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Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse
cellular functions including cell survival, metabolism, and transcription. As a result,
eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+

influx and efflux across the plasma membrane as well as Ca2+ release and uptake
from intracellular stores. The STIM and Orai protein families comprising of STIM1,
STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are
core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are
considered key players in the regulation of Store Operated Calcium Entry (SOCE),
where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic
reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has
been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent
transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have
been shown to contribute to the regulation of metabolism and mitochondrial function.
STIM and Orai proteins are also subject to redox modifications, which influence their
activities. Considering their ubiquitous expression, there has been increasing interest in the
roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While
controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are
essential for cellular homeostasis and their disruption is linked to various diseases
associated with aging such as cardiovascular disease and neurodegeneration. The
recent identification of splice variants for most STIM and Orai isoforms while
complicating our understanding of their function, may also provide insight into some of
the current contradictions on their roles. Therefore, the goal of this review is to describe our
current understanding of the molecular regulation of STIM and Orai proteins and their roles
in normal physiology and diseases of aging, with a particular focus on heart disease and
neurodegeneration.
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1 INTRODUCTION

It is universally recognized that tight spatiotemporal regulation of cytoplasmic Ca2+ is essential for
cellular homeostasis and that dysregulation of Ca2+ signaling is associated with the development of
pathophysiology. Homologs of human plasma membrane Ca2+ channels have been found in
organisms as distant as the protozoan Naegleria gruberi demonstrating that regulation of
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extracellular influx as a Ca2+ signaling mechanism has existed for
over 1 billion years (Collins and Meyer, 2011). Eukaryotic cells
have developed evolutionary highly conserved mechanisms for
controlling Ca2+ influx and efflux across the plasma membrane,
and Ca2+ release and uptake from intracellular stores, such as the
endoplasmic reticulum (ER).

In the late 1970s, Putney reported a potential link between the
transient release of Ca2+ from intracellular stores to subsequent
influx of extracellular Ca2+ (Putney, 1977). The biophysics
underlying this phenomenon, which subsequently became
known as store-operated Ca2+ entry (SOCE), became
increasingly well characterized over the following two decades
(Parekh and Putney, 2005). It was found that physiologically,
Ca2+ release from ER/SR was triggered in an agonist-dependent
manner, typically, although not exclusively, via inositol 1,4,5-
trisphosphate (IP3)-mediated activation of the IP3 receptor
(IP3R). This was followed by the activation of a highly
selective non-voltage gated, Ca2+ channel in the plasma
membrane. In contrast to IP3-induced release of Ca2+ from
intracellular stores, which results in transient increases in Ca2+

of the order of seconds or less, SOCE can remain active for
minutes or longer (Soboloff et al., 2012). The longer duration of
SOCE is an important factor in its role in Ca2+-dependent
regulation of gene transcription, such as the canonical Ca2+/
calmodulin-dependent activation of the phosphatase calcineurin,
followed by dephosphorylation and nuclear translocation of
transcription factors such as nuclear factor of activated T cells
(NFAT) and nuclear factor kappa B (NF-κB) (Parekh and Putney,
2005). However, the identity of the molecular mediators of SOCE
remained elusive until a remarkable series of papers published in
2005 and 2006 identified Stromal Interaction Molecule-1
(STIM1) and the Calcium Release-Activated Calcium
Modulator 1 (CRACM1, now known as Orai1) as the ER/SR
Ca2+ sensor and the plasmamembrane Ca2+ channel respectively,
that together regulated SOCE (Roos et al., 2005; Zhang et al.,
2005; Vig et al., 2006b; Feske et al., 2006; Mercer et al., 2006;
Peinelt et al., 2006; Prakriya et al., 2006; Soboloff et al., 2006;
Taylor, 2006; Yeromin et al., 2006; Zhang et al., 2006).

Since their identification, STIM1 and Orai1 have been widely
accepted as being essential components of SOCE. As discussed
below, the detailed molecular interactions between the two
proteins required to facilitate SOCE have been elucidated;
however, the role of their homologs STIM2, Orai2, and Orai3
remain poorly understood. To complicate matters further, several
variants of STIM1, STIM2, Orai1, and Orai2 have also been
identified (Gross et al., 2007; Darbellay et al., 2011; Fukushima
et al., 2012; Miederer et al., 2015; Rana et al., 2015; Knapp et al.,
2020; Ramesh et al., 2021). While the molecular mechanisms
underlying the regulation of SOCE have been almost exclusively
studied in non-excitable cells, the expression of STIM1 and Orai1
is ubiquitous, and consequently they are also found in excitable
cells including myocytes and neurons. However, ongoing
controversies regarding the presence of SOCE in excitable cells
has suggested possible non-canonical functions of STIM1, Orai1,
and their homologs in such cells. Therefore, the goal of this review
is to provide a thorough understanding of the molecular
regulation of STIM and Orai proteins, their roles in normal

physiology. We also discuss their roles in regulating
mitochondrial function and metabolism, redox regulation, and
cell survival mechanisms—all of which are components of normal
healthy aging. Much of the work on the roles of STIM and Orai
has been focused on non-excitable cells, particularly that related
to the immune system; however, there is growing evidence that
they are also involved in regulating the function of excitable cells
such as neurons and cardiomyocytes. Therefore, we have also
discussed the contributions of defects in STIM and Orai function
in key age-related diseases such as cardiovascular disease and
neurodegeneration. We have also summarized the few studies
that have examined the potential roles of STIM and Orai
dysfunction in the normal aging process.

2 STIMS—GENE AND PROTEIN
STRUCTURES

2.1 STIM1
In 2005 two independent studies, both using siRNA arrays,
identified for the first time, that STIM1 played a central role
in mediating SOCE (Liou et al., 2005; Roos et al., 2005). In 1996
there were two reports describing a protein of unknown function,
one identified a gene called GOK that was predicted to encode a
protein that contained a transmembrane helix (Parker et al.,
1996), the other identified a stromal interacting molecule (SIM)
(Oritani and Kincade, 1996). SIM and GOK were subsequently
named STIM1. Some lines of evidence suggested it might be a
tumor suppressor gene (Parker et al., 1996; Sabbioni et al., 1997),
but its function remained elusive. Early studies correctly
characterized STIM1 as a type 1 transmembrane protein that
was widely expressed and highly conserved. It was also shown to
be phosphorylated in the C-terminal region, a possible target for
mitogen-activated protein kinases (MAPK), and initially
identified as cell surface protein (Manji et al., 2000). In
addition, it was recognized that the N-terminal region
contained consensus sequences for EF-hand calcium binding
motifs (Williams et al., 2001). In 2005, in addition to
demonstrating that STIM1 was essential for SOCE, Liou et al.
reported that STIM1 was located primarily in the ER (Liou et al.,
2005). Moreover, they also showed that ER Ca2+ depletion
resulted in the redistribution of STIM1 into puncta that were
close to the plasma membrane, and that this redistribution of
STIM1 occurred because its EF-hand motifs sensed decreases in
ER Ca2+ (Liou et al., 2005). These fundamental observations
regarding STIM1 function, were confirmed later the in same year
by Zhang et al. (Zhang et al., 2005). Although predominantly
located in the ER, depending on cell type and cell cycle, 5–20% of
STIM1 is also found at the plasma membrane (Mignen et al.,
2007; Hewavitharana et al., 2008; Ercan et al., 2012).

2.1.1 STIM1 structure
The domain structure of mammalian STIM1 (Figure 1) is
characterized by an ER signal peptide, followed by a canonical
EF-hand (cEF) Ca2+ binding domain in the N-terminal region of
the protein. The cEF-hand domain localized to the lumen of the
ER (Gudlur et al., 2020), is critical to the Ca2+ sensing function of
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STIM1. Mutations in the cEF region of STIM1 decrease its
sensitivity to ER Ca2+ concentrations and result in a
constitutively active STIM1 (Liou et al., 2005; Zhang et al.,
2005; Spassova et al., 2006). The cEF domain is followed by a
hidden or non-canonical EF hand (hEF or ncEF), which does not
bind Ca2+ and a sterile alpha-motif (SAM) domain (Stathopulos
et al., 2008). The combined EF-SAM domains are key to
regulating SOCE, with the cEF domain as the sensor of EF
Ca2+ and the hEF domain essential for regulating the stability
of the EF-SAM region. The transmembrane domain (TM)
connects the ER and cytosolic regions of STIM1. In the Ca2+

bound state, the EF-SAM domains on STIM1 are kept apart to
prevent spontaneous activation.

While the ER luminal region of the protein is critical for
initiating the response of STIM1 to changes in ER Ca2+ levels,
Huang et al., demonstrated that the cytoplasmic carboxy-
terminal domain of STIM1 was sufficient to activate Ca2+

entry in the absence of store depletion (Huang et al., 2006).
Immediately following the TM domain are three coiled coil
domains CC1, CC2, and CC3. An Orai1 activating STIM1

fragment (OASF) (Muik et al., 2009) as well as a minimal
region required for gaiting Orai1 channels, the STIM1-Orai
activating region (SOAR) also known as the Ca2+-release-
activated Ca2+ (CRAC) activation domain (CAD) were
identified in the CC domains (Derler et al., 2016a; Lewis,
2020). The OASF spans all three CC domains while the CAD/
SOAR region encompasses CC2 and CC3 domains. The CAD/
SOAR region is divided into four helices, the first, Sα1,
corresponds to CC2 and the last Sα4 to CC3, with Sα2 and
Sα3 located between CC2 and CC3 domains (Yang et al.,
2012). A mutation of a single amino acid Phe394 to histidine,
in the Sα2 helix of the SOAR domain, completely prevented
STIM1 activation of Orai1 (Wang et al., 2014). The Sα3
helical segment while not involved with STIM1
colocalization with Orai1 is essential for activating channel
opening (Butorac et al., 2019). The CC2 component of the
SOAR domain has been shown to contain a cholesterol
binding region, which following store depletion binds
cholesterol, acting as a negative regulator of SOCE
(Pacheco et al., 2016).

