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Although genetics contributes to the development of autoimmune diseases, it is clear that “environmental” factors are also
required. These factors are thought to encompass exposure to certain drugs and environmental pollutants. This paper examines
the mechanisms that normally maintain immune unresponsiveness in the liver and discusses how exposure to certain xenobiotics
such as trichloroethylene may disrupt those mechanisms and promote autoimmune hepatitis.

1. Immunological Characteristics of
Autoimmune Hepatitis

Autoimmune hepatitis (AIH) is a disease characterized by
progressive liver inflammation of unknown etiology that may
advance to fibrosis. The inflammation encompasses both
cell-mediated cytotoxicity by infiltrating lymphocytes and
the production of autoantibodies. Although not restricted to
AIH, many patients with AIH make autoantibodies specific
for asialoglycoprotein receptor (ASGPR) [1] and alcohol
dehydrogenase (ADH) [2]. Type 1 AIH is characterized
by circulating antinuclear antibodies (ANA) and smooth-
muscle antibodies (SMA) [3]. Some individuals may have
antineutrophil cytoplasmic autoantibodies (ANCA), anti-
bodies to soluble liver antigens or liver pancreas (anti-
SLA/LP). Type 2 AIH is associated with antibodies against
liver-kidney microsome 1 (LKM-1) and/or antibodies
against liver cytosol 1 antigen (LC1) [4]. LKM-1 autoanti-
bodies react with linear epitopes within cytochrome P450
2D6 (CYP2D6), a phase-I drug- and toxicant-metabolizing
enzyme in the liver, and perhaps major antigen target of type
2 AIH.

Diagnosis of AIH usually involves more than the mea-
surement of autoantibodies since patients may express them
intermittently or produce antibodies that are not part of the
standard repertoire. As described in Table 1 a definitive diag-
nosis of AIH is multifactorial. One classic indicator of AIH

is liver pathology associated with lymphocyte infiltration
of portal region. The liver infiltrate includes macrophages,
antibody-secreting plasma cells, and T lymphocytes of both
CD4+ and CD8+ subsets. Several investigators have reported
a predominance of CD4+ T cells in the liver infiltrate,
while others have reported a predominance of CD8+ T cells
[5–7]. Regardless of the exact cell makeup the periportal
lymphocyte infiltration characteristic of AIH differs from
other autoimmune liver diseases such as primary biliary
cirrhosis and autoimmune cholangitis in which lymphocytes
instead target the bile ducts.

The specificity of the T cells that infiltrate the liver in
AIH is still being defined. Using T cell clonal analysis, it
was found that the majority of clones generated from the
peripheral blood of patients with type 1 AIH were TCRαβ
CD4+ T cells, while most of the clones obtained from the
liver were TCRγδ CD4−CD8− T cells or TCRαβ CD8+ T
cells [8]. Both types of liver-derived T cell clones proliferated
in response to ADH and ASGPR. In patients with type 2
AIH, both CD4+ T cells and CD8+ T cells that prolifer-
ated and produced IFN-γ in response to stimulation with
CYP2D6 have been generated from liver tissue and periph-
eral blood [9, 10]. Further study of T cell receptor variable
β-chain transcripts suggested that the T cells that mediate
pathology in type 2 AIH are oligoclonal [11] and that
different effector types target different epitopes of CYP2D6
[12].
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Table 1: Revised scoring system of the international autoimmune
hepatitis group.

