HIV virus has both quiescent and persistent

life cycles. It can establish quiescent infection where the provirus is kept

as an integral part of the host genome with minimal viral replication

(Bradley et al., 2018). Quiescent infection, prevalent in HIV patients

treated with antiviral therapy, occurs when infected CD4+ T cells are

able to differentiate into memory cells that do not allow viral replica-

tion, and thus a stable reservoir of latent HIV is created (Bradley et al.,

2018). On the other hand, in the absence of antiviral therapy, there is

persistent replication of HIV, chronic stimulation, and CD8+ T cell de-

pletion (Kulinski et al., 2013).

4.2.3 | Mechanisms of tissue aggression mediated
by cellular immune responses

Activated T cells promote an inflammatory condition that can lead to

tissue or systemic damage. Influenza virus infection, for example,
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induces lung inflammation with massive tissue damage (Lê et al., 2015).

CD4+ and CD8+ T cells use multiple regulatory mechanisms to elim-

inate virus‐infected cells and reduce lung inflammation and injury

(Vasileiou et al., 2020). In addition to the production of proinflammatory

cytokines by activated T cells, we can cite “original antigenic sin” or

“negative antigenic interaction” (Monto et al., 2017), which is defined by

the tendency of the immune system to utilize immune memory based

on the first infection, when a second, slightly different infection at-

tempts to establish itself. Original antigenic sin is particularly harmful in

influenza virus infections, dengue, and vaccinations. In the case of

dengue, CD4+ and CD8+ T cell activation will be more potent in the

secondary infection, resulting in a worse clinical condition compared to

the traditional fever. This is because of the release of the cytokines

IFN‐γ and TNF‐α, which can act directly in endothelial cells, promoting

vascular injury and contributing towards plasma extravasation and the

pathogenesis of hemorrhagic dengue (Dalrymple & Mackow, 2014). In

the case of vaccinations, viruses can undergo antigenic variation, where

their epitopes are altered through natural mutations, allowing them to

escape the immune system. When this occurs, the mutated virus re-

activates previously activated memory B cells, which produce anti-

bodies. However, these antibodies associate inefficiently with the

altered epitopes. There will therefore be no activation of naive B cells

capable of creating new antibodies against this viral strain. The con-

sequence is a less efficient immune response than the previous ones

and with a longer course of infection (Dalrymple & Mackow, 2014).

5 | MECHANISMS OF IMMUNE SYSTEM
EVASION

The coexistence of viruses and hosts imposes evolutionary pressure

on the immune system. The host has developed an immune system

that can respond to viruses and cells infected by them (H.K. Lee &

Iwasaki, 2008; Seth et al., 2006). On the other hand, viruses have

developed several immune evasion mechanisms to escape the host's

immune system (Alcami & Koszinowski, 2000). Generally, the larger

the viral genome, the more diverse the mechanisms used to extend

the time of viral replication and the spread of viral particles.

Various mechanisms of evasion enable viruses to avoid re-

cognition by the host's humoral immune response (Alcami &

Koszinowski, 2000; Medzhitov, 2007). These mechanisms include

altering immunodominant epitopes; interfering with the cellular im-

mune response, for example, by disabling peptide presentation or

affecting the performance of NK cells; and interfering with immune

effector functions, for example, by affecting the expression of cyto-

kines or blocking apoptosis, which are discussed below.

5.1 | Evasion of the immune response through
latency

In Section 4.2.2 we briefly described the role of CD8+ T cells in

chronic viral infections and the influence these cells have on viral

latency. As mentioned, the reversible state of a nonproductive viral

infection in host cells is called latency. Viruses can elude the host's

immune responses, becoming latent and invisible to the immune

system (Wiertz et al., 1997). During latency, viruses can infect non-

permissive or semipermissive host cells and persist in “immune pri-

vileged” tissues, such as the brain, retina, and kidney. This occurs

with HSV‐1, which infects and replicates in epithelial cells but can

also persist in the form of latent infection, with low viral gene ex-

pression in sensory neurons of triplet ganglia that do not express

MHC antigens (Garber et al., 1997; T. Liu et al., 2000). After certain

stimuli, such as immunosuppression, trauma, exposure to sunlight or

ultraviolet radiation, the virus can be activated and migrate through

the axons of the neurons and infect epithelial cells. In the same way,

VZV becomes latent in the dorsal root ganglia of the spinal cord

(Gilden et al., 2011). CMV persists for a long time in the kidneys

(Holma et al., 2000), retina (Voigt et al., 2018), and bone marrow

(Bhat et al., 2015). HIV‐1 is known to persist in the form of the

transcriptionally inactive provirus in the CD4+ T cell genome of the

host's memory cells for long periods (Gilden et al., 2011; Lungu et al.,

1995). These cells lack the necessary transcription factors for the

virus to replicate. Thus, the virus can remain in the brain, where it is

protected by the blood–brain barrier against lymphocyte infiltration.