FIGURE 1 | Domain structure of human STIM1 and STIM2 proteins. STIM1 has a short signaling peptide (SP) at the N-terminus which is cleaved by a signaling
peptide peptidase (SPP) when the protein is localized to ER membrane. In the endoplasmic reticulum the key domains are canonical and hidden EF hand domains (cEF,
hEF) and the sterile alpha motif (SAM domain. These regions play a critical role in regulating SOCE, with the cEF domain as the sensor of ER Ca2+, and the hEF and SAM
domains contributing to the initial conformation changes that are transmitted via the transmembrane domain (TM) to coiled coil (CC)1 domain, which releases the
CAD/SOAR region (CRAC-activating domain/STIM-Orai-activating region), which includes CC2 and CC3 domain, facilitating both the extension of the C-terminal domain
towards the plasma membrane and STIM1 oligomerization, both of which are required for SOCE activation. Other important cytosolic domains include the inhibitory
domain (ID), which is involved in Ca2+ dependent inhibition of SOCE; the proline/serine domain (P/S), which contains many phosphorylation sites that can regulate STIM1
function; the End binding protein domain (EB) and the polybasic domain (PB) at the C-terminus. STIM1L is a splice variant found predominantly in striated muscle
includes the insertion of an actin binding domain (ABD) between aa515 and aa620. STIM1A is another splice variant with insertion of an A domain just after the ID domain
between aa492 and 522. STIM2 architecture overall is very similar to STIM1 with a few key differences. Like STIM1 it has cEF, hEF, and SAM domains in the endoplasmic
reticulum, a TM domain, followed by CC1, CC2, and CC3 domains in the cytosol with a PB region at the C-terminus. As described in the text subtle differences in these
regions lead to changes in function compared to STIM1. Differences with STIM1 include an unusually long signaling peptide region of ~100aa, a proline/histidine region
(P/H), and a calmodulin binding domain (CBD) close to the PB region. It is unclear whether STIM2 contains an ID region. There are two known STIM2 splice variants, one
STIM2.1 also known as STIM2β involves the insertion of an 8 amino acid sequence (VAASYLIQ) within CC2 domain.
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When the SR Ca2+ stores are full (i.e., 1 to 5 × 10−4 M (Bagur
and Hajnoczky, 2017)) the CC1 domain interacts with the SOAR/
CAD region keeping it in an inactivated state by clamping it close
to the ER membrane (Lewis, 2020). The CC1 domains contain 3
CC regions CC1α1, CC1α2, and CC1α3 and evidence suggests that
the CC1α1 and CC1α3 regions, in combination with the CC2 and
CC3 domains, play a key role in keeping the SOAR/CAD domain
in the inactivated state (Fahrner et al., 2014). In response to store
depletion, reorganization of the EF-SAM region coupled with
reorientation of both the transmembrane helices leads to the
homomerization of CC1α1 region and release of SOAR/CAD
domain from its inactive state (Fahrner et al., 2020). The
importance of the TM domain in contributing to this initial
STIM1 conformational change was demonstrated by gain of
function mutations in this region leading to constitutive
STIM1 puncta formation and Ca2+ influx (Ma et al., 2015).
The subsequent reorientation of the CC1α1, CC1α2, and
CC1α3 regions in the CC1 domain not only helps to extend
the SOAR/CAD domain towards the plasma membrane but also
contributes to the oligomerization of STIM1 necessary for
activation of SOCE (Fahrner et al., 2020). Of note however it
is only the CC1α1 region that is essential for activating SOCE
(Fahrner et al., 2014). The CC3 domains also contributes to
STIM1 oligomerization leading to larger STIM1 clusters (Fahrner
et al., 2014); the region aa420-450 of the CC3 domain has been
described as a STIM1 homomerization domain (SHD) (Muik
et al., 2009). The resulting extension of the STIM1 cytoplasmic
section, enables the short polybasic (PB) region at the C-terminus
to interact with plasma membrane phospholipids thereby partly
facilitating the localization of STIM1 to ER-PM junctions. This is
supported by the observation that deletion of this region
decreases the size of STIM1 plasma membrane clusters that
form following ER Ca2+ depletion (Maleth et al., 2014; Sauc
et al., 2015). While the PB region is not essential for SOCE it
appears to improve the efficiency with which STIM1 interacts
with Orai1 (Lewis, 2020). Another important C-terminal
regulatory domain is the Inhibitory domain (ID). Like other
Ca2+-channels, the STIM1-Orai1 channel is inhibited by Ca2+ in a
feedback manner that occurs in a time frame of milliseconds. This
process, called Ca2+ dependent inhibition (CDI), requires the ID
domain although this domain itself is not the primary Ca2+ sensor
for CDI of SOCE (Mullins and Lewis, 2016). Full CDI requires the
interaction of the ID with key Orai1 tryptophan and tyrosine
residues. Early studies suggested that calmodulin, similar to its
role in regulating CDI in voltage gated Ca2+ channels, was the
SOCE Ca2+ sensor for CDI (Mullins et al., 2009; Liu Y. et al.,
2012); however, subsequent studies indicated that this was not the
case (Mullins et al., 2016). Calmodulin has been implicated in a
slower Ca2+-dependent inactivation process via interaction with
the SOAR/CAD domain facilitating dissociation between STIM1
and Orai1 (Li et al., 2017).

2.1.2 STIM1 regulation
Additional key regulatory domains in STIM1 are the end binding
protein1 (EB1) domain and the Proline/Serine rich region (P/S). In
2008 Grigoriev et al., identified STIM1 as an microtubule
associated protein RP/EB family member 1 (EB1) interacting

protein; however, the function of this interaction was unclear as
loss of EB1 had no effect on SOCE (Grigoriev et al., 2008). More
recent studies have shown that EB1 dynamically traps STIM1
thereby limiting excess STIM1 in ER-PM junctions, potentially
preventing ER Ca2+ overload (Chang et al., 2018). EB1 is a
microtubule plus-end tracking protein (+TIP) and is recognized
as a master regulator of +TIP function and thus microtubule
dynamics (Akhmanova and Steinmetz, 2008). STIM1 has also
been identified as a +TIP and its EB domain contains a Thr-
Arg-Ile-Pro sequence (TRIP), a motif common to other EB1
binding proteins (Akhmanova and Steinmetz, 2008; Grigoriev
et al., 2008). Phosphorylation in regions adjacent to the EB/
TRIP domain negatively regulate the interactions of +TIP with
EB1 (Smyth et al., 2012). Of note, the P/S region of STIM1 is close
to the STIM1 EB/TRIP domain, and phosphorylation of Ser575,
Ser608, and Ser621 in that region by extracellular signal-regulated
kinases 1/2 (ERK1/2) regulates the interactions between STIM1
and EB1, which is required for activation of SOCE (Pozo-Guisado
andMartin-Romero, 2013). On the other hand, phosphorylation of
Ser668 by cyclin dependent kinase 1 (CDK1) has been implicated
in inactivation of SOCE duringmitosis (Smyth et al., 2009). To date
over 30 STIM1 phosphorylation sites have been mapped many of
which are located in or adjacent to the P/S region (Hornbeck et al.,
2004). Phosphorylation outside of the P/S domain has also been
shown to modulate STIM1 function. For example, in endothelial
cells ER Ca2+ depletion leads to phosphorylation of Tyr361 in the
SOAR/CAD domain by proline rich kinase 2 (Pyk2) thereby
facilitating SOCE (Yazbeck et al., 2017). AMPK phosphorylates
STIM1 at Ser257, located in the CC1 domain, and phosphorylation
of this site favors an inactive STIM1 conformation (Nelson et al.,
2019). PKA phosphorylates Thr389 regulating a non-SOCE
function of STIM1 (Thompson and Shuttleworth, 2015) and
dual-specificity tyrosine phosphorylation-regulated kinase
(DYRK2) phosphorylates Ser519 and Ser521, enhancing STIM1
and Orai1 interactions (Wei et al., 2021). A number of
phosphorylation sites have also been identified in the
N-terminal luminal domain of STIM1 (Hornbeck et al., 2004);
however their function and kinases are not known.

STIM1 is also subject to oxidative modifications that affect its
function. For example, Cys56 in the STIM1 luminal region is
subjected to S-glutathionylation in response to oxidant stress,
resulting in constitutive Ca2+ entry independent of Ca2+ store
levels (Hawkins et al., 2010). Both Cys49 and Cys56 undergo
nitric oxide (NO)-mediated S-nitrosylation, which resulted in
stabilization of the EF-SAM region inhibiting SOCE (Gui et al.,
2018). The modification of serine and threonine residues with
O-linked N-acetylglucosamine (O-GlcNAc) is increasing
recognized as an important nutrient mediated signaling
mechanism (Chatham et al., 2021). STIM1 has been shown to
be O-GlcNAcylated and pharmacologically mediated increases in
O-GlcNAc attenuated STIM1 puncta formation and SOCE (Zhu-
Mauldin et al., 2012). Nomura et al., reported that Ser621 and
Thr626 in STIM1 were O-GlcNAcylated (Nomura et al., 2020).
They observed that decreased O-GlcNAcylation at Thr626 and
increased O-GlcNAcylation at Ser621 both attenuated SOCE,
possibly by decreasing Ser621 phosphorylation thereby changing
STIM1 interactions with EB1.
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2.1.3 STIM1 variants
Alternative splicing is another important mechanism for
regulating protein function and STIM1L was the first STIM1
splice variant identified (Darbellay et al., 2011). Alternative
splicing on exon 11 results in the insertion of 106 residues
between the SOAR/CAD and P/S region in the C-terminal
region of STIM1, which functions as an actin binding domain
(ABD) (Figure 1). In contrast to the ubiquitous expression of
STIM1, STIM1L appears to be restricted to striated muscle and
brain in rodents (Darbellay et al., 2011) and skeletal muscle in
humans (Horinouchi et al., 2012), although it is found in neonatal
rat cardiomyocytes and in adult rodent hearts under stress (Luo
et al., 2012; Sabourin et al., 2018). In skeletal muscle, the actin
binding domain in STIM1L enables it to form permanent clusters
with Orai1 thereby allowing for immediate activation of SOCE,
which may be critical in excitable cells where there are large rapid
changes in ER and cytosolic Ca2+ levels facilitating faster and
more efficient refilling of ER (Darbellay et al., 2011). Database
analysis predicts that several other STIM1 splice variants may
occur and to date, two variants STIM1A and STIM1B have been
characterized (Knapp et al., 2021; Ramesh et al., 2021). STIM1A
contains an additional A domain comprising 31 residues,
adjacent to the ID domain (Figure 1) and is highly conserved
from fish to birds to mammals. STIM1A was found in heart,
kidney, astrocytes, and testes, but was not present in T-cells.
STIM1 and STIM1A both co-localized with Orai1 after ER Ca2+

depletion; surprisingly, however, STIM1A appears to function in
a dominant negative manner, resulting in a decrease in SOCE
possibly by interfering with the interaction between the STIM1
CAD/SOAR domain and Orai1 (Knapp et al., 2021). STIM1B has
a truncated C-terminus that includes a novel B domain
downstream of the ID domain (Ramesh et al., 2021). STIM1B
was reported to be exclusively found in the brain and compared to
STIM1 exhibits slower formation of oligomers in response to
store depletion and differential interactions with all 3 Orai
isoforms. The altered function of STIM1B appears to be
primarily linked to the new B-domain rather that the absence
of P/S, EB, and PB domains (Ramesh et al., 2021).

2.2 STIM2
In contrast to invertebrates that have a single STIM gene,
mammals have two genes, STIM1 and STIM2. The STIM2
gene was cloned in 2001 and its fundamental structure
characterized (Williams et al., 2001); however, its function was
unknown.

2.2.1 STIM2 structure
In contrast to STIM1 where a variable fraction is located at the
plasma membrane, a di-lysine ER-retention signal restricts
STIM2 to the ER (Ercan et al., 2012). The overall structure of
STIM2 is similar to STIM1 particularly in the N-terminal ER
region (Figure 1), which contains SP, cEF, hEF, and SAM
domains. The unusually long 101 residue STIM2 SP appears
to contribute to reduced ER localization leading to a pool of
uncleaved cytosolic preSTIM2 (Graham et al., 2011). It has been
reported that the cytosolic preSTIM2 interacts with Orai1 at the
plasma membrane potentially regulating basal Ca2+ levels

(Graham et al., 2011). In addition, a 91aa fragment of the
STIM2 signal peptide (SPF) is also released into the cytosol
and may regulate NF-κB transcription (Graham et al., 2011).
The rest of the luminal STIM2 N-terminus shares >80%
homology with STIM1 (Stathopulos et al., 2009); however,
differences in only 3 amino acids in the cEF hand sequence
results in a 2-fold lower affinity for Ca2+ than STIM1 making it
more sensitive to small changes in ER Ca2+ concentrations
(Zheng et al., 2011). Despite a high degree of similarities
between the SAM domains for STIM1 and STIM2, subtle
differences in the STIM2 SAM domain result in a substantial
increase in its stability (Zheng et al., 2008), which attenuates its
rate of oligomerization in response to ER Ca2+ depletion (Zheng
et al., 2011). In addition, small differences in the STIM2 TM
domain compared to STIM1-TM also slows the transduction of
ER Ca2+ depletion signal to the cytosolic portion of the protein
(Zheng et al., 2018).

The C-terminal cytosolic region of STIM2 contains similar
CC1, OASF, SOAR/CAD, ID, and terminal PB domains to those
found in STIM1 (Grabmayr et al., 2020). There is exceptional
homology between the STIM1 and STIM2 SOAR/CAD
sequences; however, the switch of a single phenylalanine in
STIM1 SOAR/CAD to leucine in STIM2 markedly reduces its
ability to open Orai1 channels (Wang et al., 2014). Small
differences in the S1α helix in the STIM2 CAD/SOAR domain
compared to the STIM1 domain weakened the interactions
between the CC1 and CC3 domains of STIM2. This resulted
in a more open conformation of the STIM2 CAD/SOAR region
resulting in increased clustering in ER-PM junctions under
resting conditions (Subedi et al., 2018; Zheng et al., 2018).
Moreover, the STIM2 PM domain has higher affinity for
phosphatidylinositol biphosphate (PIP2) than STIM1, which
also helps facilitate STIM2 clustering with minimal changes in
ER Ca2+ levels (Bhardwaj et al., 2013). On the other hand, these
changes in the STIM2 CAD/SOAR domain reduced its activation
of Orai1 compared to STIM1 (Zheng et al., 2018). STIM2 also
contains a proline/histidine (P/H) rich region instead of the P/S
region found in STIM1. While an EB domain in STIM2 has not
been conclusively identified, in neurons STIM2 has been shown
to bind EB3 via a similar TRIP motif to that seen in STIM1
(Pchitskaya et al., 2017). There is also a calmodulin binding site
close to the PB domain (Bauer et al., 2008).