Parameter Factor Score

Gender Female +2

Alk Phos: AST (or ALT) ratio >3 −2

<1.5 +2

Gamma-globulin or IgG level above
normal

<1.0 to > 2.0
0 to
+3∗

ANA, SMA, or anti-LKM1 titers <1:40 to >1:80
0 to
+3∗

AMA Positive −4

Viral markers of active infection Positive −3

Negative +3

Hepatotoxic drugs Yes −4

No +1

Alcohol <25 g/d +2

>60 g/d −2

Concurrent immune disease
Thyroiditis, colitis,

other
+2

Other autoantibodies
Anti-SLA, -actin,
-LC1, -pANCA

+2

Histologic features Interface hepatitis +3

Plasma cells +1

Rosettes +1

None of above −5

Biliary changes −3

Atypical features −3

HLA DR3 or DR4 +1

Treatment response Remission alone +2

Remission with
relapse

+3

Pretreatment aggregate score

Definite diagnosis >15

Probable diagnosis 10–15

Posttreatment aggregate score

Definite diagnosis >17

Probable diagnosis 12–17
∗

Depends upon titer. Alk phos: serum alkaline phosphatase level; AST:
aspartate aminotransferase; ALT: alanine aminotransferase; IgG: immuno-
globulin G; ANA: antinuclear antibody; SMA: smooth muscle antibody;
LKM: liver/kidney microsomes; SLA: soluble liver antigen; LC1: liver cytosol
type 1; pANCA: perinuclear anti-neutrophil cytoplasmic antibody; HLA:
human leukocyte antigen.

Regardless of their specificity, it is not clear how activated
liver-infiltrating T cells escape deletion or tolerance to
become effector cells in AIH. The liver normally demon-
strates very little inflammation and is extraordinarily easy
to transplant. Several mechanisms have been proposed to
explain the anti-inflammatory nature of liver tissue. The
hyporesponsiveness may be due in part to the intrahepatic
entrapment and deletion or tolerance of activated T cells,
including liver-specific T cells, by liver sinusoidal endothelial

cells (LSEC) or Kupffer cells [13, 14]. In addition, it has
been proposed that constitutive engagement of Toll-like
receptors by gut-derived microbial molecules leads to low
level but constant production of IL-10 [15], which in
turn suppresses the activity of T cells and NK cells that
would otherwise mediate the inflammation characteristic
of AIH [16, 17]. Signaling by another anti-inflammatory
cytokine TGF-β has similarly been found to mediate liver
hyporesponsiveness [18]. Lastly, TReg cells also appear to
help maintain immune tolerance in the liver [19]. The
development of AIH in humans presumably requires a defect
in one or more of these normally efficient methods of
preventing T cell-mediating tissue destruction in the liver.
For example, patients with active AIH have been shown to
be defective in the number and activity level of TReg cells
[20, 21] and in their expression of TGF-β receptor type II
on peripheral blood mononuclear cells [22]. Taken together,
the normal immune hyporesponsiveness in the liver can
be attributed to a network of related mechanisms, one or
more of which must be disrupted for the development of
inflammation associated with AIH.

Treatment of AIH usually involves long-term adminis-
tration of anti-inflammatory or immunosuppressive drugs
such as prednisone and/or azathioprine. Depending on the
definition of a response, up to 35% of AIH patients are
refractory to treatment [23]. Among those patients that
respond to therapy, the ten-year survival rates decrease from
94% to 62% if cirrhosis is present at diagnosis [24]. Since
early stages of AIH are often asymptomatic, 25% of patients
have already progressed to cirrhosis by the time the disease
is first diagnosed [25]. The gap of several years that can exist
between disease initiation and diagnosis makes it especially
difficult to identify the events that trigger pathogenesis.

2. Genetic Contribution to AIH

Several susceptibility factors for AIH disease development
have been identified, even if the mechanistic bases for their
contributions are still unclear. Similar to most autoimmune
diseases, AIH predominates in women at a ratio of 3.6 : 1
[26]. Racial, regional, and genetic predisposition can also
affect the clinical manifestations of AIH [23]. Studies to
delineate genetic susceptibility in AIH have largely focused
on genes within the human leukocyte antigen (HLA) region.
In Europe and North America increased susceptibility to
type 1 AIH is associated with the HLA-DR3 and HLA-
DR4 serotype [3]. However, the HLA haplotypes considered
as risk factors for type 1 AIH change in other regions of
the world, leading to the supposition that different genetic
associations are present in different populations and that the
peptide specificity of the T cells in these populations also
differs (for review see [27]). Susceptibility to type 2 AIH is
often associated with the HLA-DR7 and DR3 haplotypes.

