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This paper aims to study the dynamics of immune suppressors/checkpoints, immune system, and BCG in the treatment of
superficial bladder cancer. Programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and
transforming growth factor-beta (TGF-𝛽) are some of the examples of immune suppressors/checkpoints. They are responsible for
deactivating the immune system and enhancing immunological tolerance. Moreover, they categorically downregulate and suppress
the immune system by preventing and blocking the activation of T-cells, which in turn decreases autoimmunity and enhances self-
tolerance. In cancer immunotherapy, the immune checkpoints/suppressors prevent and block the immune cells from attacking,
spreading, and killing the cancer cells, which leads to cancer growth and development. We formulate a mathematical model that
studies three possible dynamics of the treatment and establish the effects of the immune checkpoints on the immune system and the
treatment at large. Although the effect cannot be seen explicitly in the analysis of the model, we show it by numerical simulations.

1. Introduction

Cancer is a class of diseases characterized by out-of-control
cell growth which affects and damages the DNA. Can-
cer prevalence is increasing in many countries [1]. Many
treatment options of cancer exist, which include surgery,
immunotherapy, chemotherapy, radiotherapy, vaccine ther-
apy, and hormonal therapy [1, 2]. The mode and type of
treatment depend on the type, location, and grade of the
cancer and the patient’s body. The bladder is a hollow organ
in the lower abdomen which collects urine produced by
the kidneys. Bladder cancer is a growth of malignant cells
initiating in the urinary bladder. It is common, with around
38,000 men and 15,000 women diagnosed every year in
the United States. Approximately 400,000 new cases are
diagnosed and about 150,000 die directly from the disease
every year across the globe [3, 4].

The bladder wall is lined with cells called transitional and
squamous cells. The most common type of bladder cancer is
urothelial carcinoma or transitional cell carcinoma (TCC).
It mostly originates from the transitional cells and further
progresses and grows superficially on the inner surface of the

bladder; as a result, it invades the bladder wall and vessels,
dispersing into the neighboring organs as well as forming
distant metastases [5–7].

One of the most effective ways of treating bladder cancer
is immunotherapy.This is the process of stimulating, activat-
ing, and triggering the immune system to spread, locate, and
kill cancer cells [8].

Intravesical Bacillus Calmette-Guerin (BCG) is an atten-
uated nonpathogenic strain of Mycobacterium bovis that
was initially used as a vaccine against tuberculosis. The
attenuation was reached via manipulation of the bacillus
by serial growth on a culture medium. As a result, the
genes causing virulence will be lost and inoculated into
humans [9, 10]. It is undoubtedly the most efficient and
successful immunotherapy of cancer [9]. BCG therapy is used
for various types of cancers, including acute lymphoblastic
leukemia and melanoma. The first report of successful use
of BCG to treat patients with bladder cancer was in 1976 by
Morales et al. They obtained the efficacy of BCG therapy and
established it as the pillar for the treatment of non-muscle-
invasive bladder cancer after transurethral resection [5, 11].
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Intravesical BCG is a type of immunotherapy that is also
used to treat superficial bladder cancer [12, 13]. It is usually
applied after local surgery to prevent tumor recurrence. It is
given in 6-weekly intravesical instillation of 1.5×108 bacteria,
which has been proven to be superior to chemotherapy in
reducing recurrence rates of the tumor [12–14]. When the
BCG is instilled and processed into the bladder, it creates
an inflammatory environment which in turn stimulates an
immune response, resulting in attacking the cancer cells.
Therefore, many researchers believed that BCG reduces
tumor progression and stated that the primary role of BCG
treatment is to stimulate, trigger, and activate the immune
effector cells in order to attack the cancer cells. In spite of the
fact that BCG instillation is regarded as the “gold standard”
treatment, it has many side effects which include hematuria,
pain, dysuria, and fever, to mention a few [7–14].

Immune checkpoints are negative regulators of the
immune system which play important roles in maintain-
ing self-tolerance, preventing autoimmunity, and protecting
tissues from immune collateral damage. These immune
checkpoints are often hijacked by tumors to restrain the
ability of the immune system tomount an effective antitumor
response. The tumors neutralize some immune checkpoint
pathways in order to maintain immune resistance, particu-
larly against T-cells. The T-cells are specific tumor antigens.
Examples of the aforementioned checkpoints are PD-1 and
CTLA4 [15–17].

Programmed cell death protein-1 (PD-1) is a protein that
is encoded by the PDCD1 gene in humans. It is a cell surface
receptor which belongs to the immunoglobulin superfamily
and is expressed on T-cells and pro-B-cells. PD-1 binds two
ligands, PD-L1 and PD-L2. The PD-1 acts as an immune
checkpoint, which plays an important role in downregulating
the immune system by preventing the activation of the T-
cells. Hence, it decreases autoimmunity and encourages self-
tolerance [18, 19]. The immune system is directly affected by
the activities of PD-1 in the sense that it suppresses, blocks,
and deactivates the immune cells from spreading, fighting,
and attacking the cancer cells.Therefore, PD-1 aids in growth,
development, and progression of the cancer. In conclusion, it
disrupts and affects immunotherapy [20–24].