2.2.2 STIM2 regulation
STIM2 like STIM1 has numerous phosphorylation sites (>30),
most of which are in the cytosolic C-terminal region (Hornbeck
et al., 2004); however, little is known about their function or
which kinases are involved. Like STIM1, STIM2 has cysteine
residues in its luminal domain; two of them Cys53, and Cys60 are
conserved with STIM1, and one Cys15 is unique to STIM2. All
three residues can be S-nitrosylated leading to a synergistic
stabilization of the EF-SAM region, reduced basal cytosolic
Ca2+ and lower STIM2-mediated SOCE (Novello et al., 2020).
In contrast to STIM1, STIM2 constitutively clusters at the ER-PM
junctions in both mobile and immobile clusters with changes in
both IP3R function and ER Ca2+ levels being the driving factors
contributing to the increases or decreases of immobile clusters of
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STIM2 in ER-PM junctions (Ahmad et al., 2022). Under basal
conditions the STIM2/Orai1 complex regulates basal Ca2+

concentrations whereas following agonist stimulation STIM1
forms clusters with STIM2 in response to a decrease in ER
Ca2+ combined with a close association with IP3R. Collectively
these findings suggest that immobilization of STIM2 clusters is an
early response to decreased ER Ca2+ levels, which is facilitated by
IP3R in the region of STIM2 clusters and acts as a “checkpoint”
for Ca2+ entry (Ahmad et al., 2022).

2.2.3 STIM2 variants
In 2015, there were two reports describing a novel STIM2 splice
variant, STIM2β (also referred to as STIM2.1), which antagonized
STIM1-Orai1 mediated SOCE (Miederer et al., 2015; Rana et al.,
2015). In different cell/tissue types there is a wide range in the
expression ratio of STIM2.1 to the original STIM2 variant now
known as STIM2.2 (or STIM2α). STIM2.1 also blunted the
STIM2.2-mediated SOCE (Miederer et al., 2015). The
antagonistic effects of STIM2.1 and wide range of cell-
dependent ratios of STIM2.1/STIM2.2, might in part, account
for the different conclusions of the earlier studies on STIM2
function. STIM2.2 is characterized by an 8 amino acid insertion
in SOAR domain of STIM2.1; however, the mechanism by which
this leads to SOCE inhibition remains unclear. It is possible that
STIM2.1 forms heterodimers with STIM1 or STIM2.2, thereby
preventing them from binding to Orai1, or STIM2.1 could
actively inhibit SOCE via direct interaction with Orai1 (Rana
et al., 2015). It is worth noting that bioinformatics analysis
predicts at least an additional 4 human STIM2 splice variants,
although to date, only STIM2.1 and STIM2.2 have been identified
(Berna-Erro et al., 2017), suggesting that there is still much left to
discover regarding STIM2 and its variants.

3 ORAIS—GENE AND PROTEIN
STRUCTURES

3.1 Orai1
In 2001, Rao and colleagues identified major Ca2+ signaling
defects in T-cells from a patient with severe combined
immunodeficiency (SCID) (Feske et al., 2001). Subsequent
studies with these cells demonstrated that although SOCE was
almost completely abolished, STIM1 levels were normal (Feske
et al., 2005), illustrating that while STIM1 was essential for SOCE
it did not act alone. The fact that STIM1 was primarily localized
to the ER strongly suggested that an unidentified plasma
membrane Ca2+ channel was also involved in activating SOCE.
Using genetic linkage analysis of the SCID patients and their
family combined with a high throughput siRNA screen of SOCE
in Drosophila S2 cells, a novel protein they named Orai1 and two
human homologues Orai2 and Orai3 were identified (Feske et al.,
2006); a single point mutation in Orai1 was responsible for the
defective SOCE in cells from the SCID patients (The name Orai
originates from Greek mythology where Orai are the keepers or
guardians of the gates of heaven (Feske et al., 2006)). Two
additional studies published in 2006 confirmed the essential
role of Orai1 in SOCE and correctly predicted that it had 4

transmembrane domains with both C- and N-terminal regions in
the cytosol (Vig et al., 2006b; Zhang et al., 2006). While Orai1 was
clearly essential for SOCE, it had no homology with any other ion
channel. As a result, initially it was unclear whether Orai1 was the
elusive SOCE channel or instead a regulator of the channel
(Shuttleworth, 2012). However, subsequent studies quickly
established that interactions between STIM1 and Orai1 were
required for SOCE and that Orai1 itself formed the plasma
membrane channel that allows for Ca2+ entry to occur
(Mercer et al., 2006; Prakriya et al., 2006; Soboloff et al., 2006;
Yeromin et al., 2006).

3.1.1 Orai1 structure
The domain structure of Orai1 (Figure 2) consists of four
transmembrane (TM) helices connected by two extracellular
loops and one intracellular loop, with both the N- and
C-terminal regions located in the cytosol. There is a proline
arginine (PA) region close to the end of the N-terminal region
that is involved in Orai1 reactivation (Frischauf et al., 2011), and
includes an interacting site for adenylate cyclase-8 (AC8)
(Willoughby et al., 2012). PIP2 binding in the same region as
AC8 has been reported to enhance Orai1-STIM1 interactions
(residues 28–33) (Calloway et al., 2011). Adjacent to the plasma
membrane is an α-helical extension of the TM1 domain known as
the Extended Transmembrane Orai1 N-terminal (ETON) region.
Almost the entire ETON region has been reported to be essential
for binding with STIM1 and allowing STIM1-dependent Ca2+

entry (Derler et al., 2013); however, others have suggested that
STIM1 interaction with the ETON region is not necessary for
channel activation (Fahrner et al., 2018a). The ETON region
contains calmodulin and cholesterol binding domains. The
calmodulin binding domain has been reported to play a role
in Ca2+ dependent inhibition (CDI) of SOCE (Mullins et al., 2009;
Kar et al., 2014); however, it has also been suggested that this
region is involved in CDI-independent of calmodulin binding
(Mullins et al., 2016).

The interaction of cholesterol with Orai1 is complex with
reports that it inhibits its activity and decreases SOCE (Derler
et al., 2016b) on the other hand decreasing cholesterol reduced
SOCE due to increased internalization of Orai1 channels
(Bohorquez-Hernandez et al., 2017). Derler et al., found that
cholesterol depletion increased SOCE and identified a cholesterol
binding motif in the region of the ETON domain that interacts
with calmodulin (Derler et al., 2016b). Others have reported that
cholesterol depletion reduces SOCE via increased internalization
of Orai1 (Bohorquez-Hernandez et al., 2017). The role of
cholesterol on SOCE is complicated by the fact that the SOAR
region of STIM1 also has a cholesterol binding site (Pacheco et al.,
2016). A caveolin binding domain has also been identified in the
N-terminus and caveolin binding to Orai1 has been reported to
increase SOCE (Yeh and Parekh, 2015; Bohorquez-Hernandez
et al., 2017). However, mutation of these residues did not prevent
the enhancement of SOCE that occurs in the presence of caveolin
suggesting that Orai1 may contain another caveolin binding
domain (Yeh and Parekh, 2015).

The first extracellular loop (loop 1) contains a Ca2+

accumulating region (CAR), formed by aspartate residues,
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which increase local Ca2+ concentrations facilitating Ca2+ entry
even when extracellular Ca2+ concentrations are low (Frischauf
et al., 2015). The TM2 and TM3 domains, are connected via an
intracellular loop (loop2) and both have short helical extensions
in the cytosol. Loop2 has been implicated in regulating fast CDI of
the Orai1 channel possibly via blocking Ca2+ entry (Srikanth
et al., 2010) and interactions between loop2 and the ETON region
have been shown to regulate channel activation (Fahrner et al.,
2018a). A cysteine residue was identified at the end of the TM3
domain, close to extracellular loop3, which has been implicated in
the redox regulation of Orai1 function (Bogeski et al., 2010;
Alansary et al., 2016). The second extracellular loop (loop3)
that connects TM3-TM4 was shown to interact with loop1,
potentially fine tuning Ca2+ accumulation in the CAR

(Frischauf et al., 2015). Loop3 of Orai1 also contains a distinct
N-glycosylation site at N223; the function of this modification is
not known, but in some cell types, loss of this modification
resulted in an increase in Ca2+ entry, suggesting that it may play a
cell-specific role in regulating SOCE (Dorr et al., 2016). TM4 is
connected to the cytosolic C-terminus of Orai1 via a highly
conserved hinge region (Hou et al., 2012; Fahrner et al.,
2018b). Residues in the C-terminal of Orai1 are essential for
recruiting STIM1 and channel activation (Mcnally et al., 2013).

Each of the transmembrane domains contribute to the
regulation of the Orai1 channel as indicated by the numerous
gain and a loss of function mutations that have been identified
throughout the regions (Yeung et al., 2018; Tiffner et al., 2020).
Mutations of Gly98 and Val102 in the TM1 domain led to

FIGURE 2 | Domain structure of human ORAI1, ORAI2, and ORAI3 proteins. Orai1 (Orai1α) has a proline arginine region (PAR) close to the end of the N-terminal
domain, which includes an interacting site for adenylate cyclase-8 (AC8). This is followed by a caveolin binding region (CAV) and adjacent to the plasma membrane is the
Extended Transmembrane Orai1 N-terminal (ETON) region, which contains calmodulin (CAM) and cholesterol binding (CB) domains. Following the first transmembrane
domain (TM1) is the first extracellular loop, which includes a Ca2+ accumulating region (CAR). A region in the intracellular loop 2—153–157—is thought to regulate
Ca2+ dependent inactivation of Orai1 and interaction between loop2 and the ETON region regulate channel activation. A cysteine residue (Cys195) at the end of the third
transmembrane domain (TM3) has been implicated in the redox regulation of Orai1 function. The second extracellular loop (loop3) contains a N-glycosylation site at
N223, of unknown function. The cytosolic C-terminus of Orai1 is connected to the 4th transmembrane domain (TM4) via a highly conserved hinge region (HR) and
contains highly conserved coiled-coil domain (CCD). The C-terminal region essential for recruiting STIM1 and Orai1 channel activation. Alternative translation initiation
results in Orai1β which lacks the first 63 amino acids of Orai1/Orai1α. The architecture of Orai2 and Orai3 are very similar to Orai1 with a few key differences. Orai2 and
Orai3 have a truncated N-terminal region which lacks the PAR present in Orai1. They also lack an 18aa region in the N-terminus which regulates the slow reactivation that
follows fast CDI in Orai1. Similar to Orai1 both Orai2 and Orai3 contain ETON region adjacent to the TM1, which includes a CAM domain. The TM1 domains are almost
completely conserved, and the other 3 transmembrane domains exhibit a high level of homology across all Orai isoforms. However, Orai2 and 3 lack the cysteine residue
in TM3 and the N-glycosylated site on extracellular loop 3 which are present in Orai1. Orai3 has a much longer loop 3 compared to both Orai1 and Orai2, but like Orai1,
Orai2, and Orai3 also have coiled-coil domains their C-terminal regions.
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constitutively active, non-selective currents, indicating they
contribute to keeping the channel closed (Zhang et al., 2011;
Mcnally et al., 2012). Multiple mutations in TM2 also result in
constitutively active Ca2+ channels and are associated with
various diseases including cancer (Endo et al., 2015; Frischauf
et al., 2017). The TM3 domain contributes to Orai1 channel
gating and ion selectivity as shown by the effects of mutations of
Trp176 and Gly183 (Srikanth et al., 2011). The mutation of
Pro245 in the TM4 domain to lysine still required STIM1 for
activation of Orai1 but resulted in very slow inactivation of the
channel and is associated with a myopathy in humans (Nesin
et al., 2014). A key feature of the Oria1 channel is its high
selectivity for Ca2+, and this has been shown to be due to a
set of conserved amino acids, Glu106, Glu190, Asp110, Asp112,
Asp114 in TM1 and TM3 and the extracellular loop 1 (Prakriya
et al., 2006; Vig et al., 2006a; Yeromin et al., 2006; Yamashita et al.,
2007). As noted above mutation of Val102 in the TM1 also
contributes to the Ca2+ selectivity of the Orai1 channel (Mcnally
et al., 2012).

