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Abstract   Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western 
United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is 
known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia resembling those of Botrytis. 
Although the corticoid basidiomycetes Phanerochaete omnivora (Polyporales) and Sistotrema brinkmannii (Cantharel­
lales; both Agaricomycetes) have been suggested as teleomorphs of Phymatotrichopsis omnivora, phylogenetic 
analyses of nuclear small- and large-subunit ribosomal DNA and subunit 2 of RNA polymerase II from multiple 
isolates indicate that it is neither a basidiomycete nor closely related to other species of Botrytis (Sclerotiniaceae, 
Leotiomycetes). Phymatotrichopsis omnivora is a member of the family Rhizinaceae, Pezizales (Ascomycota: 
Pezizomycetes) allied to Psilopezia and Rhizina.
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INTRODUCTION

A devastating disease of cotton in Texas, which caused large 
numbers of plants in affected areas to suddenly wilt and die, 
was first reported in the 1880s (Pammel 1888, 1889). The 
disease has been variably called cotton root rot (after the 
major crop host), Texas root rot (for the centre of distribution), 
or Ozonium or Phymatotrichum root rot (for the former names 
of the causal organism). It has since remained a considerable 
economic concern, causing up to $ 100 million in annual losses 
to the US cotton crop alone (based on disease loss estimates 
and price data for 1980–2008; provided by the National Cotton 
Council of America, www.cotton.org). The average loss of raw 
cotton fibre yield has been estimated to be 3.5 % in Texas and 
2.2 % in Arizona, with losses ranging from 8–13 % in severely 
infested areas (Kenerley & Jeger 1992). The causal agent is 
a soilborne fungus known as Phymatotrichopsis omnivora 
or, more commonly, Phymatotrichum omnivorum (Streets & 
Bloss 1973, Kenerley & Jeger 1992, Kirkpatrick & Rothrock 
2001; see below for taxonomic authorities). This species is 
capable of infecting more than 2 000 species of dicots (Streets 
& Bloss 1973), arguably the largest host range of any plant 
pathogen. It also causes severe losses in alfalfa, vegetable 
crops, grapes, and fruit and nut orchards throughout its range, 
which stretches from eastern Texas and southern Oklahoma 
west through Arizona and south into Mexico (Streets & Bloss 
1973). Generally, infected plants quickly wilt in the summer, 
and almost inevitably die, usually in large circular patches 
in the field (Fig. 1a, b). Below ground, the taproots of wilted 
plants are rotted and usually covered with mycelial strands of 
the causal fungus (Fig. 1c). 

Taxonomy 

The confused taxonomic history of the cotton root rot fungus 
goes back more than a century. The causal agent was first 
identified by W.G. Farlow as Ozonium auricomum Link, based 
on nonsporulating mycelium associated with diseased roots 
(Pammel 1888). However, this name now applies to the asexual 
state of Coprinellus (Coprinus) domesticus and related species 
(Shear 1907, Orton & Watling 1979, Redhead et al. 2001). 
The cotton root rot fungus was described as a new species of 
Ozonium, O. omnivorum Shear (1907), again based on non-
sporulating mycelium associated with diseased roots. Later, a 
conidial stage was found forming sporemats on soil surrounding 
diseased plants and was named Phymatotrichum omnivorum 
(Shear) Duggar (1916).

A hydnoid homobasidiomycete fruiting body was found asso-
ciated with diseased plants and named Hydnum omnivorum 
Shear (1925), once again based on a different type specimen 
(C.L. Shear 5267, BPI 259732) from that of Ozonium om­
nivorum or Phymatotrichum omnivorum. Later, a corticioid 
homobasidiomycete fruiting body was discovered in a culture 
of Phymatotrichum omnivorum and identified as Sistotrema 
brinkmannii (Baniecki & Bloss 1969). Basidiospores of the 
Sistotrema failed to form the mycelium of Phymatotrichum, and 
Weresub & LeClair (1971) considered this report to be based 
on a homothallic culture contaminant.

The type species of Phymatotrichum, P. gemellum Bonord., 
was shown to be a member of Botrytis by Hennebert (1973). 
Hennebert (1973) believed that the name Phymatotrichum 
omnivorum should be attributed to Duggar alone since it was 
based on different specimens than examined by Shear (1907) 
when he described Ozonium omnivorum, and because the 
distinguishing features described by Duggar (the conidia) 
were not present in the type of Ozonium omnivorum (C.L. 
Shear 1447, BPI 455660). Phymatotrichum omnivorum was 
transferred to Phymatotrichopsis omnivora (Duggar) Hennebert 
and Phymatotrichum fimicola Dring to Pulchromyces fimicola 
(Dring) Hennebert. 
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The type specimen and cultures of Hydnum omnivorum were 
studied by Burdsall and Nakasone (1978) who transferred this 
species to Phanerochaete and distinguished it from Phyma­
totrichopsis omnivora and from Phanerochaete chrysorhiza 
on the basis of culture morphology. Phanerochaete omnivora 
has been found on dead stems and roots of angiosperm trees 
and shrubs in Arizona and Texas but has not been reported 
from cotton or most of the other hosts of Phymatotrichopsis 
omnivora (Burdsall & Nakasone 1978, Burdsall 1985). As of 
today, the name of this economically important plant pathogen 
is Phymatotrichopsis omnivora and, as far as is known, it is a 
holoanamorphic (solely asexual) fungus of unknown phylum 
(e.g., Ascomycota, Basidiomycota or Zygomycota).