Transforming growth factor-beta 1 (TGF-𝛽1) is a regula-
tory cytokine which suppresses immune function in cancers
and in chronic viral infections. It inhibits the activation of the
T-cells and subdues their proliferation. Hence, cancer cells
take advantage of this immune checkpoint pathway as a way
to escape and evade detection. This leads to the inhibition of
antitumor immune response, resulting in cancer growth and
development [25, 26].

Mathematical modeling and simulation helps in predict-
ing treatments’ outcome, as well as describing the behavior
and complex dynamics involved. Bunimovich-Mendrazitsky
et al. (2007, 2008, and 2011) modeled mathematically the
use of BCG in noninvasive bladder cancer, where their
study identified fixed points and conditions for stability
of the dynamical system [6, 8, 14]. In 2016, Bunimovich-
Mendrazitsky developed a new mathematical model for
combined BCG and IL-2 bladder cancer treatment which

introduces the effect of TAA T-cells. Furthermore, Starkov
utilized a mathematical approach for bladder cancer treat-
ment model in the derivation of ultimate upper and lower
bounds. He also presented tumor clearance conditions for
BCG treatment of bladder cancer [13].

In this research, we formulate a mathematical model
to study the dynamics of immune checkpoints/suppressors,
immune system, and the BCG immunotherapy of bladder
cancer. Moreover, we highlight the effects of immune check-
points/suppressors on the immune system and the treatment
numerically.

This paper is organized as follows. Section 1 is the
introduction. Section 2 is the formulation and presentation
of our model. We give the stability analysis and numerical
simulations in Sections 3 and 4, respectively. In the final
section, we state our conclusions and discussions.

2. Formulation of the Model

The model consists of a system of four nonlinear differential
equations, which characterize the dynamics of the interaction
between cancer cells (𝐶), different arms of the immune
system regarded as effector cells (𝐸), the BCG (𝐵), and all
categories of immune suppressors/checkpoints as (𝑃).
2.1. Dynamics of Cancer Cells. Thedynamics of cancer cells is
given by

𝑑𝐶𝑑𝑡 = 𝑟𝐶 −
𝛼1𝐸𝐶𝑃 + 𝑘 . (1)

Here, we assume that, in the absence of the immune system,
the cancer cells grow exponentially with growth rate 𝑟. The
second term shows the elimination of cancer cells by the
effector cells at the rate 𝛼1, while 1/(𝑃 + 𝑘) is the immuno-
suppressive factor by the immune checkpoints/suppressors,
which interrupts the activities of the effector cells, with 𝑘
being an inhibitory parameter.

2.2. Dynamics of the Effector Cells. The dynamics of the
effector cells is given by

𝑑𝐸𝑑𝑡 =
𝑎1𝐶𝐸𝑃 + 𝑘 +

𝑎2𝐵𝐸𝑃 + 𝑘 − 𝛼2𝐸𝐶 − 𝜇1𝐸. (2)

The first term here gives the recruitment of effector cells at
the rate 𝑎1 which is directly proportional to the population
of cancer cells (i.e., occurring due to the direct presence of
cancer cells). 𝑎2𝐵𝐸 shows the activation of effector cells by
BCG at the rate 𝑎2. 𝑎1 is the antigenicity of cancer cells which
triggers an immune response in the host. It is believed that
the immune checkpoints will distort both the recruitment
and the activation of effector cells; hence, 1/(𝑃 + 𝑘) is the
immunosuppressive response which puts a limitation on the
recruitment level and interrupts the activation of effector
cells, with 𝑘 here being an inhibitory parameter. The next
term gives the elimination of effector cells by the cancer cells
at the rate 𝛼2, and the last term describes the degradation of
effector cells at the rate 𝜇1.
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2.3. Dynamics of BCG. The dynamics of BCG is given by

𝑑𝐵𝑑𝑡 = 𝑏 − 𝛼3𝐸𝐵 − 𝜇2𝐵. (3)

The first term 𝑏 is the constant rate of introduction of BCG
into the bladder, the second term describes the elimination of
BCG by effector cells at the rate 𝛼3, and the third term gives
the decay of BCG at the rate 𝜇2.
2.4. Dynamics of Immune Suppressors/Checkpoints. The
dynamics of the immune checkpoints is given by

𝑑𝑃𝑑𝑡 = 𝛿 − 𝜇3𝑃. (4)

The first term gives the source of immune checkpoints at a
constant rate 𝛿, and the second term is the degradation of the
immune checkpoints at the rate 𝜇3.