3.1.2 Orai1 regulation
Six phosphorylation sites have been identified in the N-terminal
region and four in the C-terminal region of Orai1 (Hornbeck
et al., 2004). Ser27 and Ser29 have both been shown to be
phosphorylated by PKCβ (Kawasaki et al., 2010); Ser34 is a
target of PKG (Wang et al., 2015) and PKA (Zhang et al.,
2019). In each case phosphorylation either directly inhibits
SOCE or contributes to CDI. The kinases and function of
other phosphorylation sites have yet to be identified
(Hornbeck et al., 2004). Alternative translation initiation
results in a long variant Orai1α, which is the full length Orai1
and a short variant Orai1β adding another layer of functional
regulation (Fukushima et al., 2012). Orai1β lacks the first 63
amino acids of Orai1α, a region that as noted above contains
several potentially important signaling regions (Putney, 2018).
Orai1α exhibited substantially slower plasma membrane mobility
compared to Orai1β possibly as a result of the absence of the
caveolin and PIP2 binding regions; nevertheless, both isoforms
form puncta with STIM1 and facilitated SOCE (Fukushima et al.,
2012). While Orai1α and Orai1β appear to be functionally
indistinguishable regarding SOCE, Orai1α exhibited stronger
CDI (Desai et al., 2015). Interestingly, only Orai1α
participated in the non-store-dependent arachidonic acid
regulated Ca2+ (ARC) channels, suggesting the possibility of
physiologically distinct roles for the two isoforms (Desai et al.,
2015).

3.2 Orai2 and Orai3
Feske et al., identified Orai2 and Orai3 during their initial studies
characterizing the role of Orai1 in SOCE (Feske et al., 2006).
Phylogenetic analysis showed that while Orai1 and Orai2 were
present in vertebrates, Orai3 was only observed in mammals,
suggesting that Orai3 evolved from Orai1 not Orai2 (Cai, 2007).

3.2.1 Orai2 and Orai3 structure
Like Orai1, Orai2, and Orai3 are ubiquitously expressed (Hoth
and Niemeyer, 2013). The TM1 domains are almost completely

conserved and the other 3 transmembrane domains exhibit a high
level of homology across all Orai isoforms (Hoth and Niemeyer,
2013). Both Orai2 and Orai3 have a truncated N-terminal region
which lacks the PA region seen in Orai1 (Shuttleworth, 2012).
They also lack an 18aa region in the N-terminus with contributes
to regulation of slow reactivation that follows fast CDI in Orai1
(Frischauf et al., 2011). This is consistent with the observation
that Orai2 and Orai3 both exhibit fast CDI but this is followed by
a slower inhibitory phase rather that the reactivation observed in
Orai1 (Lis et al., 2007). There is a highly conserved region of 22
amino acids immediately before TM1, which includes the CAM
binding domain (Shuttleworth, 2012). Despite 75% homology
between cytosolic loop2 of Orai3 and Orai1, differences are
sufficient to eliminate the role of the N-terminal domain in
channel activation (Fahrner et al., 2018a). Orai2 and 3 lack
the cysteine residue in TM3 that occurs in Orai1, resulting in
decreased sensitivity of Orai2 and 3 to redox stress (Bogeski et al.,
2010). Unlike Orai1, Orai2 and 3 are not N-glycosylated on
extracellular loop 3; moreover, Orai3 has a much longer loop 3
compared to both Orai1 and Orai2, although the functional
consequence of this is not known (Frischauf et al., 2011;
Shuttleworth, 2012). Like Orai1, Orai2 and 3 also have coiled-
coil domains in their C-terminal regions. Differences in binding
affinities for STIM1 in the Orai C-terminal regions is reflected by
the extent to which they trigger SOCE when overexpressed with
STIM1, with Orai1 exhibiting larger SOCE compared to either
Orai2 or Orai3.

3.2.2 Orai2 and Orai3 variants
There are two murine Orai2 splice variants with one Orai2S
lacking 14 N terminal amino acids of Orai2L, with Orai2S
potentially acting in a dominant negative fashion to block
STIM1/Orai1 SOCE (Gross et al., 2007); to date this has not
been observed in humans.

4 STIM AND ORAI MEDIATED Ca2+

SIGNALING

SOCE is characterized by a very specific Ca2+ current, Icrac, which
reflects key biophysical properties including very high specificity
for Ca2+. STIM and Orai proteins are also involved in less
selective store operated Ca2+ channels, resulting in a Ca2+

current known as Isoc, which can involve interactions of STIM
and Orai proteins with transient receptor potential (TRP)
channels (Ong and Ambudkar, 2011). While STIM and Orai
proteins are essential for SOCE (Icrac), it has been shown that TRP
channel mediated Ca2+ entry is not dependent on either STIM or
Orai proteins (Dehaven et al., 2009). Therefore, the discussion
below of STIM and Orai mediated Ca2+ signaling will not include
consideration of TRP channels, which are reviewed in detail
elsewhere (Vazquez et al., 2004; Chen X. et al., 2020). There is
however, a store-independent Ca2+ channel, that is activated by
arachidonic acid (AA) or its metabolite leukotriene and is
dependent on both STIM and Orai proteins (Zhang et al.,
2018). This channel commonly known as arachidonate-
regulated Ca2+ (ARC) channel is responsible for a highly

Frontiers in Aging | www.frontiersin.org April 2022 | Volume 3 | Article 8767858

Collins et al. Role of STIM and Orai in Age-Related Diseases

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


selective Ca2+ current, Iarc, which has distinct physiological roles
from SOCE (Zhang et al., 2018). Considering the essential role of
STIM and Orai proteins in ARC channel activity, this is also
discussed below.

4.1 Store Operated Ca2+ Entry
As noted above, STIM1 and Orai1 are essential for SOCE and
required for Icrac; therefore, we will focus initially on the canonical
function of STIM1 and Orai1 in the regulation of SOCE. The
potential roles of STIM2, Orai2, and Orai3 will be
considered later.

Under basal resting conditions, the cEF hand of STIM1 is
bound to Ca2+ and STIM1 is distributed diffusely in the ER
membrane. The cytosolic CAD/SOAR region, via interactions
with CC1 domain, is locked in an inactive conformation close to
the ER/SR membrane. When ER/SR Ca2+ levels decrease, Ca2+

dissociates from the cEF hand initiating a conformational change
in the hEF and SAM domains, which begins the formation of
STIM1 oligomers. This conformational change within the ER/SR
lumen is transmitted to the cytosol via the STIM1 TM domain,
resulting in a release of the SOAR/CAD region. Subsequent
conformational changes of all three CC domains enhances
STIM1 oligomerization, exposes the SOAD/CAD region to
facilitate binding to Orai1 as well as extending the C-terminal
region towards the plasma membrane (Derler et al., 2016a; Lewis,
2020). Under resting conditions, STIM1 diffuses freely in the ER
membrane, whereas Orai1 diffusion is somewhat constrained
possibly due to binding with other proteins (Wu et al., 2014) or
the formation of supra-molecular Orai1 clusters (Peckys et al.,
2021). Once activated the extended STIM1 region is trapped at
ER-PM junctions via interactions of the PB domain with the
plasma membrane, facilitated in part by PIP2. Subsequently,
STIM1 traps Orai1 via binding of the SOAR/CAD region to
the Orai1 C-terminal region (Wu et al., 2014). The trafficking
chaperone, uncoordinated 93 homolog B1 (UNC93B1), has been
reported to play an important role in the early activation of
STIM1, facilitating its extension. This appears to result in a more
efficient interaction between STIM1 and Orai1 channels.
However, UNC93B1 does not play a role in the translocation
of STIM1 to the plasma membrane or in gating of the Orai1
channel (Wang and Demaurex, 2022).

Key regions of C-terminal domains of both STIM1 and Orai1
form a STIM1-Orai1 association pocket (SOAP) and mutations
in this region prevent STIM1 activation of Orai1 (Derler et al.,
2016a). The Ca2+ channel itself is composed of hexameric Orai1
subunits arranged around a pore created by TM1 domains that
extend across the membrane and into the cytosol (Hou et al.,
2012; Hou et al., 2020). The precise mechanism by which binding
of STIM1 to the Orai1 C-terminal region leads to opening of the
Ca2+ channel, remains uncertain. However, it has been proposed
that binding of the SOAR/CAD region of STIM1 to Orai1 results
in a conformational change in the hinge region of the cytosolic
extension of TM4. This results in conformational changes in TM4
itself, disrupting interactions with TM3 followed by further
conformational changes in TM3/TM2 leading to rotation of
the TM1 helices and subsequent channel activation (Zhou
et al., 2017). While the N-terminal region of Orai1 is essential

for channel activation, it is unclear whether this involves
interaction with STIM1. It has been suggested that the
N-terminus might regulate channel activity via interactions
with other domains such as TM3 or cytosolic loop2 (Fahrner
et al., 2018b). It is important to note that while STIM1 and Orai1
are essential for SOCE, there are a growing number of accessory
proteins that have been identified as regulating SOCE, which are
reviewed in detail elsewhere (Srikanth and Gwack, 2012; Woo
et al., 2018; Berlansky et al., 2021).

Most Ca2+ channels are regulated by feedback inhibition by
Ca2+, a process known as CDI; this is also true for Orai1-mediated
SOCE. As noted earlier, STIM1 contains an inhibitory domain
(IDSTIM) that is essential for CDI; surprisingly however, it is does
not appear to be the primary Ca2+ sensor responsible for initiating
CDI. Calmodulin, which binds to the N-terminal of Orai1, was
thought to be the CDI sensor, but this turned out not to be the case
(Lewis, 2020). Mullins et al., found that two residues in the Orai1
pore, Trp76 and Tyr80 played a key role in CDI leading to
conformation changes, which inactivated the channel (Mullins
et al., 2016). Subsequently, they found that IDSTIM binding to
Trp76 was required for full CDI (Mullins and Lewis, 2016). The
Orai1β splice variant did not exhibit CDI indicating that the first 63
amino acids of Orai1 that are absent in Orai1β, contributed to CDI
(Zhang et al., 2019). There are AC8 and caveolin binding domains
in that 63 amino acid region, which have been shown to be essential
for CDI (Zhang et al., 2019). Based on these findings a model was
proposed where cAMP generated by Ca2+ dependent AC8 resulted
in phosphorylation of Ser34 of Orai1 by protein kinase A (PKA),
which induced CDI (Zhang et al., 2019). How Ser34
phosphorylation regulates CDI remains to be determined,
although it was speculated that it may facilitate binding of
IDSTIM1 to Orai1 (Zhang et al., 2019). However, concern has
been raised regarding the generalization of this mechanism due
to the limited tissue distribution of AC8 (Hofer, 2019).
Interestingly, compared to Orai1, Orai2, and Orai3 exhibit
faster CDI, which is mediated by three conserved glutamates in
their C-terminal domains (Lee et al., 2009).

A consequence of the emphasis on STIM1 and Orai1 in
understanding the molecular mechanisms underlying SOCE is
that our understanding of the potential roles of STIM2, Orai2,
and Orai3 has been neglected. Early studies showed that
overexpression of Orai2 and Orai3 with STIM1 resulted in
SOCE and generation of Icrac albeit with some differences in
their biophysical characteristics compared to Orai1 (Mercer et al.,
2006; Dehaven et al., 2007; Lis et al., 2007). However, the
physiological role of Orai2 and Orai3 in regulating
physiological Ca2+ signaling remained unclear. The role of
STIM2 is also not well understood. Early studies reported
contradictory findings regarding STIM2 function, with some
reports suggesting that it facilitated SOCE in a similar manner
to STIM1, whereas others indicated that STIM2 inhibited the
actions of STIM1. STIM2 was found to form pre-made clusters
with Orai1 and it was believed that this played an important role
in regulating basal cytosolic and ER Ca2+ levels (Brandman et al.,
2007). It has also been suggested that STIM2 might act as an
adaptor protein regulating STIM1 function (Berna-Erro et al.,
2017).
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It has been proposed that the difficulty in identifying clear
roles for Orai2/3 and STIM2 is because the protocols used to
generate maximal SOCE signals and Icrac currents do not
represent normal physiological stimuli for Ca2+ signaling,
thereby hiding potentially more subtle roles for these proteins
(Yoast et al., 2020; Emrich et al., 2021). Studies by Trebak and
colleagues suggest that under more physiological conditions,
Orai2 and Orai3 form heteromultimers with Orai1,
attenuating its activity, resulting in a larger bandwidth of Ca2+

signals (Yoast et al., 2020). Moreover, they have also proposed
that physiological Ca2+ signaling requires STIM1 and STIM2
interactions to further finetune intracellular Ca2+ signaling
(Emrich et al., 2021). While the concept that all five STIM/
Orai isoforms work together to regulate the Ca2+ signaling
responses to agonist stimulation clearly complicates the
understanding of the function of individual proteins, it also
represents a potentially elegant solution for the diverse roles of
SOCE channels. Such a model would allow for Ca2+ signaling to
be fine-tuned due to cell/tissue specific differences in expression
of these five proteins. Clearly, a great deal of additional work is
needed to determine how the five STIM/Orai isoforms work
together under physiological conditions and whether alterations
in stoichiometry could account for the diverse functions of SOCE
in different tissues and cells. Understanding how different STIM
and Orai variants fit in with this model also remains to be
determined.