More recent work has provided some clues to the phylogenetic 
identity of Phymatotrichopsis omnivora. It is sensitive to the 
fungicide benomyl at rates of 5 mg/L (Hine et al. 1969, Lyda 
& Burnett 1970), a concentration to which most members of 
the Basidiomycota are tolerant, whereas members of the As­
comycota, excepting Pleosporales, are sensitive (Edgington 
et al. 1971). Gunasekaran et al. (1974) examined the hyphal 
walls of P. omnivora using transmission electron microscopy 
(TEM). Unfortunately, they did not study septa, which could have 
conclusively indicated whether P. omnivora is an ascomycete 
(simple septal pore with Woronin bodies) or basidiomycete 
(simple or dolipore septa lacking Woronin bodies) (Bracker 
1967, Bartnicki-Garcia 1987). However, the hyphal walls of  
P. omnivora clearly possessed the bilayered structure typical 
of Ascomycota, with a thick, translucent inner layer and a thin, 
electron-dense outer layer (Gunasekaran et al. 1974). In con-
trast, hyphal walls of most Basidiomycota show multiple thin 
translucent and electron-dense layers (Bartnicki-Garcia 1987). 
Woronin bodies, diagnostic of filamentous Ascomycota, were 
discovered by Dong et al. (1981) in the hyphae of Phymatotri­
chopsis omnivora. Despite this strong evidence to indicate 
that P. omnivora is actually a member of the Ascomycota, the 
Dictionary of the Fungi (Kirk et al. 2001) lists Phymatotrichopsis 
as “? anamorphic Basidiomycota”. A preliminary phylogenetic 
analysis of the relationships among P. omnivora and other 
botryoblastosporic fungi using the nuclear ribosomal internal 
transcribed spacer (ITS) region was inconclusive (Riggs 1993). 
The purpose of the current study is to provide a more conclu-
sive and precise systematic placement of the cotton root rot 
pathogen, Phymatotrichopsis omnivora, based on phylogenetic 
analyses of DNA sequence data from nuclear ribosomal DNA 
and protein-coding genes. 

MATERIALS AND METHODS

Cultures 

Phymatotrichopsis omnivora, Pulchromyces fimicola and Sisto­ 
trema brinkmannii were obtained from the American Type 
Culture Collection (ATCC, Manassas, VA) and cultures of 
Phanerochaete omnivora and Phanerochaete chrysospo­
rium from USDA-FPL (Madison, WI). Additional isolates of  
P. omnivora were obtained from Dr Mary Olsen, University of 
Arizona, Tucson (Table 1) or isolated from the roots of diseased 
cotton and alfalfa plants as previously described (Lyda & Ken-
erley 1992) and maintained on modified ATCC medium 1078 
(M1078), containing per 1 000 mL distilled water: 1 g NH

4
NO

3
; 

0.75 g MgSO
4
; 0.4 g KH

2
PO

4
; 0.9 g K

2
HPO

4
; 0.1 g CaCl

2
; 

40 g glucose; 1 g yeast extract; 1 g peptone; 100 µL Vogel’s 
trace elements (Vogel 1964) and 18 g agar. Cultures collected 
for this study will be deposited at ATCC.

Sporemats were recovered from pots of Phymatotrichopsis  
omnivora-inoculated plum trees grown in Houston black clay 
and were identified based on morphology and ITS-rDNA se-
quences amplified using Phymatotrichopsis omnivora-specific S

cu
te

lli
ni

a 
sc

ut
el

la
ta

  
S

S
U

: A
R

O
N

 2
18

8,
 S

S
U

+
R

P
B

2:
 K

H
03

21
20

03
-1

 (
du

bl
. O

S
C

 1
00

01
5)

, L
S

U
: K

S
-9

4-
03

5H
 (

C
) 

U
53

38
7

/D
Q

24
78

14
 

– 
D

Q
22

04
21

 
D

Q
24

77
96

 
–

S
ow

er
by

el
la

 im
pe

ria
lis

  
C

L2
00

4-
10

5 
(C

) 
 

D
Q

64
65

51
 

– 
D

Q
22

04
27

 
– 

–
S

ph
ae

ro
sp

or
el

la
 b

ru
nn

ea
  

LS
U

: K
H

.0
3.

04
 (

F
H

) 
S

S
U

: U
M

E
 3

11
47

 
U

53
38

8 
– 

D
Q

22
04

33
 

– 
–

S
tr

ob
ilo

sc
yp

ha
 k

el
ia

e 
 

S
S

U
: N

S
W

 7
33

3 
(O

S
C

),
 L

S
U

: N
S

W
 6

38
7 

(O
S

C
) 

A
F

00
63

10
 

– 
D

Q
22

04
37

 
– 

–
Ta

rz
et

ta
 c

at
in

us
  

S
S

U
: U

M
E

 2
97

31
, L

S
U

: K
S

.9
4.

10
A

 (
C

) 
U

53
38

9 
– 

D
Q

06
29

84
 

– 
–

Te
rf

ez
ia

 a
re

na
ria

 
S

S
U

: 1
21

7-
1 

(U
P

) 
A

F
05

48
98

 
– 

– 
– 

–
Te

rf
ez

ia
 c

la
ve

ry
i  

LS
U

: T
ra

pp
e 

31
95

 (
F

H
, d

ub
l. 

O
S

C
) 

 
– 

– 
A

Y
50

05
58

 
– 

–
Tr

ic
ha

rin
a 

pr
ae

co
x 

 
K

H
.0

3.
10

1 
(F

H
) 

 
D

Q
64

65
52

 
– 

D
Q

64
65

25
 

– 
–

Tr
ic

ho
ph

ae
a 

hy
br

id
a 

 
S

S
U

: U
M

E
 2

97
38

, L
S

U
: K

H
.0

4.
39

 (
F

H
, d

ub
l. 

D
B

G
) 

U
53

39
0 

– 
D

Q
22

04
54

 
– 

–
Tr

ic
ho

ph
ae

a 
w

oo
lh

op
ei

a 
 

K
H

.0
1.

33
 (

C
) 

 
D

Q
64

65
53

 
– 

D
Q

22
04

60
 

– 
–

Tr
ic

ho
ph

ae
op

si
s 

bi
cu

sp
is

  
S

S
U

: A
R

O
N

 2
22

2 
(O

),
 L

S
U

: N
S

W
 8

31
6 

(O
S

C
) 

 
U

53
39

1 
– 

D
Q

22
04

61
 

– 
–

Tu
be

r 
gi

bb
os

um
  

N
S

W
 7

04
9 

(O
S

C
) 

 
U

42
66

3 
– 

U
42

69
0 

– 
–

U
nd

er
w

oo
di

a 
co

lu
m

na
ris

  
K

an
ou

se
 1

95
1 

(M
IC

H
) 

 
U

42
65

8 
– 

U
42

68
5 

– 
–

U
rn

ul
a 

cr
at

er
iu

m
  

S
S

U
: m

h 
67

1 
(F

H
, d

ub
l. 