These cells and tissues serve as reservoirs for viruses, which are

resistant to therapy and pose a real challenge for complete elim-

ination in the infected host.

5.2 | Epitope mutations

Virus‐infected cells are normally recognized and eliminated by the

immune system. One of the key steps to this is the presentation of

viral peptides to MHC class I proteins, allowing the infected cells to

be detected and killed by CTLs. In the case of HIV, this process works

well, but only temporarily. A strong CTL response can be detected

early after infection with a 1%–5% increase in the number of CD8+ T

cells (Perreau et al., 2013), and is responsible for the abrupt decrease

in plasma viremia after a few weeks of infection. HIV progressively

destroys a range of T helper (Th) cells, thus preventing both the

efficient production of antibodies by B cells and the adequate

function of CTLs. HIV accumulates mutations in epitopes important

for antibody‐mediated neutralization or CTL recognition. Thus, if

they “hide” in cells that are inaccessible to CTLs, they induce nega-

tive regulation of MHC class I or positive regulation of Fas on the

surface of infected CD4+ T cells (Iannello et al., 2006; Piguet &

Trono, 2001).

5.3 | Inhibition or induction of apoptosis

Apoptosis is a normal event in the maturation of B and T cells, and in

the effector function of these cells in killing infected cells. Viruses

have several distinct strategies to prevent the death of infected host

cells, including the production of caspase inhibitors (proteases that
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cleave cellular proteins), homologues of Bcl‐2 (apoptosis inhibitory

proteins), and FLICE‐like inhibitory proteins (FLIPs). Cellular FLIPs

are highly expressed in tumor cells, T cells, and myocytes, high-

lighting the critical role of FLIPs as endogenous modulators of

apoptosis. Its viral counterparts, v‐FLIPs, are encoded by various

γ‐herpesviruses (KSHV/HHV‐8 and HVS) and human tumorigenic

molluscipoxvirus (Senkevich et al., 1996). All γ‐herpesvirus encoding
FLIPs also encode a Bcl‐2 homolog, which provides two com-

plementary antiapoptotic functions (Hu & Usherwood, 2014). Thus,

FLIPs facilitate viral propagation and persistence and contribute to

the transforming capabilities of some herpes viruses. In addition to

the production of FLIPs, viruses can also interfere in cell death sig-

naling at a receptor level (Irmler et al., 1997; Nagata, 1997). As an

example, we can mention the Adenoviral E3‐10.4/14.5 K protein that

triggers the internalization of Fas (cell death receptor) present on

the surface of infected cells and its destruction in lysosomes (Irmler

et al., 1997). As another example of the induction of apoptosis, we

can mention IL‐24, which is associated with apoptosis in tumor cells

(Shisler et al., 1997) and infections caused by Influenza A (Seong

et al., 2016; Weiss et al., 2015) and HIV‐1 (Strumillo et al., 2019).

Induction of apoptosis in infected cells would function as an antiviral

mechanism, blocking the spread of viral progeny.

5.4 | Viral tropism and activation of immune
system cells

Viral tropism is the tendency that a virus has in infecting a particular

cell or tissue type. Tropism is determined by the presence of mem-

brane receptors in host cells, which interact with viral proteins (an-

ticeptors), allowing entry of the infectious agent into the cytoplasm

of the cell (Brown, 2015; Piguet & Trono, 2001; Sanchooli

et al., 2014).

The hypervariable region number 3 of HIV gp120 associates

with the cellular chemokine receptor CXCR4 or CCR5. Different

variants of HIV use one or the other receptor. The viral variant R5

uses the CCR5 receptor and the X4 variant uses the CXCR4 re-

ceptor. Throughout the infection, R5 variants can mutate and switch

to the CXCR4 receptor (Figure 4) (Terahara et al., 2019; S. Zhou

et al., 2016).