Finally, the interactions of the cancer cells, effector cells,
BCG, and immune checkpoints together lead to the following
nonlinear ordinary differential equations:

𝑑𝐶𝑑𝑡 = 𝑟𝐶 −
𝛼1𝐸𝐶𝑃 + 𝑘 ,

𝑑𝐸𝑑𝑡 =
𝑎1𝐶𝐸𝑃 + 𝑘 +

𝑎2𝐵𝐸𝑃 + 𝑘 − 𝛼2𝐸𝐶 − 𝜇1𝐸,
𝑑𝐵𝑑𝑡 = 𝑏 − 𝛼3𝐸𝐵 − 𝜇2𝐵,
𝑑𝑃𝑑𝑡 = 𝛿 − 𝜇3𝑃,

(5)

with initial conditions 𝐶(0) = 𝐶0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐵(0) =𝐵0 ≥ 0, and 𝑃(0) = 𝑃0 ≥ 0.
2.5. Invariance of Positive Orthant. We show that the system
is positively invariant.

From the system, assume 𝐶(0) > 0, 𝐸(0) > 0, 𝐵(0) > 0,
and 𝑃(0) > 0.

From 𝑑𝐶/𝑑𝑡 = 𝑟𝐶−𝛼1𝐸𝐶/(𝑃+𝑘), the solution is given by𝐶(𝑡) = 𝐶0 exp(∫𝑡0 (𝑟 − 𝛼1𝐸/(𝑃 + 𝑘))𝑑𝑡).This implies 𝐶(𝑡) > 0
given that𝐶0 > 0.Also, from𝑑𝐵/𝑑𝑡 = 𝑏−𝛼3𝐸𝐵−𝜇2𝐵, if𝐵 = 0,
then 𝑑𝐵/𝑑𝑡 = 𝑏 > 0. Therefore, 𝐵(𝑡) > 0 ∀𝑡 since 𝐵0 > 0.
Moreover, if 𝑏 = 0, then 𝐵(𝑡) = 𝐵0 exp(− ∫𝑡0 (𝛼3𝐸 + 𝜇2)𝑑𝑡)

implying 𝐵(𝑡) > 0 ∀𝑡 since 𝐵0 > 0. Using 𝑑𝑃/𝑑𝑡 = 𝛿 − 𝜇3𝑃, if𝛿 = 0, then 𝑃(𝑡) = 𝑃0 exp(− ∫𝑡0 𝜇3𝑑𝑡) > 0 since 𝑃0 > 0.
Also, if 𝑃 = 0 and 𝛿 > 0, then 𝑑𝑃/𝑑𝑡 = 𝛿 which implies𝑃(𝑡) > 0 ∀𝑡 given that 𝑃0 > 0. Now consider 𝑑𝐸/𝑑𝑡 = (𝑎1𝐶 +𝑎2𝐵)𝐸/(𝑃+𝑘)−𝛼2𝐸𝐶−𝜇1𝐸, 𝐸(𝑡) = 𝐸0 exp(∫𝑡0 ((𝑎1𝐶+𝑎2𝐵)/(𝑃+𝑘) − 𝛼2𝐶 − 𝜇1)𝑑𝑡) > 0 given that 𝐸0 > 0.
This implies that 𝐸(𝑡) > 0 ∀𝑡 if 𝐸0 > 0. Hence, the

positive orthant 𝑅4+ is invariant and 𝐶(𝑡) > 0, 𝐸(𝑡) > 0,𝐵(𝑡) > 0, and 𝑃(𝑡) > 0 ∀𝑡.
3. Equilibrium and Stability Analysis

3.1. Model without Treatment (𝑏 = 0). We first analyze our
model in the absence of treatment (𝑏 = 0):

𝑑𝐶𝑑𝑡 = 𝑟𝐶 −
𝛼1𝐸𝐶𝑃 + 𝑘 ,

𝑑𝐸𝑑𝑡 =
𝑎1𝐶𝐸𝑃 + 𝑘 +

𝑎2𝐵𝐸𝑃 + 𝑘 − 𝛼2𝐸𝐶 − 𝜇1𝐸,
𝑑𝐵𝑑𝑡 = −𝛼3𝐸𝐵 − 𝜇2𝐵,
𝑑𝑃𝑑𝑡 = 𝛿 − 𝜇3𝑃.

(6)

The equilibrium points of themodel are obtained by equating
the equations in (6) to zero and solving simultaneously for 𝐶,𝐸, 𝐵, and 𝑃. They are as follows:

𝑈0 = {0, 0, 0, 𝛿𝜇3} ,
𝑈1 = {0, −𝜇2𝛼3 ,

𝜇1 (𝛿 + 𝑘𝜇3)𝑎2𝜇3 , 𝛿𝜇3} ,

𝑈2 = { 𝜇1 (𝛿 + 𝑘𝜇3)𝑎1𝜇3 − 𝛼2 (𝛿 + 𝑘𝜇3) ,
𝑟 (𝛿 + 𝑘𝜇3)𝛼1𝛼3 , 0, 𝛿𝜇3} .

(7)

From the invariance of the positive orthant, we concentrate
only on the nonnegative equilibria assuming all initial condi-
tions are positive.