D
E

B
 #

27
80

82
),

 L
S

U
+

R
P

B
2:

 D
H

P
 0

4-
51

1 
(F

H
) 

A
F

10
43

47
 

– 
A

Y
94

58
51

 
D

Q
01

75
95

 
–

V
er

pa
 b

oh
em

ic
a 

 
N

R
R

L 
20

85
8 

(d
ub

l. 
C

B
S

 5
51

.7
2)

  
U

42
64

5 
– 

U
42

67
2 

– 
–

V
er

pa
 c

on
ic

a 
 

N
R

R
L 

20
85

6 
(d

ub
l. 

C
B

S
 4

07
.8

1)
  

U
42

64
4 

– 
U

42
67

1 
– 

–
W

ilc
ox

in
a 

m
ik

ol
ae

  
S

S
U

: A
T

C
C

 5
26

84
, L

S
U

: W
S

 3
6 

(S
F

S
U

) 
U

62
01

4 
– 

D
Q

22
04

68
 

– 
–

W
ol

fin
a 

au
ra

nt
io

ps
is

  
S

S
U

: –
,  

LS
U

: D
H

P
 0

4-
59

9 
(F

H
) 

A
F

10
46

64
 

– 
A

Y
94

58
59

 
– 

–
W

yn
ne

lla
 s

ilv
ic

ol
a 

 
N

S
W

 6
21

9 
(O

S
C

) 
 

U
42

65
5 

– 
U

42
68

2 
– 

–

1  
F

or
 h

er
ba

ria
 a

bb
re

vi
at

io
ns

 s
ee

 In
de

x 
H

er
ba

rio
ru

m
 (

ht
tp

://
sc

iw
eb

.n
yb

g.
or

g/
sc

ie
nc

e2
/In

de
xH

er
ba

rio
ru

m
.a

sp
).

2  
 W

he
n 

di
ffe

re
nt

 is
ol

at
es

 w
er

e 
us

ed
 a

s 
so

ur
ce

s 
fo

r 
di

ffe
re

nt
 g

en
es

, t
he

 r
es

pe
ct

iv
e 

ge
ne

 is
 in

di
ca

te
d 

pr
io

r 
to

 th
e 

is
ol

at
e 

de
si

gn
at

io
n,

 i.
e.

 ‘G
en

e:
 Is

ol
at

e’
.

3  
W

he
n 

di
ffe

re
nt

 s
eq

ue
nc

es
 w

er
e 

us
ed

 fo
r 

rD
N

A
 o

r 
rD

N
A

+
R

P
B

2 
tr

ee
s,

 tw
o 

se
ts

 o
f s

eq
ue

nc
es

 fo
r 

th
e 

sa
m

e 
sp

ec
ie

s 
w

ill
 b

e 
lis

te
d.

S
pe

ci
es

 
V

ou
ch

er
s,

 Is
ol

at
es

, S
tr

ai
ns

 (
H

er
ba

riu
m

1 )
2  

 
G

en
B

an
k 

A
cc

es
si

on
 N

um
be

rs
 

 
 

S
S

U
 

IT
S

 
LS

U
 

R
P

B
2 

β-
tu

b
3

Ta
b

le
 1

   
(c

on
t.)



67S.M. Marek et al.: Systematics of Phymatotrichopsis

primers (PoITSA 5’-CCTGCGGAAGGATCATTAAA-3’ and 
PoITSB 5’-GGGGGTTTTCTTTGTTAGGG-3’; developed in this 
study). Hand-sectioned sporemats were mounted in lactoglyc-
erol and examined using a Nikon Eclipse E800 microscope with 
PlanFluor objectives and a CCD camera (Qimaging, Burnaby, 
Canada). Digital micrographs were contrast-adjusted, cropped 
and scale bars inserted in Photoshop (Adobe Systems Inc., 
San Jose, USA).

Specimens of P. omnivora at the Farlow Herbarium (Harvard 
University, Cambridge, MA) studied and described by Duggar 
(1916) were examined microscopically and small fragments 
excised for DNA isolations. Specimens examined were labelled 
as follows: 

  1 “Phymatotrichum omnivorum (Shear) on soil in cotton field, 
Paris, Texas, Sept. 18, 1915, BMD, Received from Missouri 
Bot. Garden June 1916 (sporemat on soil peds mounted 
in slide box; insert: Ostracoderma omnivorum, comb. nov. 
ined., TYPE SPECIMEN for the conidial state, Examinavit 
G.L. Hennebert 2868, Nov. 1961)”; 

  2 “Phymatotrichum omnivorum (Shear) on Cultv. Cotton, 
Petty, Texas, Sept. 12, 1902, BMD, “Ozonium” stage, Recv. 
from Missouri Bot. Garden, June 1916 (insert 1: Shear Bull 
Torr. Bot Club 34: 305 1907, on root of cotton; insert 2: 
Ozonium state of Ostracoderma omnivorum, comb. nov. 
ined., Examinavit G.L. Hennebert 2869, Nov. 1961)”; and 

  3 “Phymatotrichum omnivorum (Shear) Paris, Texas, Sept. 
18, 1915, BMD, “Ozonium” stage on Cotton, Recd from 
Missouri Bot. Garden, June, 1916, See also Box (insert: 
Ozonium state of Ostracoderma omnivorum, comb. nov. 
inedit., Examinavit G.L. Hennebert 2870, Nov. 1961)”. 

Herbarium specimens will be referred to by the examination 
numbers given by G.L. Hennebert (e.g. GLH #2868, GLH 
#2869, and GLH #2870).