Another retrovirus, HTLV‐1, also has a tropism for T cells. The

HTLV‐1 Tax protein is responsible for cell transformation as a result

of its interaction with cellular transcription factors, such as NF‐κB,
resulting in its permanent activation, providing growth of lympho-

cytes independently of IL‐2 (Tagaya et al., 2019).

In addition to HTLV‐1, EBV and HHV‐8 (herpesviruses asso-

ciated with Kaposi's sarcoma) also present sites of association with

NF‐κB and its promoters (Keller et al., 2006), resulting in sustained

activation and inducing cell transformation. EBV has a tropism for

epithelial cells and B cells (Borza & Hutt‐Fletcher, 2002), and is

capable of inducing tumors and lymphomas. The EBV LMP‐1 protein

mimics the activated CD40 receptor (Gires et al., 1997; Kilger et al.,

1998), which promotes the survival, proliferation, and expression of

infected B cells.

5.5 | Virokines

During evolution, viruses have captured a wide range of cellular

genes involved in immune recognition and cell growth control for

their efficient viral replication. Virokines and viroreceptors encoded

by viruses may act as mimetics or antagonists of their cellular

counterparts, by altering signal transduction and cellular commu-

nication for survival of virus‐infected cells.

After mapping the VV genome in the 1980s, the first viral en-

coded proteins secreted from infected host cells were discovered,

F IGURE 4 Mechanisms underlying strategies of viral evasion from the immune response. The rectangle in the upper left corner shows the
receptors and their ligands involved in various strategies of viral escape. Numbers show: (1) Latent HIV‐1 infection; (2) gp120 epitope mutation;
(3) Bcl homologue production; (4) gp120 association with CXCR4 or CCR5; (5) ILs binding ILR; (6) Inhibition of proteasomal degradation; (7)
TAP‐mediated transport blockade (8,9) Inhibition of presentation by MHC class I and its analogues; (10) Inhibition of apoptosis by Bcl
homologues. Bcl‐2, B‐cell lymphoma 2; CCR5, C‐C chemokine receptor type 5; CXCR4, C‐X‐C chemokine receptor type 4; ILR, interleukin
receptor
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and the term virokine was coined (Kotwal & Moss, 1988) for such

immunomodulatory molecules as viral homologs of cytokines. An-

other term coined was viroceptors for viral homologs of cytokine

receptors, produced and secreted by virus‐infected cells. Since then,

many research studies have been dedicated to exploring their po-

tential use as therapeutic agents showing the potential implications

for viral epidemiology, treatment or prevention of viral and in-

flammatory diseases, and for the development of safer vaccines

(Kontsek & Kontsekova, 2000). Many of these proteins are being

investigated for use as novel therapeutic immunomodulators to

manage immune disorders, inflammation after trauma, graft rejec-

tion, and autoimmune diseases (S. A. Smith & Kotwal, 2001). Also,

these viral elements, which induce or subvert the host's cytokine

responses against viral infection, may contribute to a better under-

standing of the mechanisms which help the viruses escape immune

surveillance. Virokines and viroceptors are encoded by large DNA

viruses such as herpesviruses and poxviruses. HHV8 is associated

with Kaposi's sarcoma and lymphoproliferative diseases, such as

lymphomas, pleural effusion, and Castleman's disease. HHV8 has a

unique number of cellular regulatory genes, which redirect gene

expression and cell growth, prevent apoptosis and immunological

recognition, and also interfere with the function of the tumor sup-

pressor gene. In addition, it encodes a single virokine, viral IL‐6,
which is particularly relevant in the pathogenesis of HHV8‐
associated tumors by participating in the mitogenic and proin-

flammatory effects of paracrine and autocrine pathways. Viral IL‐6
differs from human IL‐6 in receptor binding for signal transduction

and thus constitutes a unique model for understanding the biology of

human and viral cytokines (Klouche et al., 2004).

5.6 | Modulation in the process of antigen
presentation

The peptides that are presented to MHC class I molecules result from

the degradation of viral proteins by proteasomes in the cytosol. The

degradation by proteasomes is dependent on the proteolytic cleavage

of specific sequences within the protein. After fragmentation of the

antigens by the proteasome, the resulting peptides are translocated

from the plasma membrane into the endoplasmic reticulum (ER)

through the transporter associated with antigen processing (TAP). The

peptides carried by TAP are anchored to MHC class I (Hengel et al.,

1997). Viruses can escape the processing of these proteins into pep-

tides by altering parts of their genome, via viral proteins. EBV encodes

the Epstein–Barr nuclear antigen 1 (EBNA1), escaping detection by

CTLs, and encodes a mechanism to inhibit epitope generation

(Levitskaya et al., 1995). HMCV expresses the US6 protein in the initial

phase of infection, which inhibits TAP, and its presence in the late phase

of viral replication limits the presentation of structural viral antigens

such as glycoprotein B. HSV 1 and 2 encode the cytoplasmic protein

ICP47, which obstructs the peptide binding site in TAP, thereby

blocking the presentation of viral peptides to MHC class I (Ahn et al.,

1996; Androlewicz et al., 1993; Iannello et al., 2006).