As a result, the equilibrium point 𝑈1 will not be consid-
ered. Moreover, 𝑈2 exists only if the following condition is
satisfied:

𝑎1𝜇3 > 𝛼2 (𝛿 + 𝑘𝜇3) . (8)

The Jacobian matrix obtained from (6) is given by

𝐽 (𝐶∗, 𝐸∗, 𝐵∗, 𝑃∗) =
[[[[[[[[[
[

𝑟 − 𝛼1𝐸∗𝑃∗ + 𝑘
−𝛼1𝐶∗𝑃∗ + 𝑘 0 𝛼1𝐸∗𝐶∗(𝑃∗ + 𝑘)2𝑎1𝐸∗𝑃∗ + 𝑘 − 𝛼2𝐸∗

𝑎1𝐶∗ + 𝑎2𝐵∗𝑃∗ + 𝑘 − 𝛼2𝐶∗ − 𝜇1 𝑎2𝐸∗𝑃∗ + 𝑘
− (𝑎1𝐶∗𝐸∗ + 𝑎2𝐵∗𝐸∗)(𝑃∗ + 𝑘)20 −𝛼3𝐵∗ −𝛼3𝐸∗ − 𝜇2 0

0 0 0 −𝜇3

]]]]]]]]]
]

. (9)
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3.2. Stability Analysis of Equilibria of Model (6)

3.2.1. Immune Checkpoints Equilibrium: 𝑈0 = {0, 0, 0, 𝛿/𝜇3}.
The Jacobian matrix 𝐽 evaluated at 𝑈0 yields

𝐽 (𝑈0) =
[[[[[
[

𝑟 0 0 0
0 −𝜇1 0 0
0 0 −𝜇2 0
0 0 0 −𝜇3

]]]]]
]
. (10)

The eigenvalues of 𝐽(𝑈0) are
𝜆1 = 𝑟,
𝜆2 = −𝜇1,
𝜆3 = −𝜇2,
𝜆4 = −𝜇3.

(11)

Since one of the eigenvalues is always positive, then 𝑈0 is an
unstable saddle point. Clinically,𝑈0 is referred to as the death
equilibrium.

3.2.2. BCG-Free Equilibrium:𝑈2 = {𝜇1𝑟(𝛿 + 𝑘𝜇3)2/(𝛼1𝑎1𝜇32 −𝑟𝛼2(𝛿 + 𝑘𝜇3)2), 𝑟(𝛿 + 𝑘𝜇3)/𝛼1𝛼3, 0, 𝛿/𝜇3}. Assume 𝑈2 exists;
that is, 𝑎1𝜇3 > 𝛼2(𝛿 + 𝑘𝜇3); then, substituting 𝑈2 in 𝐽 yields
the following eigenvalues:

𝜆1 = −𝜇3,
𝜆2 = −𝑟𝛼3𝛿 + 𝛼3𝑟𝑘𝜇3 + 𝜇2𝛼1𝜇3𝛼1𝜇3 ,

𝜆3 = √− (𝛿𝑟𝜇3𝜇1 + 𝑟𝑘𝜇1𝜇3
2)

(𝛿 + 𝑘𝜇3) ,

𝜆4 = √− (𝛿𝑟𝜇3𝜇1 + 𝑟𝑘𝜇1𝜇3
2)

(𝛿 + 𝑘𝜇3) .

(12)

Two of the eigenvalues have a real part equal to zero, which
signifies neutral stability.Therefore, the equilibrium point𝑈2
is neutrally stable.

Conclusively, in the absence of treatment, none of the
equilibrium points was found to be stable.

3.3.Model without ImmuneCheckpoints. Now,we analyze the
model without any suppression on the immune system by the
immune checkpoints. The model is given by

𝑑𝐶𝑑𝑡 = 𝑟𝐶 − 𝛼1𝐸𝐶,
𝑑𝐸𝑑𝑡 = 𝑎1𝐶𝐸 + 𝑎2𝐵𝐸 − 𝛼2𝐸𝐶 − 𝜇1𝐸,
𝑑𝐵𝑑𝑡 = 𝑏 − 𝛼3𝐸𝐵 − 𝜇2𝐵.

(13)

The equilibrium points are as follows:

𝑈0 = {0, 0, 𝑏𝜇2} ,
𝑈1 = {0, 𝑏𝑎2 − 𝜇1𝜇2𝜇1𝛼3 , 𝜇1𝑎2 } ,
𝑈2 = { 𝜇1𝜇2𝛼1 + 𝛼3𝑟𝜇1 − 𝑎2𝑏𝛼1(𝛼3𝑟𝑎1 − 𝛼3𝑟𝛼2 + 𝛼1𝜇2𝑎1 − 𝛼1𝛼2𝜇2) ,

𝑟𝛼1 ,
𝑏𝛼1(𝛼3𝑟 + 𝛼1𝜇2)} .

(14)

The equilibrium point 𝑈1 exists only if 𝑏𝑎2 ≥ 𝜇1𝜇2. This
means that the cancer cells will disappear if the constant rate
of introduction of BCG and activation rate of BCG are bigger
than the degradation rates of both the effector cells and the
BCG.