Molecular methods

Genomic DNA was isolated following Zolan & Pukkila (1986). 
Some DNA preparations required further cleaning using glass 
milk (Gene Clean II, Bio101, La Jolla, California) or electro-
phoresis in 0.7 % agarose gels in Tris acetate EDTA (TAE) 
buffer followed by electroelution (GeBA flex-tube micro-dialysis 
kit, Gene Bio-Application Ltd, Kfar-Hanagid, Israel). Genomic 
DNA was also isolated from homogenized mycelia using a glass 
filter-based kit (UltraClean Microbial DNA, MoBio Laboratories, 
Inc., Carlsbad, CA). DNA was isolated from Farlow Herbarium 
specimens using a E.Z.N.A. Forensic DNA Extraction Kit 
(Omega Bio-tek, Doraville, GA) with the manufacturer’s dried 
blood protocol with the following modifications: intact dried 
herbarium tissue (3–30 mm3 piece) was incubated in 200 µL 
Buffer STL and 25 µL OB protease solution 45 min using a 
Thermomixer (Eppendorf, Westbury, NY), frozen over liquid 
nitrogen and thawed at 60 °C, twice, and incubated at 60 °C 
shaking at 500 rpm for 20 h. An additional 100 µL Buffer STL 
and 10 µL OB protease solution were added to each extraction 
tube, freeze-thawed as before and incubated at 60 °C shak-
ing at 500 rpm for 20 h more. Softened herbarium tissue was 
then crushed with a sterile pestle in the lysis buffer and DNA 
isolated according to manufacturer’s instructions with solution 
volumes adjusted for the additional 110 µL lysis buffer (STL + 
OB protease).

Nuclear rDNA (SSU, ITS and 5’ LSU regions) was PCR ampli-
fied using the following primer pairs SSJ and NS8, NS1 and 
NS8 (for SSU), ITS4 and ITS5 (for ITS), PoITSA and ITS2 (for 
herbarium material), LROR and LR7 (for LSU) or SSG and LR5 
(for SSU to LSU) (Vilgalys & Hester 1990, White et al. 1990, 
Hausner et al. 1993). Two successive PCR reactions were used  
to amplify the ITS region from the P. omnivora herbarium speci-
men. For the first PCR, 50 μL reactions were denatured at 95 °C 

for 3 min, followed by 41 cycles of 94 °C for 30 s, 50 °C for 45 s 
and 72 °C for 45 s and a final extension of 72 °C for 7 min. After 
observing a faint band by gel electrophoresis, 1 µL from each 
of the first PCRs were used as templates for a second 50 μL 
PCR with an initial denaturation of 95 °C for 3 min, 20 cycles 
of 94 °C for 30 s, 50 °C for 45 s, and 72 °C for 45 s, and a final 
extension of 72 °C for 7 min. Using the thermocycler program 
and reverse primers of Liu et al. (1999), sequences spanning 
conserved regions 3–11 in RPB2 from P. omnivora isolates were 
amplified in two overlapping segments using the primer pairs 
RPB2-Ds3F (5’-WSYGARAAGGTHYTBATYGCRCAAGAGCG-
3’) and fRPB2-7cR, and RPB2-Ds6F (5’-TGGGGWYTSGTHT-
GYCCWGC-3’) and fRPB2-11aR. A region of the β-tubulin gene 
spanning three introns was amplified and sequenced with prim-
ers Bt2a and Btspect (Glass & Donaldson 1995, Paolocci et al. 
2004). Sequences were obtained in an automated sequencer 
(ABI 377) using dye-terminator technology and the following 
primers: SSJ, NS1, NS2, NS3, NS4, NS5, SSG, NS8, ITS1, 
ITS4, ITS5, LS1R, LS1, LR3R, LR7, LR16, NL1, NL4 and LR3 
for rDNA (Vilgalys & Hester 1990, White et al. 1990, Hausner 
et al. 1993); and RPB2-Ds3F, fRPB2-5F, fRPB2-5R, RPB2-
Ds6F, fRPB2-7cF, fRPB2-7cR, RPB2-980F, RPB2-1014R, 
RPB2-1554R, RPB2-1599F, RPB2-2488F, RPB2-2568R and 
fRPB2-11aR for RPB2 (Liu et al. 1999, Reeb et al. 2004). Com-
plementary strand sequences were aligned and corrected in 
SeqEd (ABI Software) or ChromasPro (Technelysium Pty Ltd) 
and combined with most similar sequences from GenBank 
determined using BLASTn (Altschul et al. 1990, McGinnis & 
Madden 2004). All newly derived sequences have been depos-
ited in GenBank as accession numbers EF441991–EF442000, 
EF494037–EF494070 and FJ013259 (Table 1). 

Phylogenetic analyses

Large subunit and SSU rDNA sequences from Phymatotrichop­
sis omnivora, Pulchromyces fimicola and an additional species 
of Psilopezia, Ps. cf. nummularialis, were added to a data matrix 
containing 99 species of Pezizales (Hansen & Pfister 2006) 
by hand using the software Se-Al v. 2.0a11 (Rambaut 2002). 
The sequences represent all known sublineages within Pezi­
zales, 82 genera and 14 families (out of c. 164 genera and 16 
families; Table 1). Neolecta vitellina was used as outgroup. To 
substantiate the placement of Phymatotrichopsis omnivora and 
Pulchromyces fimicola within Pezizales, a data matrix including 
an additional gene, RPB2, was compiled representing a subset 
of the taxa from the combined LSU and SSU dataset. Amino 
acid sequences of RPB2 were deduced using a combination 
of BLASTx (Altschul et al. 1997) and the ExPASy translate tool 
(http://us.expasy.org/tools/dna.html). Multiple sequence align-
ments were generated using ClustalX (Thompson et al. 1997) 
or Muscle (Edgar 2004). The final alignments are available 
from TreeBASE (S2105). 