4.2 Store Independent Ca2+ Entry
For many years SOCE was widely considered to be the primary
agonist-mediated Ca2+ signaling pathway, but in 1996
Shuttlesworth and Thompson identified a plasma membrane
Ca2+ entry pathway that was independent of intracellular Ca2+

stores (Shuttleworth and Thompson, 1996). In a series of studies,
they identified arachidonic acid as the agonist responsible and
named the resulting Ca2+ current IARC (for arachidonate-
regulated calcium current) (Shuttleworth, 1996; Shuttleworth
and Thompson, 1998; Mignen and Shuttleworth, 2000).
Several different agonists were subsequently shown to activate
a store-independent, arachidonic acid (AA) dependent Ca2+

entry pathway in several cell types (Munaron et al., 1997;
Broad et al., 1999; Guibert et al., 2004); however, the identity
of the channel proteins remained elusive (Shuttleworth et al.,
2004). While the focus on STIM1 had been its role as the ER/SR
Ca2+ sensor regulating SOCE, it had originally been identified as a
plasma membrane protein (Manji et al., 2000; Williams et al.,
2001; Williams et al., 2002); consequently, Mignen et al.,
examined whether it also played a role in ARC mediated Ca2+

entry (Mignen et al., 2007). They demonstrated that ARC
channels were regulated by the plasma membrane pool of
STIM1, with its N-terminal domain in the extracellular
environment (Mignen et al., 2007). In subsequent studies they
found that Orai1 and Orai3, but not Orai2 were also required for
ARC channel activity (Mignen et al., 2008; 2009).

Activation of an Orai1/Orai3 Ca2+ channel by leukotrieneC4

(LTC4) that was also STIM1-dependent was reported to have very
similar biophysical characteristics as the ARC channel (Gonzalez-
Cobos et al., 2013; Zhang et al., 2013). However, in contrast to

ARC channel activation ER/SR STIM1 rather than plasma
membrane STIM1 was found to be sufficient for LTC4

regulated Ca2+ (LRC) channel activation (Zhang et al., 2013).
There was no formation of STIM1 puncta in response to LTC4,
but the interaction between the STIM1 CC domains and Orai3
was necessary for channel activity (Zhang et al., 2013). It was
subsequently shown that the biophysical characteristics of LTC4

and ARC channel activation were identical requiring both Orai1
and Orai3, and that metabolism of AA to LTC4 was necessary for
full activation of the channels (Zhang X. et al., 2014).

It has been suggested that the apparent differences in the pools
of STIM1 required for channel activation by AA and LTC4 was
dependent on whether patch clamped cells or intact cells were
studied and that ER/SR STIM1 was sufficient for ARC activation
in intact cells (Zhang X. et al., 2014). However, the precise role of
STIM1 in the regulation of ARC channels remains unclear
because some studies have shown that while Orai1 and Orai3
are essential for ARC activation, STIM1 may not be required
(Dubois et al., 2014; Goswamee et al., 2018). On the other hand,
Thompson and Shuttlesworth reported that PKA-mediated
phosphorylation of Thr389 of the cytosolic domain of plasma
membrane STIM1 was necessary for ARC channel activation
(Thompson and Shuttleworth, 2015). Thus, while there appears
to be a consensus that Orai1 and Orai3 are essential components
of ARC/LRC channels, the role and cellular pool of STIM1
remains an open question (Zhang et al., 2018). It is has also
not been settled whether AA and LTC4 activate the channels
independently or if metabolism of AA to LTC4 is required (Zhang
et al., 2018).

5 METABOLIC AND MITOCHONDRIAL
ROLES OF STIM AND ORAI

The metabolic roles of STIM and Orai have been described in
immune cell populations (Vaeth et al., 2017); however, the role of
these proteins in regulating metabolism and mitochondrial
function has been less studied in other organs and cell types.
In this section, we will discuss the contribution of STIM and Orai
isoforms to the regulation of glucose and lipid metabolism and
mitochondrial function in various non-immune cells of different
organs, including cardiomyocytes, hepatocytes, and skeletal
muscle cells.

Plenty of evidence points in the direction of STIM and Orai
proteins regulating fatty acid and lipid metabolism. A recent
study from Maus et al., (Maus et al., 2017), showed that cells
lacking either STIM1 or Orai1 had reduced SOCE, which
mediated significantly high levels of lipid droplet deposition
and increased lipophagy, and was shown in numerous organs
including the liver, heart, and skeletal muscle. Consistent with
that study, we showed that hearts from cardiomyocyte-specific
STIM1-KO mice had lipid droplet accumulation, triglyceride
accumulation, and altered expression of several fatty acid
metabolism proteins (Collins et al., 2019). We also found
reductions in insulin-mediated cardiac protein kinase b (Akt)
activation, which has been shown to occur in other STIM1
cardiomyocyte knockdown models. Other studies have shown
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that activation of STIM1/Orai1-mediated SOCE activated Akt,
glycogen synthase kinase 3 beta (GSK3β) and mTORC2 signaling
whereas pharmacological inhibition attenuated this pathway
(Benard et al., 2016), providing further support for the key
role of STIM1 in the regulation of metabolism.

In addition to impaired cardiac glucose metabolism in
cardiomyocyte-specific STIM1-KO mice, we also showed
significant changes in mitochondrial size and shape as well as
evidence of increasedmitochondrial fission through reductions in
Mitofusin (Mfn2) and increased Dynamin related protein 1 (Drp-
1) expression (Collins et al., 2014; Collins et al., 2019).
Mitochondrial structural abnormalities have been identified in
virtually all STIM and Orai KO and overexpression models in
various cell types. For example, skeletal muscle overexpression of
STIM1 has been shown to have a dystrophic-like phenotype
associated with the presence of swollen mitochondria
(Goonasekera et al., 2014). Henke et al., (Henke et al., 2012),
also showed that fibroblasts lacking either STIM1 or Orai1 were
more susceptible to oxidative stress and showed that the
mitochondria from STIM1-KO cells were abnormally shaped
with abnormal cristae, had increased Ca2+ load, increased
glutathione levels, and there was a significant increase in
transcription of antioxidant genes, suggesting that STIM1 is an
important regulator of mitochondrial function. The same group
also showed that oxidative stress reduced SOCE in hippocampal
neurons and that knockdown of Orai1 was protective against
glutathione depletion (Henke et al., 2013). In support of these
studies, several of the cardiomyocyte-specific KO and
overexpression models of STIM and Orai proteins show
significant mitochondrial structural abnormalities correlating
with reductions in mitochondrial function and alternations in
mitochondrial quality control (Collins et al., 2014; Correll et al.,
2015; Collins et al., 2019; Segin et al., 2020; Gammons et al., 2021).
Silva-Rojas et al. examined gain of function mutations in both
STIM1 and Orai1 and found that this resulted in increased SOCE
and promoted abnormal Ca2+ handling and mitochondrial
activity. Specifically, the authors used mice with mutant
STIM1, STIM1R304W/+ mice, and found that the abnormal
Ca2+ handling was the result of changes in the expression of
several key proteins including sarco/endoplasmic reticulum Ca2+

ATPase (SERCA) and ryanodine receptor (RyR). The abnormal
mitochondrial activity was the result of changes in the expression
of several mitochondrial proteins which include mitochondrial
transcription factor A (Tfam), peroxisome proliferator-activated
receptor gamma coactivator (PGC1α), nuclear respiratory factor
1 (Nrf1), Sirtuin 1 (Sirt1), and mitochondrial fission 1 protein
(Fis1) and an increase in apoptosis (Silva-Rojas et al., 2021).
These studies suggest that STIM1 and Orai play significant roles
in modulating mitochondrial function but could also regulate
mitochondrial quality control and redox signaling.

It has also been shown that mitochondrial Ca2+ uptake is
essential for regulating STIM1, Orai1, and SOCE (Naghdi et al.,
2010). In addition, it has been shown that the mitochondrial
protein, Mfn2 contributes to STIM1 membrane trafficking
(Singaravelu et al., 2011) and that knockdown of either the
mitochondrial Ca2+ uniporter (MCU) or uncoupling protein 2
(UCP2) resulted in slowed STIM1 oligomerization and reduced

SOCE (Deak et al., 2014). This relationship appears to be
reciprocal since the lack of STIM1, Orai1, and the inositol
triphosphate receptor (IP3R) in lymphocytes has been shown
to not only result in reductions in mitochondrial proteins such as
MCU, but also these lymphocytes had altered mitochondrial
metabolism dependent on cAMP response element-binding
protein (CREB) (Shanmughapriya et al., 2015). Also, the
mitochondrial KATP channel opener, Diazoxide, has been
shown to promote upregulation of STIM1 and Orai1
expression (Sampieri et al., 2019) through mechanisms
involving increased phosphorylation of ERK1/2 and NFκB
(Gavali et al., 2020), which suggests that STIM1 and Orai may
contribute to the cardioprotection associated with diazoxide
(Katoh et al., 2002; Hausenloy et al., 2004).

The lack of STIM1/Orai1 seems to adversely impact
mitochondrial ultrastructure and function in many cell types
although this does not appear to be consistent in neuronal cells.
For example, in neuron-like PC12 cells it has been shown that
siRNA knockdown of STIM1 increased cell viability in response
to injury with 1-methyl-4-phenylpyridinium. This was associated
with reductions in apoptosis, ROS production, and prevented
mitochondrial dysfunction which was believed to be dependent
on Homer1a (Li X. et al., 2013). On the other hand,
hydroxydopamine-induced injury in PC12 cells was increased
following knockdown of STIM1, resulting in increased apoptosis,
decreased mitochondrial function, and mitochondrial Ca2+

uptake (Li et al., 2014). Interestingly, Rao et al., (Rao et al.,
2015), showed that shRNA knockdown of STIM2 in a traumatic
brain injury model also improved neuronal survival through the
targeting of mitochondrial apoptosis and preservation of
mitochondrial function. Overall, these data suggest that lack of
STIM and Orai proteins may be beneficial to mitochondrial-
dependent cell survival in some cell types although this does not
appear to hold true for cardiomyocytes.

STIM1 has been described as a “metabolic checkpoint” for
tumor growth and metastasis in hepatocytes. For example,
reductions in STIM1 in hepatocytes mediated a switch from
glycolysis to AMPK-mediated fatty acid oxidation (Zhao et al.,
2020). It has also been shown that hepatocytes from obese mice
have reduced SOCE, occurring due to a reduction in STIM1
translocation, and these changes were associated with both
glucose and insulin intolerance and lipid droplet
accumulation. Of note, it was shown that the reduction in
STIM1 translocation in this study was due to abnormal
O-GlcNAcylation (Arruda et al., 2017). It has been reported
that increased O-GlcNAcylation of STIM1 in neonatal
cardiomyocytes was linked to a reduction in SOCE (Zhu-
Mauldin et al., 2012); however, these studies did not examine
the impact of these changes on metabolism and mitochondrial
function which should be interrogated.

STIM1 and Orai1 have been shown to regulate whole body
metabolism via their regulation of insulin secretion in β-cells. For
example, STIM1 andOrai1 knockdown in β-cells leads to reduced
glucose-induced insulin secretion (Usui et al., 2019). Of note,
STIM1 has been shown to be reduced in expression in islets from
type 2 diabetic patients, STZ diabetic mice, and INS-1 cells,
resulting in impaired insulin secretion, abnormal Ca2+
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handling, and ER stress (Kono et al., 2018). Of note, this change
may be cell specific, because Orai1 has also been shown to be
reduced in lymphocytes from type 2 diabetic patients without
changes in STIM1 levels (Wang et al., 2018). These studies
suggest that STIM1, Orai1, and SOCE are important for
insulin secretion and diabetic cell phenotypes; however, it is
unclear whether STIM2, Orai2, and Orai3 contribute to these
processes.