The equilibrium point 𝑈2 also exists if
(i) 𝜇2𝛼1𝜇1+𝛼3𝑟𝜇1 ≥ 𝑎2𝑏𝛼1 𝑎𝑛𝑑 𝛼3𝑎1𝑟+𝑎1𝛼1𝜇2 ≥ 𝛼3𝑟𝑎2+𝜇2𝛼1𝛼2,
(ii) 𝜇2𝛼1𝜇1+𝛼3𝑟𝜇1 ≤ 𝑎2𝑏𝛼1 𝑎𝑛𝑑 𝛼3𝑎1𝑟+𝑎1𝛼1𝜇2 ≤ 𝛼3𝑟𝑎2+𝜇2𝛼1𝛼2.

From model (13), we have the following Jacobian matrix:

𝐽 (𝐶∗, 𝐸∗, 𝐵∗)

= [[
[

𝑟 − 𝛼1𝐸∗ −𝛼1𝐶∗ 0
𝑎1𝐸∗ − 𝛼2𝐸∗ 𝑎2𝐵∗ + 𝑎1𝐶∗ − 𝛼2𝐶∗ − 𝜇1 𝑎2𝐸∗

0 −𝛼3𝐵∗ −𝛼3𝐸∗ − 𝜇2
]]
]
. (15)

3.4. Stability Analysis of Equilibria of Model (13)

3.4.1. BCG Equilibrium: 𝑈0 = {0, 0, 𝑏/𝜇2}. The eigenvalues of𝐽 evaluated at 𝑈0 are
𝜆1 = 𝑟,
𝜆2 = 𝑏𝑎2 − 𝜇1𝜇2𝜇2 ,
𝜆3 = −𝜇2.

(16)

The eigenvalue 𝜆1 is always positive and the rest are negative.
Therefore, the equilibrium point 𝑈0 is an unstable saddle
point.

3.4.2. Cancer-Free Equilibrium: 𝑈1 = {0, (𝑏𝑎2 − 𝜇1𝜇2)/𝜇1𝛼3,𝜇1/𝑎2}. Assume the equilibrium point𝑈1 exists; then, substi-
tuting 𝑈1 in 𝐽 will give the following matrix:

𝐽 (𝑈1)

=
[[[[[[[
[

𝑟𝛼3𝜇1 − 𝑎1𝑏𝑎2 + 𝜇2𝜇1𝛼3𝜇1 0 0
𝑎1𝑏𝑎2 − 𝑎1𝜇2𝜇1 − 𝛼2𝑏𝑎2 + 𝛼2𝜇2𝜇1𝛼3𝜇1 0 𝑎22𝑏 − 𝑎2𝜇2𝜇1𝛼3𝜇1

0 −𝛼3𝜇1𝑎2 −𝑏𝑎2𝜇1

]]]]]]]
]
. (17)
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The eigenvalues of 𝐽(𝑈2) are
𝜆1 = 𝑟𝛼3𝜇1 + 𝜇2𝜇1 − 𝑎1𝑏𝑎2𝛼3𝜇1 ,

𝜆2 = −𝑏𝑎2 + √(𝑏𝑎2)
2 − 4𝑏𝑎2𝜇12 + 4𝜇2𝜇132𝜇1 ,

𝜆3 = −𝑏𝑎2 − √(𝑏𝑎2)
2 − 4𝑏𝑎2𝜇12 + 4𝜇2𝜇132𝜇1 .

(18)

Now, if

(i) 𝜆2 and 𝜆3 are complex roots, then 𝑈1 is a stable fixed
point if 𝑎1𝑏𝑎2 > 𝜇1(𝑟𝛼3 + 𝜇2);

(ii) 𝜆2 and 𝜆3 are real roots, then𝑈1 is a stable fixed point
if 𝑏𝑎2 > 𝜇1𝜇2 and 𝑎1𝑏𝑎2 > 𝜇1(𝑟𝛼3 + 𝜇2).

But since we already assume that the equilibrium point 𝑈1
exists, then 𝑏𝑎2 > 𝜇1𝜇2, andwe can conclude that𝑈1 is a stable
fixed point if 𝑎1𝑏𝑎2 > 𝜇1(𝑟𝛼3 + 𝜇2).

This means that the effector cells activated by BCG
will eradicate/destroy the cancer cells, if the constant rate
of introduction of BCG, recruitment rate of effector cells,
and the activation rate of effector cells by BCG are bigger
than or can overcome the cancer growth rate, the rate of
elimination of BCG by effector cells, and the degradation
rates of effector cells and BCG altogether. Therefore, to
eliminate the cancer, we increase the rate of introduction of
BCG, rate of recruitment of effector cells, and activation rate
of effector cells by BCG and at the same time decrease the rate
of elimination of BCG by effector cells, degradation rates of
both effector cells and BCG, and the cancer growth rate.