Individual and combined analyses of the data matrices were 
performed using PAUP v. 4.0b10 (Swofford 2002) and MrBayes 
v. 3.1.1 (Huelsenbeck & Ronquist 2001, Ronquist & Huelsen-
beck 2003) on Macintosh computers. Maximum parsimony (MP) 
analyses with heuristic searches consisted of 1 000 or 5 000 
(for the subset LSU-SSU-RPB2 datasets) random sequence 
addition replicates with tree bisection-reconnection (TBR) 
branch swapping, MULPARS in effect and saving all equally 
most parsimonious trees (MPTs). All characters were equally 
weighted and unordered. In MP analyses of the individual, larger 
SSU rDNA data matrix a two-step search was performed (due 
to an exceedingly large number of trees generated), as follows: 
First, 1 000 heuristic searches were performed with random 
sequence addition and TBR branch swapping, with MAXTREES 
unrestricted, and keeping only up to 15 trees per replicate. 
Second, exhaustive swapping was performed on all the MPTs 
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Constraint #MPTs Length CI p
  (steps)

None 18 3123 0.601 best
Rhizinaceae with lineage B 6 3123 0.601 0.995
Rhizinaceae with lineage C 6 3125 0.600 0.637–0.732
Rhizinaceae and Caloscypha 
   within lineage B 18 3128 0.600 0.535–0.603
Rhizinaceae with lineage A 3 3163 0.593 0.0003
Rhizinaceae with Pezizaceae 15 3176 0.591 < 0.0001
Po only with lineage A 6 3342 0.561 < 0.0001
Po only with lineage B 3 3331 0.563 < 0.0001
Po only with lineage C 3 3409 0.550 < 0.0001
Po only with Caloscypha 6 3320 0.565 < 0.0001
Po only outside Pezizomycetes 9 3341 0.562 < 0.0001

Table 2   Impact of phylogenetic constraints on the position of Phymatotri­
chopsis omnivora (Po) within a 31-taxon dataset (Fig. 3) on the resulting tree 
scores (#MPTs = number of equally most parsimonious trees; CI = consis-
tency index; p = probability from a non-parametric two-tailed test (Templeton 
1987), where trees with p < 0.05 are rejected as significantly worse.  

discovered with MAXTREES set to 15 000. Robustness of 
individual branches was estimated by parsimony bootstrap 
proportions (BP), using 500 (LSU-SSU dataset) or 1000 (LSU-
SSU-RPB2 dataset) bootstrap replicates, each consisting of a 
heuristic search with 100 random addition sequence replicates, 
TBR branch swapping, and MAXTREES set at 100 (LSU-SSU) 
or unrestricted (LSU-SSU-RPB2).

The GTR+I+G model of nucleotide substitution was found to fit 
each of the rDNA datasets best using a hierarchical likelihood 
ratio test as implemented in the program MrModeltest v. 2.2 
(Nylander 2004). In Bayesian analyses of the LSU-SSU-RPB2 
combined dataset, rDNA nucleotide data and RPB2 amino acid 
data were specified as distinct partitions to allow the use of 
the GTR+I+G model of evolution for SSU and LSU sequences 
and an empirical amino acid model (Whelan & Goldman 2001) 
for RPB2 sequences. Bayesian analyses for the larger LSU-
SSU dataset consisted of two parallel searches each run for 
5 000 000 generations, whereas analyses of the LSU-SSU-
RPB2 dataset consisted of two searches run for 2 000 000 
generations. An incremental heating scheme for analyses 
used the default settings in MrBayes (i.e. three heated chains 
and one cold chain). For the LSU-SSU dataset, trees sampled 
prior to the chains reaching a split deviation frequency of 0.05 
were discarded as the ‘burn-in’, while the remaining trees were 
used to calculate the Bayesian posterior probabilities (PP) of 
the clades. For the LSU-SSU-RPB2 dataset, trees prior to sta-
bilizing at < 0.01 average standard deviation between chains 
were discarded as ‘burn-in’ and the remaining trees were used 
to calculate the Bayesian PPs of the clades. 

Based upon the phylogenetic analyses, constraint parsimony 
analyses of the combined LSU-SSU-RPB2 dataset were con-
structed in which Phymatotrichopsis or Rhizinaceae were forced 
into monophyly with alternative distinct lineages or outside the 
Pezizomycetes (Table 2). Constraint topologies were manually 
specified in PAUP v. 4.0b10 and heuristic searches of 1 000 
replicates, saving only those trees in agreement with the 
forced constraint, were conducted using the same settings as 
the parsimony searches described above. The resulting trees 
were compared using the nonparametric comparison test of 
Templeton (Templeton 1987). 

RESULTS

Phymatotrichopsis omnivora isolates 

Besides isolates from ATCC, several isolates were cultured 
from alfalfa and cotton fields displaying characteristic symptoms 
(Fig. 1a, b) and signs of Phymatotrichum root rot. Mycelial 

strands were often observed on infected cotton roots (Fig. 1c), 
but were less conspicuous on alfalfa roots (not shown). Under 
magnification, mycelial strands were hirsute with acicular hy-
phae (Fig. 1d), some of which displayed cruciform branching 
(Fig. 1e). Though strands were rhizomorphic in appearance, 
with a melanised rind consisting of polygonal plectenchymatous 
cells (Fig. 1f), no obvious apical meristems were observed, and 
so would be better termed ‘mycelial cords’ (Kirk et al. 2001). 
One isolate, OKAlf8, formed typical sporemats on the surface 
of black clay (Fig. 1g), in which OKAlf8-inoculated plum trees 
had been potted. These sporemats developed the characteristic 
globose conidiophores with botryose blastoconidia borne singly 
on denticles (Fig. 1h–k). In a few cases, clavate or moniliform 
conidophores with apically borne conidia formed (Fig. 1l, m), 
similar in appearance to the ‘basidia’ observed previously 
(Baniecki & Bloss 1969). Examined herbarium specimens from 
FH of P. omnivorum possessed either characteristic hirsute 
mycelial cords (‘Ozonium’ stage) on cotton roots (GLH #2869 
and GLH #2870) or crustose sporemats adhering to peds 
of black clay (GLH # 2868). Upon microscopic examination, 
excised pieces from the sporemat were not found to possess 
any readily apparent conidiophores; however, characteristic 
hirsute mycelial cords were observed ramified throughout the 
soil underlying the sporemats (data not shown). 