Increased susceptibility to AIH can also be conferred by
polymorphisms in non-HLA genes. Although these genes
include some not directly involved in immune function
(e.g., thiopurine S-methyltransferase) [28], most involve
genes associated with immune responsiveness. For example,
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a polymorphism in the gene for the adhesion molecule
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has
been shown to increase susceptibility to a number of
autoimmune conditions, including type 1 AIH [29, 30]. Also,
described as possible risk, factors for AIH include poly-
morphisms in the genes for TNF-α [31] and complement
component C4 [32]. Polymorphisms in genes that control
apoptosis (e.g., death receptor Fas; CD95) have similarly
been shown to promote AIH [33]. Since activation-induced
apoptosis is an important mechanism by which the host
protects itself from autoreactive T cells, AIH susceptibility
factors associated with apoptosis may be particularly impor-
tant mechanistically.

Twin studies examining concordance rates have not been
reported in patients with AIH. Consequently, it is not clear
exactly how much genetics contributes to disease develop-
ment. Concordance rates reported in other autoimmune
diseases vary considerably but are rarely more than 25% [34–
36]. Thus, although genetics contributes to autoimmunity,
disease development is primarily attributable to one or more
environmental factors.

3. Environmental Contribution to AIH: Drugs

Autoantibodies specific for phase I and phase II metabolizing
enzymes can be found in patients with either type 1 or
type 2 AIH. This has led to the suggestion that some
compounds that perturb these enzymes (e.g., certain drugs
and xenobiotics) should be considered as potential envi-
ronmental triggers of AIH. Most ingested pharmaceuticals
and xenobiotics are metabolized in the liver into more
active, and in some cases toxic, breakdown products. The
phase I metabolizing enzymes, for example, cytochrome
P450s (CYPs) account for approximately 2–4% of total liver
protein. In humans the most abundant CYP isotype is
CYP3A (29%) followed by CYP2C (18%), CYP1A2 (13%),
and CYP2E1 (7%). CYP2D6 is only found in small amounts
(<2%), but accounts for the metabolism of almost 30% of all
drugs [37].

A recent retrospective review of patients diagnosed with
autoimmune hepatitis in the Mayo clinic showed that in
9.2% of the cases disease development could be attributed to
drug treatments [38]. Drugs most often associated with the
development of AIH include nitrofurantoin, halothane, and
minocycline [38, 39]. More recently, a review of case reports
has associated treatment with statins or infliximab with the
development of AIH [40, 41]. Although several other types
of drug-induced liver injury appear to be immune mediated,
it is not clear that these injuries can be classified as AIH.

Autoantibodies specific for different P450s have been
identified in the sera from individuals with drug-induced
hepatitis and leading to the hypothesis that these enzymes
play a role in disease etiology. For example, autoanti-
bodies against CYP2E1 were found in patients suffering
from halothane-induced hepatitis [42], and anti-CYP1A2
antibodies and anti-CYP2C9 were found in patients with
dihydralazine-induced or tienilic acid-induced hepatitis,
respectively [43]. It is not clear how or why CYPs stimulate an

immune response. Although drugs are substrates for CYPs,
the former can also regulate the levels and activity of
the later. Even at subtoxic doses, several drugs including
acetaminophen, the anesthetic urethane, and members of the
selective serotonin reuptake inhibitors class of antidepres-
sants have been shown to regulate different types of CYPs, in
some cases increasing and in other cases decreasing activity
[44–47].