5.7 | Evasion of NK cell‐mediated cytotoxicity

NK cells are generally activated in the early stages of a viral infec-

tion, before generation of virus‐specific antibodies and CTLs. This

shows their important role in controlling viral replication. However,

some viruses, particularly HIV‐1, have developed multiple strategies

to escape NK‐mediated immune response.

The most important ligand recognized by NK cells is the human

leukocyte antigen class I (HLA class I), particularly A and B types,

encoded by the MHC class I gene complex. The peptide repertoire

presented by HLA class I changes during viral infection, resulting in

elimination of the infected cell by NK cells. Thus, normally, viruses

down‐regulate HLA‐A and B expression on the surface of infected

cells to escape the antiviral response (Mwimanzi et al., 2017). On the

other hand, HLA‐C and E act primarily as ligands for inhibitory Killer‐
cell immunoglobulin‐like receptors (KIRs) on the surface of NK cells.

Viruses can evade NK‐cell responses by increasing HLA‐E expres-

sion. To achieve this, such a nonclassical HLA molecule needs pep-

tides derived from HLA‐G signal sequences and many HLA‐A, B, and
C alleles (Rölle et al., 2018).

Moreover, the expression of some viral sequence variations can

also lead to engagement of KIRs for resistance of viruses to NK cells.

At least one HLA‐presented immunodominant epitope derived from

HIV p24 protein associated with HLA‐E has been identified that al-

lows engagement of KIRs to inhibit NK cell function (Fadda et al.,

2012) by increasing the expression of this antigen on the surface of

virus‐infected cells (Sharpe et al., 2019). The epitopes derived from

HCMV glycoprotein UL40, presented to NK cells by HLA‐E mole-

cules via CD94/NKG2A receptor also protect infected cells from NK

cell‐mediated killing (Heatley et al., 2013).

The presence of HLA class I antigens on the surface of infected

cells and the natural selection of viral epitope variations provide

novel opportunities for viral escape from immune response through

engagement of KIRs (Heatley et al., 2013; Hölzemer et al., 2015).

However, this viral evasion strategy needs to be investigated in more

detail.

5.8 | Evasion of antibodies and the complement
system

Viral interference with the complement system can be analyzed at

several levels. First, some viruses can express viral proteins that mimic

the cellular function of the cellular RCA (described in Section 2.4).

HSV‐1 encodes a C‐glycoprotein which induces the dissociation of the

altering C3 convertase pathway (Fries et al., 1986). Second, some en-

veloped viruses such as the Newcastle disease virus (Biswas et al.,

2012) and vaccinia virus are able to incorporate host RCA

(Vanderplasschen et al., 1998) into its envelope by budding through the

plasma membrane or intracellular vacuoles. Third, some viruses secrete

a complement control protein (VCP) that shares similar amino acids

with mammalian RCA and is able to interact with the proteins of the C3

convertase pathway (Agrawal et al., 2017).
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Infected cells can also be lysed by complement‐dependent an-

tibodies. The binding of antibodies to epitopes on the surface of

infected cells results in inactivation of the complement pathway and

lysis of the cells. Some viruses produce molecules that bind to the Fc

region of host immunoglobulins. Such virally encoded receptors

(v‐FcRs) may prevent IgGs from neutralizing free viruses (Daeron &

Nimmerjahn, 2014; Lilley et al., 2001) and engaging antibody‐
dependent activity against the infected cells.