Molecular data 

Fifty six new sequences were determined in this study from 
Phymatotrichopsis omnivora, Pulchromyces fimicola, Psilopezia 
cf. nummularialis and Psilopezia deligata (Table 1). Efforts to 
amplify RPB2 from Ps. nummularialis were unsuccessful. The 
six β-tubulin sequences from P. omnivora were determined to 
not be phylogenetically informative (data not shown) and thus 
not included in phylogenetic analyses. From the three her-
barium specimens of P. omnivorum, a partial ITS sequence was 
amplified only from the sporemat specimen (GLH #2868) using 
one of four primer pairs attempted (data not shown). Based 
on the alignment of this sequence with ITS sequences from 
over one hundred other P. omnivora isolates, the herbarium 
specimen sequence was most similar to P. omnivora isolates 
from El Campo, TX (100 % identity, 302/302) and the ATCC 
48084 isolate (99 % identity, 302/303), which belong to an 
ITS haplotype common in southern Oklahoma and throughout 
eastern and central Texas (data not shown). 

LSU and SSU gene tree 

No supported conflict (BP ≥ 75 %, PP ≥ 95 %) was detected 
between the individual LSU and SSU gene trees. The combined 
dataset consisted of 2 743 characters of which 774 were par-
simony informative. Parsimony analyses resulted in 6 equally 
most parsimonious trees (MPTs). The strict consensus tree of all 
MPTs was nearly completely resolved, except for a trichotomy 
of the three species of Psilopezia (indicated with an asterisk in  
Fig. 2). Nevertheless, many of the deeper branches have only 
low BP support. Bayesian analyses reached an average stand-
ard deviation of split frequencies below 0.05 after approximately 
377 000 generations and the first 3 770 trees were excluded 
as the ‘burn-in’. Bayesian PPs supported many of the terminal 
relationships in the phylogeny with confidence but, as with BPs, 
failed to support some of the deeper nodes.

Phymatotrichopsis omnivora and Pulchromyces fimicola 
were nested within the Pezizales (Fig. 2). Phymatotrichopsis 
omnivora formed a monophyletic group with Rhizina undu­
lata and three species of Psilopezia (Rhizinaceae), although 
with only low support (BP 56 %, PP 72 %). The lineages B 
(Morchellaceae–Discinaceae–Helvellaceae–Tuberaceae) and 
C (Pyronemataceae–Ascodesmidaceae–Glaziellaceae–Sarco­
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scyphaceae–Sarcosomataceae–Chorioactidaceae), Rhizi­
naceae and Caloscyphaceae formed a strongly supported mono- 
phyletic group (BP 93 %, PP 100 %). Parsimony analyses sug-
gested that Caloscyphaceae was a sister group to a clade of 
the lineages B and C and Rhizinaceae (BP 78 %). Lineage C  
was strongly supported (BP 96 %, PP 100 %), whereas the 
relationships between Rhizinaceae and the lineages B and 
C were without support. Pulchromyces fimicola was nested 

within lineage C, but its placement among members of Pyro­
nemataceae and Ascodesmidaceae was uncertain (Fig. 2).  
LSU and SSU rDNA sequences from Phymatotrichopsis omni­
vora showed several substitutions or deletions (17/1404 bp in the 
LSU region (1.21 %), 18/1741 bp in the SSU region (1.03 %)).  
The two available isolates of Pulchromyces fimicola had identi-
cal sequences through 2 989 bases of the SSU, ITS, and 
5’-LSU regions.

Fig. 1   Phymatotrichum root rot and morphological characteristics of the causal fungus, Phymatotrichopsis omnivora. a. Disease foci in an alfalfa field (near 
Devol, OK); b. disease foci in a cotton field (near Austwell, TX); c. mycelial strands (arrows) on infected cotton root; d–f. mycelial strand showing acicular 
hyphae, cruciform hypha (arrow, inset e) and rectangular and polygonal cells (inset f); g. sporemat on soil surface; h–m. conidiophores and conidia borne on 
sporemat of Phymatotrichopsis omnivore; j. immature conidiophores produced from mycelial strand hyphae; k. botryoblastoconidia forming on conidiophores; 
l, m. ‘basidium-like’ conidiophores (arrows). — Scale bars: d = 100 µm; e = 50 µm; f, h = 25 µm; g = 5 mm; i = 20 µm; j–m = 10 µm.
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Fig. 2   Phylogenetic relationships of Phymatotrichopsis omnivora and Pulchromyces fimicola among a broad sampling of Pezizomycetes inferred from com-
bined analyses of LSU and SSU rDNA. One of 6 most parsimonious trees is shown here. Terminal taxa represent individual specimens (see Table 1). Only 
one branch, indicated with an asterisk, collapses in the strict consensus tree of all MP trees. Numbers by branches are MP bootstrap proportions ≥ 70 %. 
Thickened branches indicate Bayesian posterior probabilities ≥ 95 %, obtained from a 50 % majority rule consensus tree of the 46 230 trees sampled from a 
Bayesian MCMC analysis. The three primary lineages are labelled A, B and C for discussion. 
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Fig. 3   Phylogenetic relationships of Phymatotrichopsis omnivora with selected Pezizomycetes based on DNA sequences of SSU and LSU rDNA and deduced 
amino acid sequences of RPB2. One of 18 most parsimonious trees is shown here. Branch support at nodes are MP bootstrap proportions ≥ 70 % (number 
before ‘/’) and Bayesian posterior probabilities ≥ 95 % (number after ‘/’). Branches that collapsed in a strict consensus of the MP trees or the trees retained in 
the Bayesian analysis are indicated by ‘*’. Orbilia auricolor (Orbiliomycetes) was used as the outgroup to root the tree (James et al. 2006). The three primary 
lineages are labelled A, B and C and the Rhizinaceae is shaded yellow for discussion.

Combined LSU, SSU genes and RPB2 protein tree 

Overall no supported conflict (BP ≥ 70 %, PP ≥ 90 %) was 
detected between the individual trees constructed from LSU 
and SSU rDNA and RPB2 amino acid sequences. The com-
bined dataset consisted of 6 194 characters of which 757 were 
parsimony informative. Parsimony analyses resulted in 18 
MPTs (Fig. 3). The strict consensus tree of all MPTs was highly 
resolved and the majority of nodes were well supported by BP. 
Bayesian analyses reached an average standard deviation of 
split frequencies below 0.01 after approximately 180 000 gen-
erations and the first 2 000 trees were excluded as the ‘burn-in’. 
Bayesian PPs supported many of the terminal, as well as, deep 
nodes in the phylogeny with confidence.