The regulatory effects of drugs on CYPS may be due in
part to adduct formation that alters the activity of the
enzymes. Several drugs are converted by CYPs into reactive
metabolites that form adducts with liver proteins that have
been identified as, or at least comigrated with, CYPs. For
example, trifluoracetylated CYP2E1 was found in the liver
of rats exposed to halothane [48]. Similarly, the antihyper-
tensive drug dihydralazine has been shown to form adducts
with its primary metabolizing enzyme CYP2A1 [49]. It
seems logical that the protein most likely to interact with
a drug reactive metabolite would be the enzyme involved
in the formation of that metabolite. It has been suggested
that the chemically induced adduct formation increases the
immunogenicity of the metabolizing enzymes and thereby
promotes autoantibody production to the altered protein.
Most drug-metabolizing P450s are localization in the ER
membrane of hepatocytes, a site not particularly accessible
to immune cells. However, some P450s can also be found,
albeit at much lower levels, in other cellular locations such
as mitochondria and plasma membrane. CYP2D6, CYP1A1,
and CYP2E1 have been detected at the cell surface by flow
cytometry or biochemical analysis of the plasma membrane
[50].The molecular mechanisms responsible for targeting
and transport of P450s to these alternative intracellula sites
appear to be dependent on the cellular systems and exper-
imental conditions used. Thus, exposure to certain drugs
and xenobiotics may promote the surface expression of
CYPs, as well as enhance their immunogenicity through
adduct formation. The resulting antibodies could interact
with P450s as antigenic targets in the plasma membrane and
cause immune-mediated destruction of the hepatocyte.

Polymorphisms in P450s may help account for interindi-
vidual variation in susceptibility to toxicity induced by drugs
and other xenobiotics. In terms of drugs CYP2D6, 2C19,
and 2C9 polymorphisms account for the largest variation
in response since most drugs are metabolized by these
enzymes; however, polymorphisms in other P450 genes such
as CYP1A1 and 2E1 have been noted. With regard to other
xenobiotics and liver disease, the role of P450 polymor-
phisms in disease susceptibility is far from clear. Polymor-
phisms in CYP2E1 have been correlated with increased
likelihood of liver lesions in Chinese workers exposed
to vinyl chloride [51]. Specific CYP1A2 polymorphisms
have been shown to modify smoking-related hepatocellular
carcinoma [52]. On the other hand, other studies found no
link between well-studied single-nucleotide polymorphisms
(SNPs) in CYP2E1 and alcoholic liver disease or chronic
benzene poisoning [53, 54]. Genome-wide association stud-
ies (GWAS) instead of a focus of individual P450 genes
may be required to more clearly identify gene-environment
interactions.
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4. Environmental Contribution to
AIH: Pollutants

The mechanisms by which drugs may promote an immune
response to metabolizing enzymes in the liver could also
apply to certain toxicants. However, since xenobiotic expo-
sure often occurs without our knowledge, such exposure is
often much more difficult to document than contact with
drugs. Even in those cases when exposure to pollutants is
documented, it almost always involves multiple chemicals,
making it difficult to describe a cause/effect relationship
with a particular pollutant. For these reasons, evidence of
toxicant-induced AIH is mostly based on the results of
animal studies.

Carbon tetrachloride (CCl4) is an organic compound
that was once used extensively as a cleaning fluid, refrigerant,
and insecticide. However, once its toxicity became apparent
its use was largely phased out in the USA. The liver
is the organ system most sensitive to CCl4 toxicity, due
in part to the inherently high rate of CYP2E1-mediated
metabolism of the toxicant in this tissue. CCl4 is a very stable
chemical, and it has accumulated in water and soil thanks
to its once wide-spread release by domestic manufacturing
and processing facilities [55]. Today, most nonoccupational
human exposure occurs via air and water. In animal systems
CCl4 has been mostly used to generate acute toxicant-
induced hepatitis. However, CCl4 at lower doses can induce
fibrosis following chronic administration [56]. The liver
pathology of CCl4 has been associated with at least transient
increases in IFN-γ, TNF-α, and TGF-β [57]. Alterations in
adhesion molecules (e.g., ICAM-1 and PECAM-1) were also
observed in the livers of CCl4-treated rats. In addition, co-
exposure to carbon tetrachloride was shown to augment
the generation of a nonpathogenic autoimmune response
against liver protein in mice infected with mouse hepatitis
virus A59 [58]. Thus, it seems that CCl4 at least augments
the development of chronic T cell-mediated AIH.

5. Trichloroethylene and AIH

Another environmental pollutant with a more defined
connection to AIH is trichloroethylene (TCE). TCE is an
organic solvent that was widely used as a metal degreaser.
Reports of possible TCE toxicity have led to its replacement
by supposedly less harmful compounds. However, because of
improper disposal techniques, TCE has become a major envi-
ronmental pollutant found in air, water supplies, and soil.
TCE is the most frequently reported organic contaminant in
groundwater [59], which is the source of 93% of public water
systems in the USA.