3.5.Model with Treatment and Immune Checkpoints. Wenow
consider the dynamics of cancer cells, effector cells BCG, and
immune checkpoints (see (5)).

The equilibrium points of model (5) are as follows:

𝑈0 = {0, 0, 𝑏𝜇2 ,
𝛿𝜇3} ,

𝑈1 = {0, 𝑏𝜇3𝑎2 − 𝜇2𝜇1𝛿 − 𝜇2𝜇1𝑘𝜇3𝜇1𝛼3 (𝛿 + 𝑘𝜇3) , 𝜇1 (𝛿 + 𝑘𝜇3)𝜇3𝑎2 , 𝛿𝜇3} ,

𝑈2 = { 𝛼3𝑟𝛿2𝜇1 + 2𝛼3𝑟𝛿𝜇1𝜇3𝑘 + 𝛼3𝑟𝑘2𝜇32𝜇1 + 𝜇2𝛼1𝜇32𝜇1𝑘 + 𝜇2𝛼1𝜇3𝜇1𝛿 − 𝜇32𝑎2𝑏𝛼1𝛼3𝜇3𝑟𝛿𝑎1 − 𝑟𝛿2𝛼3𝛼2 − 2𝛼3𝑟𝛿𝛼2𝑘𝜇3 + 𝛼3𝑟𝑘𝜇32𝑎1 − 𝛼3𝑟𝑘2𝜇32𝛼2 + 𝜇2𝜇32𝛼1𝑎1 − 𝜇2𝛼1𝜇3𝛼2𝛿 − 𝜇2𝛼1𝜇32𝛼2𝑘 ,
𝑟 (𝛿 + 𝑘𝜇3)𝜇3𝛼1 , 𝑏𝛼1𝜇3𝛼3𝑟 (𝛿 + 𝑘𝜇3) + 𝛼1𝜇3𝜇2 ,

𝛿𝜇3} .

(19)

The equilibrium point 𝑈1 exists if 𝑏𝜇3𝑎2𝜇2𝜇1 (𝛿 + 𝑘𝜇3) ≥ 1. (∗)

Also, 𝑈2 exists if
(i) 𝛼3𝑟𝛿2𝜇1 + 2𝛼3𝑟𝛿𝜇1𝜇3𝑘 + 𝛼3𝑟𝑘2𝜇32𝜇1 + 𝜇2𝛼1𝜇32𝜇1𝑘 +𝜇2𝛼1𝜇3𝜇1𝛿 ≥ 𝜇32𝑎2𝑏𝛼1 and 𝛼3𝜇3𝑟𝛿𝑎1 + 𝛼3𝑟𝑘𝜇32𝑎1 +𝜇2𝜇32𝛼1𝑎1 ≥ 𝑟𝛿2𝛼3𝛼2 + 2𝛼3𝑟𝛿𝛼2𝑘𝜇3 + 𝛼3𝑟𝑘2𝜇32𝛼2 +𝜇2𝛼1𝜇3𝛼2𝛿 + 𝜇2𝛼1𝜇32𝛼2𝑘;

(ii) 𝛼3𝑟𝛿2𝜇1 + 2𝛼3𝑟𝛿𝜇1𝜇3𝑘 + 𝛼3𝑟𝑘2𝜇32𝜇1 + 𝜇2𝛼1𝜇32𝜇1𝑘 +𝜇2𝛼1𝜇3𝜇1𝛿 ≤ 𝜇32𝑎2𝑏𝛼1 and 𝛼3𝜇3𝑟𝛿𝑎1 + 𝛼3𝑟𝑘𝜇32𝑎1 +𝜇2𝜇32𝛼1𝑎1 ≤ 𝑟𝛿2𝛼3𝛼2 + 2𝛼3𝑟𝛿𝛼2𝑘𝜇3 + 𝛼3𝑟𝑘2𝜇32𝛼2 +𝜇2𝛼1𝜇3𝛼2𝛿 + 𝜇2𝛼1𝜇32𝛼2𝑘.
From model (5), we obtain the following Jacobian matrix:

𝐽 (𝐶∗, 𝐸∗, 𝐵∗, 𝑃∗) =
[[[[[[[[[
[

𝑟 − 𝛼1𝐸∗𝑃∗ + 𝑘
𝛼1𝐶∗𝑃∗ + 𝑘 0 𝛼1𝐸∗𝐶∗(𝑃∗ + 𝑘)2𝑎1𝐸∗𝑃∗ + 𝑘 − 𝛼2𝐸∗

𝑎1𝐶∗ + 𝑎2𝐵∗𝑃∗ + 𝑘 − 𝛼2𝐶∗ − 𝜇1 𝑎2𝐸∗𝑃∗ + 𝑘 −(𝑎1𝐸∗𝐶∗ + 𝑎1𝐵∗𝐶∗)(𝑃∗ + 𝑘)20 −𝛼3𝐵∗ −𝛼3𝐸∗ − 𝜇2 0
0 0 0 −𝜇3

]]]]]]]]]
]

. (20)