Parsimony analyses of the combined LSU-SSU-RPB2 dataset 
recovered the same major lineages, with high BP support, as 
those found with support in analyses of the LSU-SSU align-
ment. Phymatotrichopsis omnivora was strongly supported 
within the family Rhizinaceae (BP 86 %, PP 100 %). Bayesian 
analyses suggested that Rhizinaceae was a sister group to 
the lineages B and C (PP 100 %), whereas the relationship 
between Rhizinaceae and lineages B and C was unresolved 
in MP analyses (Fig. 3). As in analyses of the LSU-SSU align-
ment, the Ascobolaceae and Pezizaceae were not supported 
as a distinct lineage (A). Nevertheless, the two families were 

resolved as sister taxa or successive sister taxa to the rest of 
the Pezizales (Fig. 2, 3). 

Parsimony trees resulting from constraint analyses that forced 
Phymatotrichopsis omnivora to group outside of Rhizinaceae, 
with either lineage A, B or C, Caloscyphaceae, or outside Pezi­
zomycetes, or with Rhizinaceae and lineage A were strongly re-
jected using the Templeton test (P < 0.0001; Table 2). However, 
those trees recovered from analyses forcing Rhizinaceae to 
form a monophyletic group with Morchellaceae–Discinaceae– 
Helvellaceae (lineage B), as seen in MP analyses of the 
LSU-SSU dataset (Fig. 2), could not be rejected (p = 0.995). 
Forcing Rhizinaceae with lineage C or with Caloscyphaceae 
and lineage B also could not be rejected (p = 0.637–0.732 or 
p = 0.535–0.603, respectively).

DISCUSSION

Neither Sistotrema brinkmannii nor Phanerochaete omnivora 
represent the teleomorph of the cotton root rot pathogen. 
Phymatotrichopsis omnivora is not a member of the phylum 
Basidiomycota. Instead, Phymatotrichopsis omnivora is an an-
amorphic (mitosporic) member of the phylum Ascomycota, class 
Pezizomycetes (order Pezizales, operculate discomycetes). 
Our phylogenetic analyses place Phymatotrichopsis omnivora 
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in Rhizinaceae with Psilopezia and Rhizina. Rhizinaceae was 
resurrected as a monotypic family based on molecular data 
(O’Donnell et al. 1997), and recently, species of Psilopezia 
were suggested to belong to the family (Hansen & Pfister 2006). 
Whether Rhizinaceae represents an independent lineage within 
Pezizomycetes, as suggested by Hansen & Pfister (2006) and 
our Bayesian analyses (Fig. 3), is still uncertain, as we are 
unable to reject constraint topologies that force Rhizinaceae 
to group with lineage B (with or without Caloscyphaceae) or 
lineage C. Based on SSU and LSU sequences, Pulchromyces 
fimicola (formerly Phymatotrichum fimicola) is also a member 
of the class Pezizomycetes, but is clearly not congeneric with 
Phymatotrichopsis. Instead, it is closely related to members 
of the C-lineage, possibly in Pyronemataceae or Ascodesmi­
daceae. Pulchromyces has been found on the dung of mice, 
otters, bats and shrews, in temperate and tropical regions, in 
Ghana, Panama and the United States (Pfister et al. 1974). 
A number of genera shown to be closely related to Pulchro­
myces, namely Ascodesmis, Lasiobolidium, Lasiobolus and 
Pseudombrophila (Fig. 2), are similarly fimicolous, although 
the fimicolous habit has been multiply derived throughout the 
Pezizomycetes and many other groups of fungi. A better taxon 
sample of these minute Pezizomycetes and related anamorphs 
will be required to settle the taxonomic position of Pulchromyces 
at the family level.

The anamorphic morphology of Phymatotrichopsis omnivora par-
tially supports its placement in the Pezizomycetes. The botryo- 
blastoconidia produced by Phymatotrichopsis omnivora are also 
observed in many of the pleomorphic Pezizomycetes in which 
anamorph–teleomorph associations have been determined. 
For example, the anamorphic genera Chromelosporium, Oedo­
cephalum, Ostracoderma, Glischroderma and Dichobotrys, are 
associated with the Pezizomycetes meiosporic genera, Peziza 
(first four) and Trichophaea (Paden 1972, Hennebert 1973, 
Hansen et al. 2001). However, botryoblastosporic reproduction 
occurs in several classes of both the Ascomycota and Basidio­
mycota. Such anamorphic genera are found in the Leotiomycetes  
(inoperculate discomycetes), in Botrytis, Streptobotrys, Ampho­
botrys, and Veruccobotrys, and in the Agaricomycetes (Homoba­
sidiomycetes), in Spiniger (Hennebert 1973, Stalpers 1974, Kiffer  
& Morelet 2000). Thus, botryoblastosporic patterns of conidio-
genesis arose several times during fungal evolution and may  
have limited value for taxonomic classifications above genus. 

Rhizomorph-like, mycelial strands are formed by both Phymato­
trichopsis omnivora (Lyda & Kenerley 1992) and, proposed con-
familial, Rhizina undulata (Booth & Gibson 1998). Conspicuous 
mycelial strands are often found on the infected roots of host 
plants and are often used by plant pathologists to diagnose the 
root rots caused by either fungus. Besides soilborne dissemina-
tion, the mycelial strands connect the reproductive structures, 
sporemats of Phymatotrichopsis omnivora or apothecia of 
Rhizina undulata, to nutritional sources. The root-like nature of 
the apothecial mycelial strands of Rhizina was the namesake 
character of the genus (Fries 1822). The mycelial strands of 
Phymatotrichopsis eventually form long-lived, hypogeous scle-
rotia (King & Loomis 1929, Neal 1929, King et al. 1931), while 
sclerotia have not been reported for Rhizina, which survives 
as thick-walled ascospores that are stimulated to germinate by 
fire (Jalaluddin 1967b).