In summary, changes in STIM1 and Orai1 isoforms have been
shown to alter mitochondrial function and metabolism in various
cell types and organs; however, the specific signals connecting
them to mitochondrial function and metabolism have yet to be
fully elucidated. Furthermore, our knowledge of the potential
roles of STIM2 and Orai2/3 in regulating mitochondrial function
and metabolism is much less known.

6 STIM AND ORAI IN CELL SURVIVAL

Cellular Ca2+ homeostasis plays a pivotal role in determining cell
death and survival. The relationship between Ca2+ and cell fate is
complex due in part to the fact that Ca2+ can act as a stressor and
also a second messenger that is involved in multiple pathways in
cell death and survival (Orrenius et al., 2003). Consequently, a
fine balance between Ca2+ depletion and Ca2+ overload is key for
cell fate determination. A moderate rise of cytosolic Ca2+ level
promotes cell survival by enhancing mitochondrial bioenergetics
and therefore ATP synthesis, as well as activating cell survival
signaling, such as Akt and NFAT dependent pathways (Yano
et al., 1998; Pu et al., 2003; Rizzuto et al., 2012). Sustained
increases in Ca2+ level, however, leads to mitochondrial Ca2+

overload and subsequent cell death (Naon and Scorrano, 2014).
Historically, three processes of cell death were characterized:
apoptosis, necrosis, and autophagy. During the past decade or
so, new types of cell death such as pyroptosis and ferroptosis have
been identified and their importance gradually appreciated (Yu
et al., 2021). Indeed, there is growing evidence for a Ca2+ related
mechanism in ferroptosis in cancerous and noncancerous cells
(Chen P. et al., 2020; Angelova et al., 2020), suggesting a unique
yet ubiquitous role of Ca2+ in general cell death processes. While
there is some evidence for members of the less selective TRP
cation channels in mediating pyroptosis and ferroptosis (Shi
et al., 2021), evidence for STIM/Orai mediated SOCE
involvement in these processes are lacking. Therefore, in this
section, we will focus on the role of STIM and Orai proteins in the
more widely studied cell death pathways, apoptosis, necrosis, and
autophagy.

6.1 Apoptosis and Necrosis
Apoptosis can be initiated through intrinsic and extrinsic
pathways. The intrinsic pathway is activated when there is
mitochondrial swelling and/or increased permeability of the
mitochondrial membrane, which leads to the release of
cytochrome C and cleavage of pro-caspase to caspase 9 (Fesik
and Shi, 2001). The extrinsic pathway is activated upon ligand
receptor interactions: FasL binding to Fas, or TNFα binding to
TNF receptors (Wajant, 2002). STIM/Orai-mediated SOCE has

been shown essential in regulating cellular apoptotic pathways
with most studies demonstrating its proapoptotic characteristics
although there is also evidence for STIM/Orai mediated
inhibition of apoptotic signaling (Khadra et al., 2011; Liu
et al., 2011; Kondratska et al., 2014).

In a human hepatocarcinoma cell line (HepG2), Yan and
colleagues found that ethanol increased intracellular Ca2+ level
and caused cell damage in a dose-dependent manner (Liu H.
et al., 2012), and was associated with increased STIM1 and
Orai1 protein levels. In addition, either a SOC inhibitor or a
siRNA targeting STIM1 attenuated ethanol induced
hepatotoxicity. Subsequent experiments from the same group
showed that knockdown of STIM1 and Orai1 significantly
restored the mitochondrial membrane potential, decreased
cytochrome C release, and attenuated ethanol induced
apoptosis (Cui et al., 2015). In a model of hepatic ischemia/
reperfusion (I/R) injury, mice lacking STIM1 exhibited an
attenuated cellular inflammation and apoptosis compared to
controls (Li et al., 2018). In neuronal cells STIM/Orai has also
been shown to regulate apoptosis. Rao et al. showed that, in
hippocampal HT-22 cells, application of hydrogen peroxide
(H2O2) led to significant Ca2+ overload and mitochondrial
dysfunction, which was attenuated by an SOC inhibitor or a
siRNA knockdown of STIM1 (Rao et al., 2013). In a traumatic
brain injury model, Hou et al. also found that knockdown of
STIM1 significantly inhibited apoptotic cell death (Hou et al.,
2015), suggesting a role for STIM1 in regulating apoptosis and
cell death signaling.

Orai-mediated apoptosis has also been studied in a variety of
pathophysiological settings. For example, Flourakis et al.
identified, that Orai1 was the main source for Ca2+ influx in
prostate cancer cells (Flourakis et al., 2010). They reported that
knockdown of Orai1 protected cells from apoptosis induced by
TNFα or Cisplatin whereas Orai1 rescue re-established the
normal rate for apoptosis in these cancer cells. It is important
to note that although STIM1 expression remained stable when
apoptosis was induced, STIM1-Orai1 coupling was required for
the pro-apoptotic effects. Given the importance of Orai1 in
regulating immune cell function the majority of studies have
focused on the role of Orai1 in mediating immune cell apoptosis
(Feske, 2009). Using an Apolipoprotein E knockout mouse
model, Liang et al. demonstrated that silencing Orai1 led to
decrease apoptosis in macrophages, which resulted in less foam
cell formation and decreased vascular inflammation (Liang et al.,
2016). Kim et al. showed reduced mitochondrial Ca2+ uptake and
altered proapoptotic/antiapoptotic gene expression in CD4+
T cells from Orai1-KO mice and provided evidence that
NFAT-mediated cell death pathway was the main downstream
target for Orai1 mediated Ca2+ influx in T cells (Kim et al., 2011).
In addition, Orai1 deficient T cells showed increased survival
following adoptive transfer to host. Collectively these studies
suggest that STIM1/Orai1 mediated SOCE plays an essential
role in regulating the intrinsic/mitochondrial pathway for
apoptosis.

In contrast, other studies have demonstrated an anti-apoptotic
role for STIM1/Orai1, mainly via the extrinsic apoptotic pathway.
For example, in Panc1 pancreatic adenocarcinoma cell line
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knockdown of STIM1 and/or Orai1 increased apoptosis induced
by 5-FU or gemcitabine (Kondratska et al., 2014). They also
reported that 5-FU and gemcitabine increased SOCE via
upregulation of Orai1 and STIM1. Knockdown of Orai1 was
also shown to increase apoptosis in glioblastoma cells (Liu et al.,
2011).

The apparent contradiction between the pro and anti-
apoptotic effects of STIM/Orai-mediated SOCE could be
explained in part by the fact that different cancer cell types
have varying expression levels of Orai1 and STIM1. In
addition, depending on the specific types of stimuli, different
intracellular signaling pathways regulated by STIM1/Orai1, may
be triggered thereby resulting in different outcomes. In
noncancerous cells the anti-apoptotic characteristics of STIM1/
Orai1 were also reported. Khadra and colleagues performed a
series of experiments showing that, in response to activation of
the death receptor CD95, Orai1, and STIM1 colocalize with CD95
and recruit PKCβ2 to the death receptor inducing signaling
complex, thus preventing caspase activation and apoptosis
(Khadra et al., 2011). In dopaminergic neurons, knockdown of
STIM1 led to increased ER stress and apoptosis through PKB
inhibition (Selvaraj et al., 2012). In addition to STIM1/Orai1,
other STIM/Orai homologues may also play a role in regulating
apoptosis. For example, Sobradillo and colleagues investigated
Ca2+ related mechanisms for colon cancer and found that STIM2
expression was significantly decreased in cancer cells. They also
showed that in normal mucosal cells STIM2 knockdown
increased resistance to apoptosis (Sobradillo et al., 2014). Tu
et al. showed in cultured cardiomyocytes that STIM2 expression
was significantly increased following I/R injury; whereas
knockdown of STIM2 preserved mitochondrial function and
attenuated the activation of apoptotic signaling in response to
I/R (Tu et al., 2020). There is also evidence for Orai3 mediated
regulation of apoptosis, primarily in cancer cells. For example, in
breast cancer cells and tissue, Orai3 expression was significantly
higher and that knockdown of Orai3 led to cell cycle arrest and
apoptosis (Faouzi et al., 2011). Dubois and colleagues introduced
a novel channel consisting of Orai1/Orai3 heterodimer and
demonstrated its role in prostate cancer cell proliferation
(Dubois et al., 2014). They found that prostate cancer cells can
undergo an “oncogenic switch.” The increase in Orai3 expression
and alterations of tumor microenvironment leads to an increased
heteromerization of Orai1 and Orai3, which contributes to the
phenotypic transition from SOCE, which is pro-apoptotic, to an
Orai1/Orai3 channel that is pro-proliferative. Future studies are
needed to decipher the mechanism(s) underlying Orai/STIM
mediated regulation of programmed cell death under different
conditions.

Unlike apoptosis, necrosis is by in large not a process of
programmed of cell death. Although mechanistic studies are
lacking, there is evidence that STIM/Orai-mediated SOCE may
also be involved in necrotic cell death. Gombedza and colleagues
investigated the effect of the internalization of stone-forming
calcium crystals on Ca2+ signaling in human proximal tubular
cells (Gombedza et al., 2019). Amongst other findings, they
observed increased cellular necrosis that was accompanied by
increased SOCE. They also generated a STIM1 transgenic mouse

model in which STIM1 was overexpressed in the skeletal muscle,
which increased both SOCE and necrosis in the myofibers of the
transgenic mice (Goonasekera et al., 2014). To determine the role
of Orai1 in pancreatic acinar cell injury and acute pancreatitis,
Wen et al. transfected Orai1 into human and mouse acinar cells
and found that the application of Orai1 inhibitors prevented
acinar cell necrosis (Wen et al., 2015), suggesting a role of Orai1-
mediated Ca2+ overload in acute pancreatic cell necrosis.
Although it is well known that Ca2+ overload can lead to not
only apoptosis, but also necrosis (Rizzuto et al., 2003; Shaheen
et al., 2011), it remains unclear how STIM/Orai-mediated SOCE
contributes to necrotic processes. One way in which STIM/Orai
may contribute to necrotic processes could be through opening of
the mitochondrial permeability transition pore (mPTP). It is well
established that necrosis is associated with the opening of the
mPTP. It has been shown by He et al., that siRNA-mediated
knockdown of STIM1 in H9C2 cardiomyocytes resulted in
reduced mPTP opening and reduced ROS (He et al., 2017).
However, a definitive role for STIM and Orai members in
regulating mPTP opening has yet to be established and would
shed additional light on mitochondrial-ER Ca2+ regulatory
mechanisms.

6.2 Autophagy
Autophagy is a tightly regulated physiological process by
which cellular components are degraded and recycled,
mainly through a lysosome-dependent mechanism (Feng
et al., 2014). There are several forms of autophagy, namely
macroautophagy, microautophagy, chaperone-mediated
autophagy, and crinophagy. As the most well-studied form
of autophagy, macroautophagy is a process in which cellular
components are covered within a double membrane prior to
its fusion with an lysosome, whereas in microautophagy,
cellular targets are directly taken up by the lysosome via
membrane invagination (Li et al., 2012). Unless otherwise
stated, macroautophagy is referred to as autophagy in this
section. Studies have shown that Ca2+ regulates autophagy
through multiple mechanisms (Smaili et al., 2013). In
2007 Hoyer-Hansen et al., demonstrated for the first time
that in MCF-7 cells an increase in cytosolic Ca2+ induced by
various calcium mobilizing agents was a potent activator of
autophagy (Hoyer-Hansen et al., 2007). Specifically, they
found that thapsigargin, which results in ER Ca2+

depletion, the first step in activating STIM1-mediated
SOCE, was a potent activator of autophagy via inhibition
of mechanistic target of rapamycin (mTOR) in a calcium/
calmodulin-dependent protein kinase kinase (CAMKK)
dependent manner. On the other hand, Medina et al.,
concluded that lysosomal calcium was responsible for
activation of the Ca2+ dependent phosphatase calcineurin,
the subsequent dephosphorylation of Transcription factor EB
(TFEB) a master transcription factor for autophagy leading to
its nuclear localization (Medina et al., 2015). It is worth noting
however, that they also showed that thapsigargin was
sufficient to induce TFEB nuclear localization, suggesting
that ER Ca2+ release was sufficient to activate autophagy.
These pioneering studies clearly demonstrated a key role for
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Ca2+ in regulating autophagy. While they did not identify the
specific Ca2+ signaling pathways that were involved, they both
showed that ER Ca2+ release, an essential step in activating
STIM1-mediated SOCE, was sufficient to initiate autophagy.

