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Abstract: Artificial sensory substitution systems can mimic human sensory organs through replacing
the sensing process of a defective sensory receptor and transmitting the sensing signal into the ner-
vous system. Here, we report a self-powered flexible gustation sour sensor for detecting ascorbic acid
concentration. The material system comprises of Na2C2O4-Ppy with AAO modification, PDMS and
Cu wire mesh. The working mechanism is contributed to the triboelectrification/enzymatic-reaction
coupling effect, and the device can collect weak energy from body movements and directly out-
put triboelectric current without any external power-units. The triboelectric output is affected
by AA concentration, and the response is up to 34.82% against 15.625 mM/L of AA solution.
Furthermore, a practical application in detecting ascorbic acid concentration of different drinks
has been demonstrated. This work can encourage the development of wearable flexible electronics
and this self-powered sour sensor has the potential that can be acted as a kind of gustatory receptors
to build electronic tongues.

Keywords: ascorbic acid detection; self-powered; sour sensor; triboelectrification/enzymatic-reaction
coupling effect

1. Introduction

The internet of things (IoT) is a huge network integrated with sensors in order to
interface with our daily lives through data exchanging [1–5]. Furthermore, in recent years,
the establishment of body-electric interfaces has attracted notable attention via multifarious
electronic skins for capturing indexed in big data analytics [6–10]. Some devices can
detect toxic agents in the environment and define the quality of the food, and some
devices can reflect the human body movement state and physiological information [11–26].
For example, sensors for gustation recognition are immersed in the measured solution,
and the changes of the electrical signal can recognize the flavor [27–31]. These traditional
sensors are usually based on potentiometer, voltammetry and impedimetric titration,
which have a wide range of detections [32–37]. However, the power-supply units integrated
with the sensing systems limit the development of innovative portable gustation devices.
The bulky volume of the sensing systems reduces the comfort level and low capacity
and frequent charge/discharge process of the power-supply units increase the risk for
safe problems, which are still bottlenecks to be overcome [38,39]. Thus, a new kind of
gustation electronic tongue is given an opportunity to build self-powered system in day-to-
day application.

Recently, the wearable piezoelectric/triboelectric nanogenerators as a self-powered
system can actively output electrical signal though harvesting tiny mechanical energy from
the human body and the electrical signal can reflect the human body movement state or
physiological information at the same time [40–43]. Furthermore, through modifying en-
zymes, the piezoelectric/triboelectric process can be affected by enzymatic reactions. In our
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previous work, self-powered electronic skins by modifying glucose oxidase for sensing glu-
cose in sweat has been obtained [44–46]. Basing on triboelectrification/enzymatic-reaction
coupling effect, the triboelectric outputting current signal can act as not only electric energy
but also biosignal which is depended on the glucose concentration. Thus, by redesigning
the structure of the device and material system, a new self-powered gustation electronic
tongue for sensing sour taste can be achieved.

In this paper, a self-powered flexible sour sensor for mimicking taste buds has been
put forward through a simple way. This self-powered sour sensor is fabricated from
Na2C2O4 doped polypyrrole/polydimethylsiloxane (Na2C2O4-Ppy/PDMS) nanostruc-
tures. PDMS and Na2C2O4-Ppy have reported that both materials have excellent biocom-
patibility. In addition, Na2C2O4-Ppy are synthesized through electrochemical polymer-
ization process. Ascorbate acid oxidase (AAO) is modified on the surface of Ppy layer.
Basing on triboelectrification/enzymatic-reaction coupling effect, this sour sensor can
convert weak energy into the current signal and this signal is markedly dependent on the
concentration of ascorbic acid. Furthermore, the whole process does not involve any extra
power source. At last, a practical application for sensing ascorbic acid concentration five
samples has been demonstrated. Our work can encourage the development of wearable
flexible electronics and develop a new direction for building electronic tongues.

2. Materials and Methods
2.1. Materials

Polydimethylsiloxane (PDMS) and copper wire mesh were purchased from Taobao.
Pyrrole was bought from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China).
Sodium oxalate (Na2C2O4), sodium persulfate, phosphate buffer saline (PBS), glucose,
uric acid (UA), urea and ascorbic acid (AA) were purchased from Shanghai Aladdin
Biochemical Technology Co. Ltd. (Shanghai, China). Ascorbate acid oxidase (AAO)
was provided by Shanghai Lanji Technology Development Co., Ltd. (Shanghai, China).