The majority of the Pezizomycetes traditionally have been 
considered saprobic, but the trophic strategies of most species 
are not well-studied and remain undocumented. The inclusion 
of the Tuberales, which are assumed to be mainly mycorrhizal, 
in the Pezizales (Trappe 1979, Læssøe & Hansen 2007) and 
molecular studies identifying numerous other Pezizomycetes 
as ectomycorrhizal associates (Dahlstrom et al. 1999, Fujimura 
et al. 2005, Tedersoo et al. 2006) has revealed mycorrhizae 

as a major ecological niche of many pezizalean fungi. On the 
other hand, the ecology of Phymatotrichopsis omnivora, a 
mostly hypogeous plant pathogen with an extensive dicotyle-
donous host range (Lyda 1978), is relatively rare among the 
Pezizomycetes. Rhizina undulata is also a plant pathogen that 
infects a wide range of conifers (Gremmen 1971). Other plant 
pathogenic Pezizomycetes include the conifer seed pathogen 
Caloscypha fulgens (Paden et al. 1978) and the Strumella 
canker fungus, Conoplea globosa (= Strumella coryneoidea; 
mitosporic Urnula) (Kopcke et al. 2002, Wang et al. 2005). 
Also, species of Octospora, Lamprospora and Neottiella form 
obligate associations with numerous bryophytes, which have 
been interpreted as parasitic (Döbbeler 1979, Benkert 1993, 
Davey & Currah 2006). Both Phymatotrichopsis and Rhizina 
also colonise dead plant debris in field situations, acting as 
facultative saprobes, and utilise these substrates for reproduc-
tion (Jalaluddin 1967a; Rush & Gerik 1989).

Very few similarities in apothecia morphology support a close 
relationship of Psilopezia with Rhizina (Hansen & Pfister 2006), 
and no obvious mitosporic or somatic similarities support a 
confamilial relationship with Phymatotrichopsis. The little that is 
known about the natural history of Psilopezia suggests a sapro-
bic life style on wet, rotted wood (Pfister 1973), while Rhizina 
and Phymatotrichopsis are plant pathogens with a facultative 
saprobic phase. Nevertheless, based on our phylogenies of 
combined rDNA and RPB2 sequences, the monophyly of the 
Rhizinaceae, including Rhizina undulata, Phymatotrichop­
sis omnivora and Psilopezia deligata, was highly supported 
(BP 86 %, PP 100 %) and constraint topologies that forced 
Phymatotrichopsis to group outside Rhizinaceae were rejected. 
The relationships among Psilopezia, Rhizina and Phymatotri­
chopsis were, however, not resolved with confidence (the 
branch collapses in the strict consensus tree of all MPTs, and 
PP 90 %). Psilopezia may possess an as yet unrecognised 
pathogenic phase, or represents a saprotrophic sister group to a 
derived parasitic clade of Rhizina and Phymatotrichopsis. More 
members of the Rhizinaceae must be identified and charac- 
terized before further inferences on the evolution of their nutri-
tional strategies can be clarified.

Knowledge of the correct phylogenetic placement of the cot-
ton root rot pathogen as a member of the Pezizomycetes 
(Ascomycota), and not Agaricomycetes (Basidiomycota), will 
have significance in detecting the pathogen in the field and in 
developing methods of chemical or biological control. Also, it 
will facilitate current efforts to assemble and annotate the ge-
nome sequence of Phymatotrichopsis omnivora strain OKAlf8 
(http://www.genome.ou.edu/fungi.html) through comparative 
genomics with related ascomycetes. In addition to Phymatotri­
chopsis, genomic projects of two other Pezizomycetes, Tuber 
melanosporum and T. borchii, are ongoing (Poma et al. 2006, 
Lazzari et al. 2007; http://mycor.nancy.inra.fr/IMGC/Tuber-
Genome/index.html). The insights into the genetic underpin-
nings of this fascinating, but understudied, class of fungi should 
prove fruitful.

Nomenclature and typification

Given the economic importance of Phymatotrichopsis omnivora  
and the presence of ITS sequence variation among strains of 
this species (data not shown), it is important that a consensus 
is reached as to the correct author citation and (therefore) 
typification of this species. Duggar (1916) explicitly transferred 
the species Ozonium omnivorum Shear to the genus Phymatotri­
chum because of the presence and nature of conidia in speci-
mens of what he believed to be the same species as described 
by Shear (1907) and thus did not designate a type specimen 
among the various collections he referred to. The decision 
of Hennebert (1973) to attribute the name solely to Duggar 
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therefore left the species without a type specimen. The relevant 
sections of the International Code of Botanical Nomenclature 
(ICBN; McNeill et al. 2006) are Art. 7.4, 48.1 and 59.6. Article 
7.4 states that “a new name formed from a previously published 
legitimate name (stat. nov., comb. nov.) is, in all circumstances, 
typified by the type of the basionym”, unless the author(s) ex-
plicitly excluded the type of the basionym (Art. 48.1) or explicitly 
described a new morph, simultaneously meeting all the require-
ments for description of a new species (Art. 59.6) (McNeill et 
al. 2006). The decision by Hennebert (1973) rests on a narrow 
definition of Art. 59.6, that a conidial form should represent a 
new ‘morph’ separate from the ‘sterile’ mycelium that produced 
it, and goes against the growing consensus among mycologists 
of the principle of ‘one fungus – one name’ (Hennebert 1993). 
We therefore choose to treat the decision by Hennebert (1973) 
to attribute the basionym of Phymatotrichopsis omnivora to 
Duggar as an error to be corrected under Art. 33.6, resulting 
in the authorities for the combination of Phymatotrichopsis 
omnivora (Shear) Hennebert and the restitution of Shear’s type 
specimen (C.L. Shear 1447, BPI 455660) as holotype. The 
living culture, strain OKAlf8 (ATCC MYA-4551; isolated from 
infected alfalfa roots growing near Belleville, OK by S. Marek,  
August 2003), which is currently the basis of genome sequenc-
ing (http://www.genome.ou.edu/fungi.html), provides a sound 
anchor for future molecular studies. 
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