Zhu et al. provided the first direct evidence for SOCE
involvement in autophagy, in pancreatic acinar cells (Zhu
et al., 2018). In a mouse model of acute pancreatitis induced
by Ca2+ overload they observed puncta-like colocalization of
STIM1 and Orai1 and an increase in SOCE. They observed that
the increase in SOCE led to the activation of calcineurin leading
to NFAT and TFEB nuclear localization, and subsequent
initiation of autophagy. In endothelial progenitor cells,
oxidized LDL induced autophagy was accompanied by
increased STIM1 leading to activation of CaMKK2 and
inhibition of mTOR (Yang et al., 2017). On the other hand,
resveratrol a natural polyphenol, activated autophagic cell death
in prostate cancer cells, which was associated with reduced
STIM1 expression and SOCE (Selvaraj et al., 2016). Inhibition of
SOCE had similar effects to resveratrol whereas overexpression
of STIM1 reversed the effects. Similarly, knockdown of Orai1 or
pharmacological inhibition of SOCE in HepG2
hepatocarcinoma cells potentiated 5-FU induced autophagy
whereas overexpression of Orai1 attenuated 5-FU induced
autophagic cell death (Tang et al., 2017), suggesting that
STIM1 and Orai1 play significant roles in cell death
processes including autophagy.

While most of the studies on STIM/Orai related to
autophagy have been in the context of cancer, there is also
evidence that STIM/Orai is involved in the process of
autophagy in normal cells. In neonatal rat cardiomyocytes,
the putative STIM1 inhibitor ML9 induced cell death by
inducing lysosomal dysfunction and disrupting autophagic
flux (Shaikh et al., 2018). However, interpretation of these
findings needs to be considered carefully since it is well known
that ML9 inhibits several different protein kinases, including
myosin light-chain kinase (MLCK), PKA, and protein kinase
C (PKC) (Hidaka and Kobayashi, 1992; Takahashi et al., 1997;
Smyth et al., 2009). Angiotensin II (Ang II) had been shown to
induce cardiomyocyte hypertrophy in an SOCE-dependent
manner (Hunton et al., 2002), and more recently it was
reported to induce autophagy in neonatal cardiomyocytes
in an SOCE and Orai1-dependent manner (Zheng et al.,
2021). In the same study, in vivo Ang II infusion was
shown to increase autophagic flux in the heart and this was
attenuated by decreasing Orai1 levels following treatment
with an AAV-Orai1-siRNA1.

It is now readily accepted that Ca2+ plays a role in
regulating autophagy (Kondratskyi et al., 2018) and while
some have suggested that TRP channel family of Ca2+

channels contribute the regulation of autophagy
(Sukumaran et al., 2015; Sukumaran et al., 2016) there is
growing support that it is mediated via a STIM/Orai-
dependent SOCE pathway. Studies examining the extent to
which both STIM1 and Orai1 contribute to the regulation of
autophagy are warranted. Nevertheless, it is clearly context
dependent since SOCE appears to both activate and attenuate
autophagy depending on cell type and the specific stimulus.

7 REDOX REGULATION OF STIM AND ORAI
PROTEINS

Several studies have suggested that STIM and Orai proteins are
sensitive to and are regulated by changes in redox status and these
changes will be discussed in this section. S-nitrosylation is a
significant regulator of redox signaling, which is mediated
through increases in nitric oxide (NO) and subsequent
covalent attachment of NO to cysteine (Cys) thiols on
proteins. Interestingly, it has been shown that neuronal nitric
oxide synthase (nNOS), which generates NO, is expressed in the
SR (Xu et al., 1999), where STIM1 also resides. It was recently
shown by Gui et al., (Gui et al., 2018), that STIM1 undergoes
S-nitrosylation on Cys49 and Cys56 and that S-nitrosylation of
STIM1 inhibits its oligomerization and reduces SOCE. The same
study also showed that genetic and pharmacological reductions in
nNOS reduce S-nitrosylation of STIM1 and reversed changes in
SOCE. The authors speculated that STIM1 activity and SOCE
increase during heart failure because of a reduction in NO
bioavailability; however, this has yet to be determined. In
addition to S-nitrosylation, STIM1 has also been shown to
undergo S-glutathionylation, where it has been shown to have
an opposite effect on STIM1 activity and SOCE compared to
S-nitrosylation. Hawkins et al., have shown that STIM1 can be
S-glutathionylated on Cys56, which increases both the activity of
STIM1 and also increases SOCE (Hawkins et al., 2010). In the
same study, it was shown that S-glutathionylation of STIM1
modulated mitochondrial bioenergetics and Ca2+ handling
(Hawkins et al., 2010). One would hypothesize that changes in
the balance between s-nitrosylation and S-glutathionylation of
STIM1 could perhaps contribute to cardiovascular pathologies
although this remains to be determined.

It has also been shown that STIM2 is subject to oxidative
modification. For example, Gibhardt et al., (Gibhardt et al., 2020),
showed that STIM2 has an additional ten cytosolic cysteine
residues in comparison to STIM1. They also showed that
upon the induction of oxidative stress the oxidation of Cys313
on STIM2 is modified promoting a reduction in SOCE through
the prevention of STIM2 oligomerization. It has also been shown
that in response to the NO donor, nitrosoglutathione, STIM2 was
S-nitrosylated at cysteines 15, 53, and 60 in HEK cells which was
required for the stabilization of STIM2 (Novello et al., 2020). Like
STIM isoforms, Orai isoforms are also subject to redox
regulation. Of interest, it has been postulated and shown in
HEK cells that Orai1 is redox-sensitive and that Orai3 is
redox-insensitive (Alansary et al., 2015) this is largely due to
the lack of the redox sensor, Cys195 in Orai3. Mutations in the
Orai1 redox sensor, Cys195, have been shown to inhibit SOCE in
response to the knockdown of the sodium/calcium exchange in
HEK293 cells (Ben-Kasus Nissim et al., 2017). Alansary et al. have
shown that treatment of HEK293 cells with H2O2 reduces Orai1-
mediated SOCE which was shown to be the result of oxidation of
Cys195 on Orai1 (Alansary et al., 2016). It has also been shown in
HEK293 cells that hydrogen sulfide (H2S) treatment inhibits
Orai3-mediated SOCE but not Orai1 and Orai2-mediated
SOCE. The authors determined that this difference was due to
the presence of Cys226 and Cys232 in Orai3 both of which were
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absent in other Orai isoforms and were shown to mediate the
reduction in SOCE in response to hydrogen sulfide (H2S)
(Fresquez and White, 2021). It is possible that STIM1
coupling with either Orai1 or Orai3 could well depend on
cellular redox status and perhaps act as a redox sensor
although this remains to be determined. At present, it remains
unclear as to the extent to which Orai2 is regulated by redox and
oxidative stress; therefore, future studies should be aimed at
determining redox modulation of Orai2 and impact on
resultant SOCE. In addition, it remains unclear based on these
studies how these redoxmodifications of STIM and Orai isoforms
and splice variants impact the function of different cell types and
organ systems, which needs to be established moving forward.

8 PHYSIOLOGICAL AND
PATHOPHYSIOLOGICAL ROLES OF STIM/
ORAI IN THE CARDIOVASCULAR SYSTEM
It is increasingly clear that STIM-Orai signaling is an important
regulator of cardiovascular physiology and homeostasis as well as
playing a significant role in cardiovascular disease processes, such
as hypertrophy, ischemia/reperfusion (I/R), and heart failure. In
this section, we will discuss the current knowledge concerning the
canonical and non-canonical functions of STIM and Orai
proteins in the heart during instances of cardiac pathology
and during normal physiology.

8.1 STIM1
Until the early 2000s, it was believed that cardiac TRP channels
played a key role in the underlying Ca2+ signaling associated with
cardiac hypertrophy and heart failure (Nakayama et al., 2006).
However, upon the discovery of STIM1 and Orai1 as key
regulators of SOCE and with STIM1/Orai1-mediated SOCE
being associated with cardiac hypertrophy (Ohba et al., 2009;
Voelkers et al., 2010; Hulot et al., 2011; Luo et al., 2012), there was
a growing appreciation of this signaling mechanism in the heart.
In these studies, STIM1, Orai1, and resultant SOCE were all
shown to be increased and participate in the activation of
calcineurin and the nuclear translocation of NFAT to activate
hypertrophic signaling (Ohba et al., 2009; Voelkers et al., 2010;
Hulot et al., 2011; Luo et al., 2012). Of note, the study by Luo et al.,
(Luo et al., 2012), showed that STIM1L, which was very low in
healthy adult cardiomyocytes, was significantly increased in
response to the hypertrophic agonist, phenylephrine (PE). The
authors speculated that this increase in STIM1L was a stimulus
for the induction of the fetal gene program. Despite this, little
remains known regarding the function of STIM1L in the heart.
Since the establishment of a role for STIM1/Orai1 in cardiac
hypertrophy, several additional studies have tried to examine the
mechanisms driving the increase in STIM1 during hypertrophy.
One such study in neonatal cardiomyocytes treated with PE
showed that a decrease in expression of miR-223 was
responsible for an increase in STIM1 expression and
subsequent increased hypertrophic signaling, which was shown
to also involve changes in GSK3β, β-catenin, and SRY-box
transcription factor 2 (SOX2) (Zhao et al., 2018). Increased

phosphorylation of STIM1 by Fam20c Golgi associated
secretory pathway kinase (Fam20c) was also shown to
contribute to increased STIM1 expression and increased SOCE
during pressure-overload (Pollak et al., 2018), suggesting that
several signaling mechanisms are contributing to the increase in
STIM1 during pressure overload.

Rare, heterozygous gain of function mutations in STIM1 in
humans result in complex neuromuscular phenotypes, including
some cardiac involvement (Walter et al., 2015; Harris et al., 2017).
Studies of patients undergoing cardiac catheterization found
SNPs in the STIM1 gene, which correlated with metabolic
defects, ER stress, and an increase in mortality (Kraus et al.,
2015). More recently, mutations have been shown that impact
STIM1 expression. For example, it has been shown that a variant
upstream of STIM1, named rs3061890, has been associated with
coronary artery disease and has been shown to repress STIM1 in
an ELF1-dependent manner (Zhang et al., 2021). Collectively,
these studies suggest that STIM1 has an important role in
mediating cardiovascular disease although the regulatory
mechanisms governing STIM1 expression and activity in the
heart need to be further established.

After the establishment of its role in cardiac hypertrophy,
there was significant controversy in the field as to the relevance of
STIM1/Orai1-mediated SOCE in the non-diseased heart due to
the predominant regulation of cardiac Ca2+ handling on a beat-
by-beat basis by voltage-gated Ca2+ handling; therefore, the field
began to focus their attention on determining the physiological
role of both STIM1 and Orai1 in the heart. We performed the
initial phenotyping of the constitutive cardiomyocyte-specific
STIM1-KO mouse in 2014 (Collins et al., 2014). We showed
that cardiomyocyte STIM1 was an essential regulator of ER/SR
andmitochondrial function as STIM1-KOmice had a progressive
dilated cardiomyopathy associated with significant ER stress, the
presence of abnormally shaped and distributed mitochondria,
and changes indicative of increased mitochondrial fission. Using
the same mice, we later showed that cardiomyocyte STIM1 was
also an important regulator of cardiac metabolism as KO mice
had significant perturbations in both cardiac glucose and fatty
acid oxidation (Collins et al., 2019).