5.9 | Viral manipulation of host glucose
metabolism

Recently, metabolomics has allowed a deeper understanding of host

cell metabolic disorders induced by infectious diseases, which result

from the infectious agent using the host cell's metabolism to their

advantage for replication and persistence. Early studies have de-

monstrated the upregulation of glycolytic machinery during viral

infection, which was seen from the replication of poliovirus in HeLa

cells. Replication was blocked using a culture medium composed of

solely a balanced saline solution, and next the proliferation and viral

load were restored to their normal levels by restoring glucose sup-

plementation (Darnell & Eagle, 1958). Subsequent studies have

confirmed these findings, highlighting the molecular mechanism as-

sociated with glucose metabolism and the impact on the progression

of HIV infection. After activation of T cells, a dramatic metabolic

reconfiguration process occurs, which stimulates lymphocyte sig-

naling to the detriment of the high bioenergetic demand influencing

differentiation, growth, proliferation, and development of their ef-

fector functions (Buck et al., 2015).

It has been demonstrated that TCR activation and the costi-

mulation of CD28 are required to allow maximal uptake of glucose

by promoting upregulation and trafficking of glucose‐cell transporter
1 (GLUT1) from the cell surface of T cells (Jacobs et al., 2008). In

metabolically quiescent T cells, reverse transcription is blocked, as

well as the integration of full‐length HIV‐1 DNA. Thus, the HIV

genome remains mainly in the linear and nonintegrated form, miti-

gating viral replication (Bukrinsky et al., 1991; Chun et al., 1997).

GLUT1 expression and glucose uptake appear to be essential for

adequate CD4+ T‐cell infection (Loisel‐Meyer et al., 2012; Palmer

et al., 2014). In the same way, Th17 responses are characterized by

the expression of the C‐C chemokine receptor 6 (CCR6) and hypoxia‐
induced factor 1 alpha (HIF‐1α), a central regulator of glucose me-

tabolism (Shi et al., 2011).

It has been suggested that polarization towards the Th1/Th17

phenotype promotes HIV persistence during highly active anti-

retroviral therapy (HAART), with Th17 being an important reservoir

for HIV (Gosselin et al., 2017; Stieh et al., 2016). In accordance with

this, evidence has shown that HIV‐infected individuals treated with

ART have decreased numbers of circulating CD4+ T cells expressing

GLUT1 (Palmer et al., 2014), and this expression could be used as a

measure of persistent immune activation associated with viral

persistence.

Several other viruses also hijack the glycolytic machinery to their

own advantage. KSHV induces aerobic glycolysis and lactic acid

production, which decreases mitochondrial oxidative phosphoryla-

tion to maintain the latent state of the virus (Delgado et al., 2010).

Hyperglycemic nude mice treated with telomerase‐immortalized

human umbilical vein endothelial KSHV‐infected cells (TIVE‐KSHV)

have been shown to express higher levels of HSHV lytic genes (Ye

et al., 2016). THP‐1 cells infected by KSHV have shown hyper-

activation of AKT and translocation of GLUT‐1 to the plasma mem-

brane of infected cells (Gonnella et al., 2013). Nontumorigenic breast

epithelial cell line MCF10A infected by adenovirus activated MYC, a

proto‐oncogene, which increased glucose metabolism (Thai et al.,

2014). DENV‐infected cells have shown various glycolytic metabo-

lites that are over‐regulated in the early postinfection stage and

downregulated in later stages (Fontaine et al., 2015).

Owing to interest in the recent outbreaks of fetal microcephaly

induced by Zika virus infection, it was proposed that Zika modulates

GLUT1 function by preventing normal glucose flow in placental en-

dothelial cells, impacting normal fetal growth (Blonz, 2016). As with

other viruses of the Flavivirus family, the Zika infection is similar to

DENV. They use glucose uptake to increase bioenergetic demand

and cellular biomass. Therefore, it is not surprising that viral mod-

ulation of glucose metabolism in the host cell is required for optimal

virus replication (Jordan & Randall, 2016).

A perfect mechanism of viral evasion is confirmed by the virus‐
induced changes in host glycolytic machinery, which are essential for

the development of a successful infection and are likely to contribute

to the pathogenesis observed in distinct infections. Nevertheless, the

precise molecular mechanisms that drive this reprogramming con-

tinue to be researched. In the future, pharmacological drugs that

specifically target lymphocytes and the glycolytic pathway could be

combined with antiviral therapies to achieve a better clinical

outcome.

5.10 | Modifications of the redox environment
and activation of virus‐induced signaling pathways

Cell signaling pathways are activated or inhibited by modulation of

the redox environment, resulting in the production of reactive oxy-

gen and/or nitrogen species as the initial trigger during a viral in-

fection. The virus‐promoted redox changes can induce

conformational changes in key host proteins, contributing to the

success of their viral replication.