Although the exposure to TCE is widespread, it rarely
occurs at levels thought to be directly toxic. However,
a number of reports have linked low-level chronic TCE
exposure, either occupational or environmental, to a variety
of autoimmune diseases in humans including systemic
lupus erythematosus, scleroderma, bullous pemphigoid, and
diabetes [60–68]. There are also links between TCE exposure
and autoimmune liver diseases. For example, statistically

significant clusters of individuals listed for liver transplan-
tation with a diagnosis of autoimmune hepatitis or primary
biliary cirrhosis were identified in association with US EPA
monitoring sites recording mean daily levels of chlorinated
hydrocarbons in the 90th percentile [69]. TCE was found to
be a major contaminant at such sites.

Skin problems, mostly irritant contact dermatitis due to
the defatting action of the solvent, are a common problem
for occupational users of TCE. However, a different type of
idiosyncratic hypersensitivity skin disorders associated with
TCE use has become the main clinical issue in the past 20
years in Asia [70]. Over 90% of the patients suffering from
this TCE-induced generalized hypersensitivity also suffer
from nonviral, immunologically induced hepatitis, and in
many cases increased levels of total IgG [71]. Use of a guinea
pig model confirmed that TCE can cause two pathophysio-
logically different types of the hepatitis. The first is the well-
known toxic liver injury caused by high level-TCE exposure,
while the second is immune mediated and is induced by TCE
doses below those causing toxic liver injury [70].

Even if overt autoimmune disease is not diagnosed, signs
of immune activation including increased numbers of T cells
have been associated with chronic exposure to a domestic
water supply contaminated with TCE [60, 72–74]. Sim-
ilarly, occupational exposure to TCE resulted in signifi-
cantly increased serum levels of the T cell-derived pro-
inflammatory cytokine IFN-γ [75]. Taken together, these
results provide strong circumstantial evidence that exposure
to TCE can promote T cell hyperactivity and autoimmunity
in humans, and this autoimmunity can manifest itself in
different types of autoimmune disease, including those that
target the liver.

6. Mouse Model of TCE-Induced AIH

Based on the epidemiological data we used a mouse model
[76] to more directly study the link between TCE and
autoimmune disease. This mouse model utilizes autoim-
mune-prone MRL+/+ mice since a genetic propensity for
autoimmunity is thought to be required for idiopathic
as well as experimental autoimmune disease. We found
that female MRL+/+ mice exposed to low, occupationally
relevant concentrations of TCE in their drinking water
(2.5 mg/mL) for 32 weeks, developed AIH characterized
by plasma cell and T cell infiltration of the periportal
region of the liver [77, 78]. A more recent study showed
that exposure to an even lower concentration of TCE
(0.5 mg/mL) for an even shorter time period (26 weeks)
similarly initiated pathology commensurate with autoim-
mune hepatitis [79]. TCE-induced AIH was accompanied
by a time-dependent increase in the number of antibodies
specific for liver microsomal proteins. TCE exposure in mice
also expanded the percentage of activated IFN-γ-secreting
CD4+ T cells. Taken together these results showed that TCE
exposure induced AIH, complete with lymphocyte infil-
tration and generation of antiliver antibodies, in MRL+/+
mice.
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Figure 1: Oxidative metabolism of TCE.

7. TCE Metabolism and AIH

Determining whether a xenobiotic requires metabolism to
mediate its toxicity can provide important mechanistic
clues. Once ingested, some TCE is stored in adipose tissue,
but most TCE is quickly distributed to the liver. There it
undergoes oxidative metabolism that is primarily mediated
by CYP2E1. CYP2E1 rapidly converts TCE to an intermediate
(trichloroethylene-0-P450) that can rearrange to trichloroac-
etaldehyde (TCAA) which in solution is in equilibrium with
trichloroacetaldehyde hydrate (TCAH) (Figure 1). TCAA
and TCAH are then converted to trichloroacetic acid or
trichloroethanol which is excreted as the alcohol glucuronide
[80]. The TCE metabolism pathway in humans is similar,
albeit slower, to that of mice [81].