6 Computational and Mathematical Methods in Medicine

3.6. Stability Analysis of Equilibria of Model (5)

3.6.1. BCG and Immune Checkpoints Equilibrium: 𝑈0 = {0, 0,𝑏/𝜇2, 𝛿/𝜇3}. The eigenvalues of 𝐽 evaluated at 𝑈0 are
𝜆1 = 𝑟,
𝜆2 = 𝑏𝜇3𝑎2 − 𝜇2𝜇1𝛿 − 𝜇2𝜇1𝜇3𝑘𝜇2 (𝛿 + 𝑘𝜇3) ,
𝜆3 = −𝜇2,

𝜆4 = −𝜇3.
(21)

Since one of the eigenvalues is always positive, then 𝑈0 is an
unstable saddle point.

3.6.2. Tumor-Free Equilibrium: 𝑈1 = {0, (𝑏𝜇3𝑎2 − 𝜇2𝜇1𝛿 −𝜇2𝜇1𝑘𝜇3)/𝜇1𝛼3(𝛿+𝑘𝜇3), 𝜇1(𝛿+𝑘𝜇3)/𝜇3𝑎2, 𝛿/𝜇3}. Assume this
equilibrium point exists; then, the eigenvalues of 𝐽 evaluated
at 𝑈1 are as follows:

𝜆1 = −𝜇3,
𝜆2 = 𝛼3𝑟𝛿

2𝜇1 + 2𝛼3𝑟𝛿𝜇3𝜇1𝑘 + 𝛼3𝑟𝑘2𝜇32𝜇1 + 𝜇2𝛼1𝜇32𝜇1𝑘 + 𝜇2𝛼1𝜇3𝜇1𝛿 − 𝜇32𝑎2𝑏𝛼1
𝛼3𝜇1 (𝛿 + 𝑘𝜇3)2 ,

𝜆3 = −𝑏𝜇3𝑎2 + √(𝑏𝜇3𝑎2)
2 + 4𝜇13𝛿2𝜇2 + 8𝜇13𝛿𝜇2𝑘𝜇3 + 4𝜇32𝜇13𝑘2𝜇2 − 4𝜇12𝛿𝑏𝜇3𝑎2 − 4𝜇32𝜇12𝑘𝑏𝑎22𝜇1 (𝛿 + 𝜇3𝑘) ,

𝜆4 = −𝑏𝜇3𝑎2 − √(𝑏𝜇3𝑎2)
2 + 4𝜇13𝛿2𝜇2 + 8𝜇13𝛿𝜇2𝑘𝜇3 + 4𝜇32𝜇13𝑘2𝜇2 − 4𝜇12𝛿𝑏𝜇3𝑎2 − 4𝜇32𝜇12𝑘𝑏𝑎22𝜇1 (𝛿 + 𝜇3𝑘) .

(22)

The equilibrium point 𝑈1 is a stable fixed point if

𝑎2𝑏𝜇3𝜇1𝜇2 (𝛿 + 𝑘𝜇3)
> max{1, (𝑟𝜇3𝑘𝛼3 + 𝜇3𝜇2𝛼1 + 𝛼3𝑟𝛿) 𝜇2𝛼1𝜇3 } .

(23)

However, condition (∗) is already true; then, 𝑈1 is a stable
fixed point if

𝑎2𝑏𝜇3𝜇1𝜇2 (𝛿 + 𝑘𝜇3) >
(𝑟𝜇3𝑘𝛼3 + 𝜇3𝜇2𝛼1 + 𝛼3𝑟𝛿) 𝜇2𝛼1𝜇3 . (24)

3.6.3. Interior Equilibrium:𝑈2 = {𝐶∗, 𝑟(𝛿+𝑘𝜇3)/𝜇3𝛼1, 𝑏𝛼1𝜇3/(𝛼3𝑟(𝛿+𝑘𝜇3)+𝛼1𝜇3𝜇2), 𝛿/𝜇3}. Theeigenvalues of the Jacobian
matrix 𝐽(𝑈2) are very long, complicated, and difficult to
analyze.Therefore, we use numerical simulations to show the
stability of the equilibrium point 𝑈2.
4. Numerical Illustrations

In this section, the numerical simulations of the three models
will be shown. The aim here is to show the effect of immune
checkpoints on the effector cells. We use MATLAB version
2016b to plot the graphs with initial populations of the
compartments involved taken to be equal. Other parameters
used in the numerical simulations are given in Table 1.

We first plot the graph of model (6) to illustrate what
happens in the absence of treatment. As expected, the cancer
cells develop with the help of suppression on the effector cells
by the immune checkpoints, hence dominating the effector

cells and resulting in the growth andmaturation of the cancer.
Therefore, the numerical simulations of model (6) support
this notion as shown in Figure 1.

Next, we show the behavior of model (13) (i.e., without
the immune checkpoints). Here, we will see how the effector
cells attack and kill the cancer cells as a result of the stim-
ulation/activation by the BCG. Unlike in Figure 1, Figure 2
shows how the growth of the cancer cells is restricted and
eventually leads to their extinction by the effector cells.