HIV infections are typically accompanied by chronic micro‐
inflammation and T‐cell activation with high levels of inflammatory

cytokine secretion, and high levels of intracellular generation of ROS

(Emilie et al., 1994; Israël & Gougerot‐Pocidalo, 1997). The under-

lying persistent oxidative stress results in an imbalance of the in-

tracellular antioxidant defenses. Decreased glutathione (GSH) and

thioredoxin (Trx) levels have been consistently reported during

HIV‐1 infection (Eck et al., 1989; Masutani et al., 1992; Nakamura

et al., 1996; Peterhans, 1997; Staal et al., 1992). Thus, the use of
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antioxidants to reduce ROS levels in HIV‐infected patients has been

extensively examined (Allard et al., 1998; R. Lee et al., 1997; Mandas

et al., 2009; Martin et al., 2001).

The imbalance between ROS production and elimination during

HIV‐1 infection is well established (Kruman et al., 1998; Yang et al.,

2009). Several groups have demonstrated these events either by

measuring H2O2 production and the viral load or by comparing the

regulation of transcription factors (e.g., NF‐κB) during the interplay

between ROS production and HIV‐1 replication (Mihm et al., 1991;

Nabel & Baltimore, 1987). These results suggest that distinct pathways

regulate ROS turnover with a direct impact on HIV‐1 replication

(Kruman et al., 1998; Schreck et al., 1991; Westendorp et al., 1995). In

addition, the signaling free radical NO also plays an important, albeit

dual role in HIV‐1 infection. NO may be beneficial to the host through

inhibition of viral enzymes or damaging (harmful) through activation of

cellular signaling proteins that will support virus replication (Bogdan,

2001; Krogh et al., 2014; Mannick, 1995; Mannick et al., 1999).

As the protective and toxic effects of NO production often co-

exist, different NO concentrations should also be correlated with

pathological and cytotoxic states (Beckman & Koppenol, 1996). The

pathogenic effects of NO‐mediated events depend upon the forma-

tion of secondary intermediates, such as peroxynitrite anion

(ONOO−) and nitrogen dioxide (NO2), which are more reactive than

NO itself (Brito et al., 1999; Radi et al., 2001). The interplay between

ROS and NO is involved in normal and pathological conditions pri-

marily through the nitration of tyrosine residues on target proteins

(Bogdan, 2001).

A recent study analyzed human brains from individuals who had

HIV infection without encephalitis and with encephalitis and com-

pared both groups to the brains of healthy individuals. Nitrated

proteins were predominantly found in HIV‐infected individuals with

encephalitis (Uzasci et al., 2014).

Cairoli et al. showed that peripheral blood mononuclear cells

from HIV‐infected patients showed a significant decrease in NO

production and iNOS messenger RNA (mRNA) expression. A de-

crease in NO levels during infection may favor disease progression,

possibly due to the loss of antiviral and antiapoptotic activities

(Cairoli et al., 2008).

The cellular redox state in lymphocytes may be modulated by

endogenous generation of ROS and NO. These reactive species can

interfere with the biochemical parameters of cell activation (Lander,

1996; Lander et al., 1996). Furthermore, exogenously supplied oxi-

dants such as haemin and the NO donors sodium nitroprusside (SNP)

and S‐nitroso‐N‐acetylpenicillamine (SNAP), stimulate tyrosine

phosphorylation and regulate signaling pathways in fibroblasts, en-

dothelial cells and lymphocytes (Curcio et al., 2010; Lander et al.,

1993). However, the redox regulation of signaling pathways trig-

gered by HIV infection is poorly understood.

Curcio et al. analyzed ROS/NO production and antioxidant cel-

lular defenses in response to HIV‐1 infection in CD4+ T cells ob-

tained from healthy individuals, in the presence and absence of

SNAP. Infected cells showed lower NO production and higher ROS

and antioxidant enzyme levels compared to uninfected cells. Analysis

of the redox pair GSH/GSSG (reduced glutathione/glutathione dis-

ulfide) suggested the presence of an oxidizing intracellular redox

environment in infected cells that was probably a consequence of

virus infection. Additionally, the phosphorylation levels of PKC, Src

kinase, and Akt in CD4+ T cells were modified after infection. In

addition, after exposing infected cells to SNAP, we observed that

ROS production and SOD1 activity were decreased if compared to

infected cells without SNAP treatment. Importantly, exposure of

HIV‐infected CD4+ T cells to SNAP stimulated the PKC, Src kinase,

and Akt signaling axis with major consequences for the viral load and

viral integration.