Acute toxicity of high-dose TCE requires its metabolism
[82]. A similar requirement for the autoimmune-promoting
effects of low-dose TCE was investigated. Blocking CYP2E1
activity inhibited the ability of low-dose TCE to alter T
cell activity [83], suggesting that it was a downstream
metabolite of TCE that actually promoted the T cell-
mediated autoimmunity of AIH. To test this possibility
TCAH, instead of TCE, was added to the drinking water
of MRL+/+ mice for 40 weeks. Unlike TCE, TCAH did
not induce AIH. Instead the TCAH-treated mice developed
autoimmune alopecia complete with dose-dependent hair
loss and skin inflammation [84]. Although TCAH induced
a different disease outcome than TCE, TCAH stimulated T
cell alterations identical to that of TCE, namely, an increase
in CD44hi IFN-γ-secreting CD4+ T cells. Thus, it appeared
that its metabolite TCAH mediated the T cell effects of TCE,
but the parent compound was required for those T cell effects
to target the liver.

In trying to understand the role of the parent compound
in TCE-induced AIH, it is important to take into account
that not all of the TCE-O-P450 formed by CYP2E1 is imme-
diately metabolized to TCAA; some of it act as a reactive
intermediate. The amino group of lysine on proteins reacts
with intermediates formed during the hydrolysis of the TCE
oxide forming N6-formyl lysine or N6-dichloroacetyllysine
adducts. Antibodies to the dichloroacetyl lysine adducts [85]
were used to detect these adducts as stable neoantigens in
the liver of TCE-treated MRL+/+ mice [83]. One of the

primary dichloroacetyl lysine-adducted protein was found to
be CYP2E1, the main enzyme for TCE oxidative metabolism.
It is possible that the formation of these neoantigens (liver
proteins altered by TCE-O-P450) is required for TCE-
induced AIH.

8. TCE and CD4+ T Cell Apoptosis

Experiments were conducted to determine how exposure
to TCE or TCAH expanded the population of activated
CD4+ T cells in the MRL+/+ mice. The investigation
focused on Fas-mediated activation-induced cell death (aka
restimulation-induced cell death), a process that is supposed
to protect against the expansion of autoreactive CD4+ T
cells [86–88]. The importance of this process in protection
against autoimmunity is underlined by the finding that
deficiencies in Fas-mediated apoptosis are found in a variety
of idiopathic autoimmune diseases [89–96]. In terms of
AIH, susceptibility to this disease has been linked to Fas
polymorphisms, although the functional effects of these
polymorphisms on activation-induced CD4+ T cell apoptosis
in this disease has not been studied [33].

As demonstrated by Blossom et al. [97], 88% of the CD4+

T cells isolated from control MRL+/+ mice after a 4-week
exposure to water alone were induced to undergo activation-
induced apoptosis in vitro. In contrast, only 55% of CD4+ T
cells from mice exposed to 0.5 mg/mL of TCE for 4 weeks
underwent apoptosis. Exposure to TCAH in vivo for 4 or
40 weeks was similarly shown to suppress activation-induced
apoptosis in CD4+ T cells [84]. The TCAH-induced decrease
in apoptosis correlated with the decreased expression of
FasL, but not Fas, on the surface of the CD4+ T cells.
Subsequent experiments indicated that TCAH induced a
mediated cleavage of FasL rather than suppressing FasL at
the level of gene transcription [98]. Because sFasL is much
less efficient than membrane-bound FasL at inducing Fas-
mediated apoptosis in T cells, any mechanism that promotes
FasL shedding can dramatically decrease FasL bioactivity
[99, 100] thereby decreasing Fas-mediated apoptosis and
promoting CD4+T cell-mediated autoimmunity.