The general model will now be considered. Despite
stimulation and activation of the effector cells by the BCG,
the immune suppressors block and deactivate their function;
hence, this leads to the reduction of autoimmunity of the
effector cells. Therefore, the cancer develops and grows
exponentially as shown in Figure 3.

Therefore, comparing Figures 2 and 3, we will notice the
effect of immune checkpoints on the effector cells. In Figure 2,
the effector cells in the absence of immune suppressors fight
the cancer cells, resulting in stopping their development
and progression, while Figure 3 shows the progression and
development of the cancer cells as a result of the presence of
immune suppressors.

5. Conclusion and Discussion

In this paper, we used a system of four nonlinear ordinary
differential equations to model the dynamics of cancer cells,
effector cells, BCG, and immune checkpoints/suppressors
in the immunotherapy of bladder cancer. We derived three
possible dynamics from our model. Firstly, the model was
analyzed in the absence of treatment and we studied the
stability analysis of the equilibria involved. Figure 1 shows
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Table 1: List of all parameters used in numerical simulations.

Parameter Interpretation
(units) Estimated value Reference

𝑟 Tumor growth rate𝑡−1 = day−1 0.0033 Shochat et al., 1999

𝛼1 Rate of elimination of cancer cells by effector cells
cell day−1 1.1 × 10−7 Kuznetsov et al., 1994

𝑘 Inhibitory parameter 2 × 103 Not found

𝑎1 Recruitment rate of effector cells𝑡−1 = day−1 0.25 Sud D. et al., 2006

𝑎2 Activation rate of effector cells by the BCG
cells−1 day−1 0.052 Wigginton and Kirschner, 2001

𝛿 Internal production of immune checkpoints 1.51932 × 105 Sandip Banerjee et al., 2015

𝛼2 Elimination rate of effector cells by cancer cells
cells−1 day−1 3.45 × 10−10 Kuznetsov et al., 1994

𝜇1 Degradation rate of effector cells𝑡−1 = day−1 0.041 Kuznetsov et al., 1994

𝜇2 Rate of BCG decay𝑡−1 = day−1 0.1 Archuleta et al., 2002

𝑏 Bioeffective concentration of BCG
c.f.u./day 6.5 × 105 Cheng et al., 2004

𝛼3 Destruction of BCG by effector cells
cells−1 day−1 1.25 × 10−7 Wigginton and Kirschner, 2001

𝜇3 Degradation rate of immune checkpoints𝑡−1 = day−1 166.32 Sandip Banerjee et al., 2015
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Figure 1: Model (6) (without treatment): cancer cells (𝐶) grow
exponentially, overcoming the effector cells (𝐸), with the help of
immune checkpoints (𝑃).

how the cancer progressed in the absence of treatment and
presence of immune checkpoints/suppressors.

Secondly, we study themodel without the immune check-
points/suppressors. Conditions for stability of the equilibria
involved were also given. In the absence of immune check-
points/suppressors, the activated-effector cells have unlim-
ited freedom to roam about and detect the cancer cells; as a
result, they kill them and stop the cancer from progressing.
This was shown in Figure 2.

Thirdly, we considered the dynamics of the model
with treatment and the immune checkpoints/suppressors.
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Figure 2: Model (13) (without immune suppressors): the effector
cells (𝐸) overcome the development of cancer cells (𝐶) as a result of
the stimulation and activation by the BCG (𝐵).

Conditions for stability of the equilibrium points were given,
and Figure 3 shows how the cancer cells grow and develop
despite the application of the treatment (BCG). This is
believed to be as a result of the blockage and suppression that
the effector cells suffered by the immune checkpoints.

Therefore, the figures used in this paper assist in showing
the effect of immune checkpoints/suppressors on the effector
cells and the treatment at large. To avoid cancer progression
and advancement, there is a need for action to block or limit
the production of the immune checkpoints.This will take the
brakes off the immune system and thereby allow it to mount
a stronger and more effective attack against cancer cells.
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Figure 3: Model (5): despite the stimulation of effector cells (𝐸) by
the BCG (𝐵), the immune checkpoints (𝑃) block and deactivate the
activities of the effector cells, thereby leading to the development and
progression of cancer cells (𝐶).

Nivolumab is a drug recently approved by the FDA to
be used alone or with other drugs to treat cancer. It is a
fully human immunoglobulin (Ig) G4 monoclonal antibody
directed against the negative immunoregulatory human cell
surface receptor programmed cell death protein-1 (PD-1)
with immune checkpoint inhibitory and antineoplastic activ-
ities. Nivolumab binds to and blocks the activation or
production of immune checkpoints like PD-1. This results in
the activation of T-cells and cell-mediated responses against
cancer cells. So, the primary role of nivolumab is to block the
immune checkpoints from suppressing the immune systems.
Hence, this helps in allowing the immune cells to rise against
cancer cells without any interference [16, 17].
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