2.2. Device Fabrications

Copper wire mesh was washed by deionized water and alcohol several times to
remove the impurities and dried in N2 flow at 60 ◦C. PDMS was mixed with a mass ratio of
10:1 by elastomer and cross-linker under ultrasonic bath (40 kHz, 80 W) for 30 min at room
temperature (∼20 ◦C). Then the mixture was placed in a vacuum oven to obtain the air-free
PDMS. The air-free PDMS colloid was poured into a box and put in a vacuum oven at 90 ◦C
for 8 min. Next, the precleaned copper wire mesh was cut into pieces (2 cm× 5 cm) and put
on the PDMS before being completely solidified. Finally, the copper-wire-mesh/PDMS film
was solidified in a vacuum oven at 90 ◦C for 2 h. It was worth highlighting that the first-
curing-process must be conducted and in this case, the copper wire could be immobilized
on the surface of the PDMS rather than embedding in the PDMS layer. After solidification
process, the film was immersed into the sodium persulfate aqueous solution (0.1 m/L)
for 30 s (wet-etching process). The transient wet-etching process would remove less Cu
and Cu mesh that was still on the surface of PDMS. Furthermore, this process aimed to
form growth space for electrochemical polymerization of Na2C2O4 doped polypyrrole
(Na2C2O4-Ppy). The Na2C2O4-Ppy on the surface of copper wire mesh was synthesized via
electrochemical polymerization. Cu mesh of the device was used as working electrode to
deposit Na2C2O4-Ppy, Ag/AgCl was used as the reference electrode and Pt wire was used
as the counter electrode, respectively. Cyclic voltammetry mode was conducted from 1.2 V
to −1.2 V for 400 s and the polymerization solution contained 0.1 M/L pyrrole monomer
and 0.2 M/L Na2C2O4. Then, the Cu film (∼200 nm) was deposited by electron beam
evaporation equipment. Finally, the surface was washed by deionized water for several
times and dried overnight.

Ten milligrams AAO was dissolved in 10 mL PBS. Then 0.5 mL AAO solution was
dropped on the device for four times and an incubation procedure was conducted in a
fume hood for 8 h. The prepared devices were stored at 4 ◦C.
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2.3. Characterization and Measurement

The microstructure of the device was examined by Scanning electron microscopy (SEM,
Hitachi S4800). The electron beam evaporation equipment (DZS500, Pengcheng Vacuum
Technique, Inc., Xuzhou, China) was used to deposit Cu back electrode. The electrochemical
workstation (CHI627D, CH Instruments, Inc., Austin, TX, USA) was used to synthesize
the Na2C2O4-Ppy. The measurement system contained a controller and an actuator, which
can set driving force, moving speed, moving distance and cycling time. Figure S1 showed
the photograph of the measurement system. The data was collected by Stanford SR 560
(a low-noise preamplifier). The temperature was conducted at ~20◦C and the relative
humidity was kept at 40%. Each kind of measurement was replicated 10 times.

3. Results
3.1. Experimental Design

As shown in Figure 1a, approximately 10,000 taste receptors named as taste buds
grow on the surface of the tongue. These taste buds can be stimulated during chewing
course and transport bioelectric signal to the specific encephalic region through affer-
ent fibers, telling what the flavors are (Figure 1b). The design of self-powered flexible
sour sensor can collect weak energy from body movements and actively output current
signal. By modifying AAO, the enzymatic reaction can control the triboelectrification
process and the output triboelectric current is depended on AA concentration. The friction
materials are PDMS and Ppy. PDMS and Ppy are reported by their excellent biocompat-
ible and considerable gap of electronegativity. PDMS can easily capture electrons from
Ppy and leave the equal numbers charges on the surface of Ppy layer [47–49]. Thus,
this self-powered flexible sour sensor overcomes the bottleneck of the power source.
Furthermore, the fabrication of the device is shown in Figure 1c. The process of fabri-
cation contains solidification, wet-etching, electrochemical polymerization, depositing
electrodes and modifying enzyme. More details can be seen in Section 2. It is worth
mentioning that the solidification time must be strictly obeyed. Na2C2O4-Ppy can be only
deposited on half-submerged copper wire mesh. A large area device can be obtained in
this simple way, and the large area device can be cut into suitable pieces for measure-
ment. Figure 1d shows the measurement system, containing a controller and an actuator,
which can set driving force, moving speed, moving distance and cycling time. The device
is nailed to the actuator. When the actuator is forward (Figure 1di), the device will be de-
formed and when the actuator is backward, the device will be restored to the original state
(Figure 1dii). The triboelectric current output when the device is under deformation and
the data can be collected by SR 560. The different concentration of AA, uric acid (UA),
glucose and urea solutions are dropped on the surface of the devices for the measurements.
Figure S1a shows the photograph of the measurement system and Figure S1b shows the
details of the device. The working frequencies and angles can be calculated according to
the driving force, moving speed, moving distance and cycling time.
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(d) The measurement system. 
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Figure 2 demonstrates the images of self-powered sour sensor. Figure 2a shows the 