9. Metalloproteinases and AIH

Metalloproteinases are a large group of proteases that
include two families known as the matrix metallopro-
teinases (MMPs) and “a disintegrin and metalloproteinases”
(ADAMs). MMPs are primarily secreted enzymes that have
a variety of functions, including cleavage of cell-surface
molecules and promoting the release of growth factors and
cytokines [101, 102]. ADAMs are functionally similar to
MMPs but, unlike most MMPs, are primarily cell-surface
proteins.

The role of metalloproteinases in AIH specifically is not
known. However, these enzymes have been implicated in
several types of autoimmune diseases as well as chronic liver
diseases. For example, MMP-7 was shown to be one of the
best discriminators between cirrhosis and precirrhotic stages
in patients with chronic active hepatitis C [103]. Similarly,
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Figure 2: Model of TCE-induced AIH.

increased mRNA levels of MMP-9 or MMP-2 have been
found in the livers of patients with chronic viral hepatitis
as well as nonalcoholic steatohepatitis [104]. The func-
tional importance of metalloproteinases in liver disease was
underscored by the finding that a general metalloproteinase
inhibitor blocked lethal hepatitis induced by TNF-α treat-
ment in mice [105]. In terms of autoimmune disease several
metalloproteinases including ADAM-17, MMP-9, MMP-3,
MMP-2, or MMP-8 are reportedly increased in the serum
or peripheral leukocytes of patients with systemic sclerosis,
system lupus erythematosus, and Wegener’s granulomatosis
[106–109]. In mouse models of rheumatoid arthritis and
experimental autoimmune uveoretinitis, the use of specific
or general metalloproteinase inhibitors were shown to inhibit
disease pathology [110, 111]. It still remains to be seen
whether metalloproteinases play a direct role in initiating
autoimmune diseases and certain types of liver pathology,
or whether they are upregulated as a consequence of disease
development and are a secondary consequence of tissue
repair and/or inflammation.

10. Working Model of TCE-Induced AIH

Taken together, the results obtained thus far have led to a
model in which TCE-induced AIH in MRL+/+ mice requires
two related mechanisms (Figure 2). In one mechanism TCE,
via its metabolite TCAH, increases metalloproteinase activ-
ity. The TCAH-induced metalloproteinase activity cleaves
FasL from the surface of activated CD4+ T cells, thus
inhibiting their susceptibility to Fas-mediated activation-
induced apoptosis. In a second mechanism TCE, through the
generation of the TCE-O-P450 active metabolite, generates
liver adducts. The adduct formation results in the activation
of CD4+ T cells specific for both chemically modified
and unmodified liver peptides. Because of their decreased
susceptibility to apoptosis, the CD4+ T cells activated in
response to either modified or unmodified liver proteins
escape deletion but retain pathogenic effector function.

Many aspects of this model need to be delineated.
For example, the cellular source of the TCAH-induced
metalloproteinase activity is not yet known. Also unclear

is the molecular basis for the stimulatory effects of TCAH.
Studies have demonstrated that TCAH in its aldehyde form
can trigger signaling events with T cell surface molecules
through the generation of a chemical reaction known as a
Schiff base [112]. The nature of these signaling events and the
identification of the cell surface molecules involved remain
to be determined. Similarly, we still need to test that the
signaling events associated with Schiff base formation are
sufficient to trigger metalloproteinase activity. Although this
model is described for TCE, it could also apply to other
toxicants with reactive intermediates and with metabolites
that exist as Schiff base-forming aldehydes.

Abbreviations

AIH: Autoimmune hepatitis
TCE: Trichloroethylene
TCAH: Trichloroacetaldehyde hydrate
IFN-γ : Interferon-gamma
ANA: Antinuclear antibodies
SMA: Smooth-muscle antibodies
ANCA: Antineutrophil cytoplasmic autoantibodies
SLA/LP: Soluble liver antigens or liver-pancreas
LKM-1: Liver-kidney microsomal-1
LC1: Liver cytosol 1
ASGPR: Asialoglycoprotein receptor
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TCR: T cell receptor
HLA: Human leukocyte antigen
CYP: Cytochrome P450
CCl4: Carbon tetrachloride
MMP: Matrix metalloproteinase
ADAM: A disintegrin and metalloproteinases.
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