6 | MECHANISMS OF SARS ‐COV ‐2
EVASION

6.1 | CpG deficiency

CpG deficiency is a common feature of ssRNA viruses, including cor-

onaviruses (Atkinson et al., 2014; Greenbaum et al., 2008, 2009; Takata

et al., 2017; Yap et al., 2003). The zinc‐finger antiviral protein (ZAP)

binds specifically to CpG dinucleotides in viral RNA genomes and is

responsible for IFN‐mediated immune response (Meagher et al., 2019).

SARS‐CoV‐2 has the lowest index CpG (ICpG) when compared to their

viral genome relatives (Xia, 2020). It has been suggested there is an

association between decreased CpG and increased virulence in many

publications related to diverse viral RNA genomes (Antzin‐Anduetza
et al., 2017; Burns et al., 2009; Fros et al., 2017; Theys et al., 2018; Trus

et al., 2020; Tulloch et al., 2014; Wasson et al., 2017).

6.2 | 2'‐O‐methylation of viral RNA

Coronaviruses methylate their viral mRNA 5′ cap structures through

two self‐made enzymes denominated N7‐methyltransferase and 2′‐
O‐methyltransferase (2'‐O‐MTase) (Bouvet et al., 2010; Chen et al.,

2009). 2′‐O‐methylation of mRNA protects viral RNA from recogni-

tion by Mda5 (Züst et al., 2011) and IFIT (IFN‐induced proteins with

tetratricopeptide repeats) (237) family members and contributes to

evasion of the IFN‐mediated restriction of viral replication (Daffis

et al., 2010; Züst et al., 2011). SARS‐CoV‐2 is a unique virus that

requires interaction between the nsp10 and nsp16 proteins for

nsp16 to execute its 2'O‐MTase activity (Chen et al., 2011; Decroly

et al., 2011; Encinar & Menendez, 2020; Lugari et al., 2010).

6.3 | Viral suppressor of RNAi (VSR)

The nucleocapsid protein (N protein) of SARS‐CoV‐2‐infected human

cells has shown suppression of antiviral RNAi activity (Mu et al.,

2020). A previous study of N protein on SARS‐CoV demonstrated a

resembling effect, suggesting that N proteins function as a VSR (Cui

et al., 2015). Similar VSR activity in coronavirus genome relatives
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might be explained by the high homology (94%) among coronavirus

N proteins (Mu et al., 2020).

6.4 | Orf8 protein

A phylogenetic analysis of the accessory protein orf8 from SARS‐
CoV and SARS‐CoV‐2 revealed that this new coronavirus has an orf8

distant from the conserved one derived from human SARS‐CoV. This
novel orf8 probably impairs the activation of intracellular stress

pathways and of NLRP3 inflammasomes, due to the absence of an

aggregation motif (VLVVL—amino acids 75–79) that is found on

SARS‐CoV orf8b that might initiate said activation (Chan et al.,

2020). Orf8 might also down‐regulate MHC class I molecules on the

surface of various cell types, disrupting antigen presentation and

reducing the recognition and elimination of virus‐infected cells by

CTLs (Park, 2020; Y. Zhang et al., 2020).

6.5 | Orf3b protein

The SARS‐CoV‐2 orf3b protein presents only 32% amino acid iden-

tity homology to SARS‐CoV, indicating the codification of a novel

orf3b short protein (Chan et al., 2020). A previous study has found

that orf3b is capable of inhibiting the expression of IFN‐β at synth-

esis and signaling levels (Kopecky‐Bromberg et al., 2007). A recent

study has shown that the orf3b of SARS‐CoV‐2 and SARS‐CoV not

only differ in their length but also in their ability to antagonize IFN

type I (Konno et al., 2020). Surprisingly, ORF3b is highly detectable

during the early phase of SARS‐CoV‐2 infection (Hachim et al., 2020)

and impaired IFN type I responses as well as reduced IFN‐stimulated

gene expression are associated with severe COVID‐19 disease in

patients (Hadjadj et al., 2020).

7 | CONCLUSION

Viruses can use the host's machinery and develop mechanisms to

mislead the immune system to ensure their replication and spread

through organisms. This review discusses some of these mechanisms

and highlights the importance of understanding them to support the

development of novel pharmacological strategies to treat viral

infections.
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