SEM image of copper-wire-mesh/PDMS film. It can be manifestly seen the copper wire mesh 
is half immersed in the PDMS layer, which should be firmly fixed in PDMS. Figure 2b shows 
the SEM image of copper-wire-mesh/PDMS film after wet-etching. After the wet-etching 
process, there is a gap between PDMS and copper wire mesh, providing growth space of 
the Na2C2O4-Ppy. Furthermore, this gap provides sufficient interval between the Na2C2O4-
Ppy and PDMS for friction. Figure 2c shows the SEM image rub with of the device after 
electrochemical deposition. A rough surface of the Ppy film can effectively PDMS layer, 
increasing the triboelectrification process. Figure 2d shows an optical image of the device. 
The device is so adaptable to fit human skin. 

Figure 1. (a) Taste receptor: taste bud. (b) Gustation recognition. (c) The fabrication of the device.
(d) The measurement system.

3.2. Characterization of the Self-Powered Sour Sensor

Figure 2 demonstrates the images of self-powered sour sensor. Figure 2a shows
the SEM image of copper-wire-mesh/PDMS film. It can be manifestly seen the copper
wire mesh is half immersed in the PDMS layer, which should be firmly fixed in PDMS.
Figure 2b shows the SEM image of copper-wire-mesh/PDMS film after wet-etching.
After the wet-etching process, there is a gap between PDMS and copper wire mesh,
providing growth space of the Na2C2O4-Ppy. Furthermore, this gap provides sufficient
interval between the Na2C2O4-Ppy and PDMS for friction. Figure 2c shows the SEM image
rub with of the device after electrochemical deposition. A rough surface of the Ppy film
can effectively PDMS layer, increasing the triboelectrification process. Figure 2d shows an
optical image of the device. The device is so adaptable to fit human skin.
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Figure 2. The characterization of self-powered sour sensor. (a) SEM image of copper-wire-mesh/PDMS film.
(b) SEM image of copper-wire-mesh/PDMS film after wet-etching. (c) SEM image of the device after electrochemical
deposition. (d) The optical image of the self-powered sour sensor.

4. Discussion
4.1. Sour Sensing Performances

Self-powered flexible sour sensor for AA detection can actively output triboelectric
current signal which is dependent on AA concentration and the AA biosensing perfor-
mance has been presented in Figure 3. The self-powered sour sensor is connected to the
external circuit for testing the AA biosensing performance against the AA concentration
from 0.005 to 15.625 mM/L. All the experimental measurements are carried out at room
temperature. The deformation on the device is conducted by a stepping motor, of which
the movement can be monitored by programming. The bending angles and frequencies are
programmed to 15◦ and 1 Hz, respectively. As shown in Figure 3a, the output triboelectric
current is markedly dependent on the AA concentration, and the triboelectric current
signal decreases with the increasing AA concentration. As the concentration of AA is 0.005,
0.025, 0.125, 0.625, 3.23 and 15.625 mM/L, the output triboelectric current is 6.67 ± 0.20,
5.56 ± 0.14, 5.13 ± 0.08, 4.85 ± 0.16, 4.62 ± 0.08 and 4.35 ± 0.10 nA, respectively.
Figure 3b shows enlarged views of output triboelectric current at the AA concentration
of 0.0025 and 3.125 mM/L, respectively. It can be seen from the stability of the output
triboelectric current at different AA concentration. A control experiment is designed to
verify the triboelectrification/enzymatic-reaction coupling effect of the device, as shown
in Figure 3c,d. Figure 3c shows the relationship between AA concentration and output
triboelectric current of the device with AAO modification, and the red line (from 0.025 to
15.625 mM/L) is a linear fit. The linear fitting of Equation is as follows:

y = 4.81− 0.40 × lg(x), (1)
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where y represents the triboelectric current (nA) and x represents the AA concentra-
tion (mM/L). Furthermore, the linearity is up to 0.985. The upper limit of detection
is 15.625 mM/L and the lower limit of detection is 0.0025 mM/L. Figure 3d shows the
relationship between AA concentration and output triboelectric current of the device
without modifying AAO. It can be manifestly observed that the device without AAO
modification does not have the AA sensing performance. The totally distinct behaviors of
the two devices indicate that enzymatic reaction can control the triboelectrification process.
The output triboelectric current can be regarded as a function of AA concentration, as shown
in Figure 3e. The response of the device can be calculated from the following equation:

R% =
|I0 − It|

I0
× 100%, (2)

where I0 and It represent the output triboelectric current in 0.005 mM/L and others AA con-
centration solution, respectively. For the device with AAO modification (Group 1), as the
concentration of AA is 0.005, 0.025, 0.125, 0.625, 3.125 and 15.625 mM/L, the corresponding
response is 16.74%, 23.21%, 27.31%, 30.71% and 34.82%, respectively. Furthermore, for the
device without AAO modification (Group 2), as the concentration of AA is 0.005, 0.025,
0.125, 0.625, 3.23 and 15.625 mM/L, the corresponding response is 3.02%, 4.80%, 4.30%,
0.04% and 1.19%, respectively. As shown in Figure 3f, only adding water on the surface
of the device with AAO modification, the triboelectric is almost a constant. In addition,
the response is 0, 2.03%, 0.03%, 0.3%, 0.03% and 0.8%, respectively. Figure 3g shows
the response of the device with AAO modification during 8 days against AA solutions
(15.625 mM/L). The response is 34.82%, 35.42%, 30.41%, 22.14% and 10.98% in five days
and after replenishing AAO, the response restore to 36.41%, 34.14% and 32.64%. The device
is effective for 3–5 days due to the activity of AAO. However, this problem can be solved
by replenishing AAO regularly.

Figure 4 shows the influence of the bending angles on the AA biosensing performance
of the self-powered flexible sour sensor. The concentration of AA is conducted in 0.005 and
3.125 mM/L, respectively. Figure 4a shows the output triboelectric current of self-powered
flexible gustation sour sensor under different bending angles. As the bending angles are
15◦, 30◦, 45◦ and 60◦, the output triboelectric current against 0.005 mM/L of AA solution
(I0) is 6.96 ± 0.47, 5.34 ± 0.28, 4.33 ± 0.17 and 3.48 ± 0.16 nA, and the output triboelectric
current against 3.125 mM/L of AA solution (It) is 5.83 ± 0.32, 4.18 ± 0.45, 3.70 ± 0.28 and
2.50 ± 0.28 nA, respectively (Figure 4b). The relationship between response and angle
can be seen in Figure 4b. As the bending angles are 15◦, 30◦, 45◦ and 60◦, the response
of the device against 3.125 mM/L of AA solution is 16.27%, 27.74%, 14.5% and 28.15%,
respectively. Though the output triboelectric current decreases with the increasing bending
angles, the response is almost the same. These results show that self-powered flexible sour
sensor have excellent flexibility and stability for its practical applications.
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Figure 3. The AA biosensing performance of the self-powered sour sensor. (a) The output tri-
boelectric current of the device against AA with the concentration from 0.005 to 15.625 mM/L.
(b) The enlarged views of output triboelectric current at the AA concentration of 0.0025 and 3.125 mM/L,
respectively. (c) The output triboelectric current of the device with AAO modification against AA
with the concentration from 0.005 to 15.625 mM/L, respectively. Red line is the limit of detection.
(d) The output triboelectric current of the device without AAO modification against AA with the
concentration from 0.005 to 15.625 mM/L, respectively. (e) Response of two control experiments.
(f) The triboelectric current and response of the sour sensor by adding deionized water. (g) The response
of the sour sensor during 8 days.
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4.2. Sensing Mechanism

To further confirm the sensing mechanism for AA, some common compounds in body
have been tested. As shown in Figure 5a, increasing the concentration of the uric acid
solution cannot lower the output triboelectric current. Furthermore, the similar results
can be observed in Figure 5b,c. The device modified with AAO cannot detect urea and
glucose. These results imply that the lowered output triboelectric current of the devices
is due to the AA concentration. Only increasing the concentration of the AA solution can
decrease the output triboelectric current. Furthermore, the increasing concentration of uric
acid, glucose and urea cannot influence the output triboelectric current of the self-powered
flexible sour sensor.
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The working mechanism of self-powered flexible sour sensor is shown in Figure 6.
Figure 6a,b show self-powered flexible sour sensor and one sensing unit of the device.
Blue part, green part and yellow part represent PDMS, Ppy and Cu, respectively. Furthermore,
the red torus knot represents AAO. After incubation procedure, AAO is immobilized onto
the surface of Ppy. The triboelectrification process between PDMS and Ppy is shown in
Figure 6c [36,50]. In the initial state, the PDMS layer and Ppy layer start to rub. Due to
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the triboelectric effect, the charges accumulate on the contact area. Because PDMS is more
electronegative than Ppy, negative charges accumulate on the PDMS layer and the positive
charges accumulate on the Ppy layer. Then, the PDMS and Ppy are separated from each
other due to the deformation, and the charges are contained in PDMS layer and Ppy layer,
respectively. With the increasing separated distance, the positive charges migrate from
the Ppy layer to the Cu back electrode via the external circuit under the electrostatic field.
Furthermore, when the separated distance increase to the max, the charges stop migrating
from Ppy layer to the Cu back electrode. When the PDMS layer and Ppy layer come
into contact due to the deformation, the charges move in reverse (from Cu back electrode
to Ppy layer). During the electricity generation process, the output can be detected by
Stanford SR 560 via the external circuit. The theoretical real-time electricity generation of
the triboelectrification effect can be described by the equations as follows [51–53]:

QSC =
σiSg(t)
d + x

, (3)

where QSC represents the triboelectric charge; σi represents the triboelectric charge density
of Ppy; S represents the contact area; d represents the separation distance; g(t) represents
the separation distance between the copper wire mesh and Ppy (a function of time);
x represents the maximum of the separation distance; and ISC represents the theoretical
outputting current.
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reaction: AA and AAO.

The enzymatic reaction can control the triboelectrification process and Figure 6d
shows the production of the enzymatic reaction of AA and AAO [54]. When the enzymatic
reaction is carried out, Ppy is exposed to H+ ions. Due to the deprotonation behavior
of Ppy, the surface chemical state transforms into Ppyox. During the triboelectrification
process, the gap of electronegative between PDMS and Ppy reduces and fewer charges
can be driven through the external circuit, which reduces the output triboelectric current.
Furthermore, with the AA concentration increasing, the more H+ ions release from the
enzymatic reaction, resulting in the lower output triboelectric current. Thus, the output
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triboelectric current can be regarded as both power and biosensing signal and the device
does not need any external power source.

4.3. Applications

Figure 7 shows a practical application of this self-powered flexible sour sensor for detect-
ing ascorbic acid against mineral water (Figure 7a), apple juice (Figure 7b), compound juice
(Figure 7c), orange juice (Figure 7d) and vitamin drink (Figure 7e), respectively. These drinks
can be bought from shops and the concentration of ascorbic acid can be found in Nutrition
Facts. Furthermore, the AA concentrations of these drinks have been shown in Figure S2.
The AA concentration of apple juice is 0.426 mM/L (Figure S2a), the AA concentration of com-
pound juice is 1.275 mM/L (Figure S2b), the AA concentration of apple juice is 0.426 mM/L
(Figure S2c) and the AA concentration of vitamin drink is 1.136 mM/L (Figure S2d), respectively.
The solutions are dropped on the surface of the self-powered sour sensor, and the tribo-
electric actively output under the deformation. Figure 7a–e shows the triboelectric current
against mineral water (Figure 7a), apple juice (Figure 7a), compound juice (Figure 7c),
orange juice (Figure 7d) and vitamin drink (Figure 7e), respectively. The triboelectric
current is 4.98 ± 0.22, 4.71 ± 0.48, 4.94 ± 0.26 and 4.79 ± 0.12 nA against mineral water,
apple juice, compound juice, orange juice and vitamin drink, respectively. As shown in
Figure 7f, the concentrations of these drinks are measured and the red line is actual value
and green line is experimental value. The concentrations of these drinks are calculated
using Equation (1). The experimental concentrations are 0.362, 1.775, 0.484 and 1.142 mM/L
against apple juice, compound juice, orange juice and vitamin drink, respectively. It can
be seen that the experimental value and actual value of these drinks are similar. It should
be noted that all the solutions are filtered with filter papers before the measurements.
Otherwise, the juice residues would lower the triboelectric output and influence the sens-
ing process. These results suggest that this self-powered flexible sour sensor can sense
AA concentrations and, in the future, it can be acted as gustatory receptors for building
electronic tongues.
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5. Conclusions

In summary, self-powered flexible sour sensor for detecting ascorbic acid concentration
has been fabricated from Ppy/PDMS structure. The material system consists of Na2C2O4-
Ppy with AAO modification, PDMS and Cu wire mesh. The sour senor can convert weak
energy from body movement into current signal and the biosignal is markedly affected by
the concentration of ascorbic acid. Basing on the triboelectrification/enzymatic-reaction
coupling effect, the response of the device is up to 34.82% against 15.625 mM/L AA solution.
Furthermore, the whole process does not involve any extra power source. A practical appli-
cation has been demonstrated for detecting ascorbic acid concentration of different drinks.
This study reports an important advancement in low-cost self-powered nanosystems.
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