STIM1 has been further linked to regulating ER stress and
mitochondrial-mediated apoptosis in the heart. Using
Cardiomyocyte-specific STIM1-KO and overexpression mice
treated with doxorubicin, Zhu et al., have shown that mice
lacking STIM1 have increased cardiac injury in response to
doxorubicin treatment which was associated with increased
apoptosis and increased GRP78-mediated ER stress, and was
essentially reversed in the STIM1 overexpression model (Zhu
et al., 2021). Interestingly, in the same study, doxorubicin
treatment of wild-type mice suppressed STIM1 expression and
SOCE, suggesting that STIM1 and SOCE could contribute to
doxorubicin-mediated cardiotoxicity although this currently
remains undetermined. Several additional transgenic mouse
studies have been performed to examine the function of
cardiomyocyte STIM1. One of these studies by Parks et al.,
(Parks et al., 2016), examined the impact of inducible
cardiomyocyte-specific STIM1-KO in mice and showed a
phenotype very similar to the constitutive cardiomyocyte-
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specific STIM1-KO mice (Collins et al., 2014). However, unlike
earlier studies, this study showed that KO mice had a blunted
hypertrophic response to pressure overload. Ohba et al. (Ohba
et al., 2017) examined the impact of heterozygous STIM1-KO and
found that these mice were essentially normal at baseline, but
increased mortality was observed in the KO in response to 4-
weeks TAC despite lack of hypertrophy and induction of fetal
gene expression. The authors concluded that a partial lack of
STIM1 resulted in abnormal responses to cardiac stress; however,
this model was a whole-body STIM1 heterozygous model rather
than cardiomyocyte specific. The Houser lab also showed that
STIM1-mediated Ca2+ influx during hypertrophy contributed to
action potential prolongation, SR Ca2+ overload, Ca2+ sparks, and
CaMKII-mediated cell death determined using a combination of
pharmacological inhibition of STIM1 with BTP2 or a dominant-
negative Orai1 construct in cardiomyocytes from banded felines
(Troupes et al., 2017). These studies clearly suggest an important
role of STIM1 in cardiovascular disease processes.

In addition, changes in STIM1, STIM1L, and Orai1 have been
observed in a pulmonary hypertension model of monocrotaline-
induced RV-hypertrophy in which STIM1 expression was
reduced but the expression of both STIM1L and Orai1 were
increased and this was associated with significant changes in Ca2+

handling (Sabourin et al., 2018). Examination of cardiac
overexpression of STIM1 has also shed light on the
physiological role of STIM1. Studies by Molkentin and
colleagues (Correll et al., 2015) showed that cardiomyocyte-
specific overexpression of STIM1 not only resulted in
increased Ca2+ entry but also promoted cardiac hypertrophy,
decreased cardiac function, increased mortality, and increased
fetal gene expression which was associated with mitochondrial
ultrastructural abnormalities and significant alterations in Ca2+

handling (i.e., spontaneous Ca2+ transients, increased Ca2+ spark
frequency, increased diastolic Ca2+, and remodeling of the L-type
Ca2+ channel (LTCC) current). Like the studies in KO mice, the
responses to hypertrophic stimuli in these mice were significantly
exacerbated. Given that it appears too much or too little
cardiomyocyte STIM1 results in similar cardiovascular
phenotypes, it is likely that STIM1 levels are tightly regulated
and play significant roles in the precipitation of cardiovascular
diseases.

STIM1 has also been implicated in contributing to
cardiomyocyte injury. For example, reductions in STIM1 levels
in hypoxia/reoxygenated cardiomyocytes have been shown to
mediate reduced mitochondrial Ca2+ overload, in addition to
reduced mPTP opening and reduced ROS generation (He et al.,
2017). The protective effects of resveratrol following hypoxia/
reoxygenation experiments in isolated neonatal rat
cardiomyocytes (NRCMs), which included reduced apoptosis
and reduced Ca2+ overload were also attributed to inhibition
of STIM1 (Xu et al., 2019); however, given that resveratrol has
multiple cellular affects its direct link to STIM1 inhibition should
be considered with caution. Although it should be noted that
increasing STIM1 levels was shown to exacerbate the injury in the
same model (Xu et al., 2019).

STIM1 has also been shown to have additional roles in the
heart other than its roles in hypertrophic signaling and regulation

of ER/SR-mitochondrial function. One of these roles is in
regulating cardiac electrophysiology. For example, the
Rosenberg group showed that STIM1 is expressed in the
sinoatrial node (SAN) where it regulates SAN function
through modulation of SOCE and LTCC and the regulation of
heart rate and cholinergic responsiveness (Zhang et al., 2015a).
The same group using STIM1 reporter mice subsequently showed
that STIM1 regulates conduction from the SAN to the coronary
sinus (Zhang et al., 2020). They showed that STIM1 was an
important regulator of atrial function, interatrial conduction, and
arrhythmic activity as mice lacking STIM1 in coronary sinus
cardiomyocytes showed reductions in conduction and increased
arrhythmogenesis. In addition, Bonilla et al., (Bonilla et al., 2019),
have shown that spontaneous Ca2+ sparks in the setting of
cholinergic stress were reduced through STIM1 inhibition with
SKF-96365 and in STIM1-KO cardiomyocytes. These
observations were similar to those seen in hearts of mice with
catecholaminergic polymorphic ventricular tachycardia. We have
also shown that hearts from cardiomyocyte-specific STIM1-KO
mice have altered heart rates and significant QT prolongation
which could be the result of changes in the downstream targets of
the cardiomyocyte kinome, leading to potential crosstalk with
existing ionic channels that regulate the cardiac action potential
such as the LTCC (Collins et al., 2022). Recently, it was
hypothesized that the increased and early mortality reported
in cardiomyocyte-specific STIM1-KO mouse models could be
due to increased arrhythmogenic activity. In support of this, it
was shown that hearts from inducible cardiomyocyte specific
STIM1 knockdown mice had increased arrhythmic activity and
discordant action potential alternans (Cacheux et al., 2019). It is
likely that these arrhythmias are due to STIM1 regulating existing
action potential currents such as the LTCC although this needs to
be determined. Clearly, further studies are required to fully
determine the role of STIM1 in regulating cardiac
electrophysiology and how STIM1 interacts with other ionic
channels known to regulate the electrical activity of the heart
and to determine additional non-conical roles of STIM1.

8.2 Orai1
Studies in Zebrafish were amongst the first to indicate a
significant role of Orai1 in the heart, where Orai1 deletion
resulted in the development of heart failure and significant
ultrastructural defects (Volkers et al., 2012). Despite this,
conflicting results have been observed in mouse models.
Cardiomyocyte-specific KO of Orai1 did not give rise to a
significant phenotype at baseline as contractile function and
cardiac hemodynamics were both normal; however, when
subjected to the hypertrophic agonist, Ang II, cardiomyocyte
size and fibrosis were increased contributing to exacerbated Ang
II-dependent cardiac remodeling (Segin et al., 2020).
Interestingly, this exacerbation was associated with reductions
in both STIM1 and Orai3 expression. Interestingly, conflicting
results were observed by Bartoli et al. who used cardiomyocyte
specific Orai1 mutant mice with a mutation in the Orai1 pore and
found that inhibition of Orai1 activity during TAC resulted in
preserved cardiac function and preserved Ca2+ handling (Bartoli
et al., 2020). It has also been shown that Orai1 may contribute to
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hypertrophy associated with diabetic cardiomyopathy through
the regulation of Drp-1-dependent mitochondrial fission (Wu
et al., 2021). Specifically, inhibition of Orai1 was shown to reduce
cardiac hypertrophy and improve mitochondrial function
through reductions in Drp-1, calcineurin, and ERK1/2
activities. Like STIM1, these studies suggest that Orai1 has a
significant role in maintaining cardiac homeostasis; however, in
the same respect as STIM1, additional studies are required to
determine to fully appreciate the physiological role of Orai1 in
the heart.

8.3 Other STIM/Orai family members
For several years, the focus has been on the roles of both STIM1
and Orai1 in the physiological and pathological regulation of the
heart, with little to no focus on other members of the STIM/Orai
families. However, in recent years, STIM2, Orai2, and Orai3
isoforms have also been shown to be present in the heart and
appear to have important regulatory roles. Of these additional
isoforms, Orai3 has been the most interrogated in the heart.
Saliba et al. showed that Orai3 activity was increased in
hypertrophic cardiomyocytes (Saliba et al., 2015). Specifically,
the authors showed that Orai3 was the preferred partner of
STIM1 over Orai1 during established hypertrophy and that
increased Orai3 activity was responsible for an increase in an
arachidonic acid activated Ca2+ channel activity during
hypertrophy. In a later study by the same group, they showed
that the store-independent channel activity mediated by Orai3
during hypertrophy was largely driven by inflammation mediated
by TNFα and CD11b/c cells (Keck et al., 2019). More recently, the
physiological role of Orai3 has been interrogated in the heart
using a cardiomyocyte-specific deletion. Gammons et al.
(Gammons et al., 2021) showed that both constitutive and
inducible cardiomyocyte-specific deletion of Orai3 develop a
phenotype consistent with dilated cardiomyopathy, with
increased fibrosis, increased mortality, ultrastructural changes
in mitochondria, increased mitochondrial fission, and abnormal
sarcomeric structure; highlighting a potentially important
regulatory role of Orai3 in the heart.

A recent study examining the expression of STIM and Orai
isoforms in human failure samples indicated that in addition to
the expression of STIM1 andOrai1 being increased and decreased
in the left ventricles of heart failure patients, respectively, the
expression of STIM2, Orai2, and Orai3 remained unchanged
(Cendula et al., 2019). The reduction in Orai1 levels was restricted
to male patients, suggesting that sex differences could exist in the
expression of STIM-Orai family members, which have not been
examined in detail and could contribute to documented sex
differences that exist in heart failure progression. Interestingly,
in this same study, the STIM2 splice variant STIM2.1, shown
previously to have an inhibitory effect on SOCE in T-cells
(Miederer et al., 2015), was shown to be significantly reduced
in LV of HF patients with a reduction in the ratio of STIM2.1/
STIM2. The authors proposed this was indicative of a switch to
the stimulatory form of STIM2, STIM2.2. In a cell culture model
of cardiomyocyte I/R injury it has been shown that STIM2
expression is upregulated without change in STIM1
expression, and STIM2 knockdown was associated with

reduced levels of apoptosis, reduced mitochondrial Ca2+

overload, and preserved mitochondrial function (Tu et al.,
2020). In skeletal muscle STIM2 colocalizes and interacted
with calsequestrin to modulate diastolic Ca2+ and Ca2+

buffering; however, it remains to be determined whether this
also occurs in cardiomyocytes (Jeong et al., 2021). It is possible
that targeting STIM2 isoforms could be an important therapeutic
strategy in models of cardiomyocyte injury.

While there is growing evidence for a role of STIM2 and Orai3
in the heart future studies are required to establish their
physiological roles in the heart and how they are involved in
regulating cardiac hypertrophy and I/R injury. Moreover, our
understanding of the importance of STIM2 splice variants is in its
infancy. In addition, even though Orai2 is present in
cardiomyocytes there have yet to be any studies examining the
physiological or pathophysiological role of Orai2 in the heart.
Clearly future studies are required to better elucidate the
cardiovascular functions of all STIM/Orai isoforms and splice
variants and their roles in mediating cardiovascular disease.

8.4 Roles of STIM and Orai proteins in
non-cardiomyocyte cells in the heart
In addition to cardiomyocytes, STIM and Orai proteins are also
widely expressed in other cell types present in the heart, including
endothelial cells, vascular smooth muscle cells (VSMCs), and
fibroblasts, where they have different effects on the functionality
of each cell type. For example, it has been shown that Orai1-
mediated SOCE is important for endothelial cell function since
endothelial cells with Orai1 knockdown or inhibition have been
shown to have reduced tube formation and migration (Li et al.,
2011). In this study Orai1 disruption also reduced VEGF-
mediated Ca2+ entry. Interestingly, STIM/Orai signaling is
increased in conditions of high glucose (i.e., 25 mM) in
endothelial cells where STIM1, STIM2, Orai1, Orai2, and
Orai3 are all increased in addition to an increase in SOCE
through calcineurin/NFAT-dependent mechanisms
(Daskoulidou et al., 2015). On the other hand, coronary
endothelial cells from diabetic mice had lower STIM1 levels,
which was linked to impaired endothelial relaxation; this was
reversed by partially restoring with adenoviral STIM1 vector
(Estrada et al., 2012). These studies suggest that STIM and
Orai proteins are important for endothelial cell function in the
heart; however, more studies are required to examine the precise
functions of STIM/Orai proteins and their respective splice
variants in these cells.

STIM1/Orai1-mediated SOCE has been implicated in
regulating VSMC function in the heart. Studies by Guo et al.,
(Guo et al., 2012), have shown that siRNA silencing of both
STIM1 and Orai1 not only reduced SOCE but also prevented Ang
II-mediated cell proliferation and reduced Ang II-mediated
neointimal growth in response to balloon injury. This
reduction could be the result of changes in the expression of
Orai1 interacting partners, such as SOCE-associated regulatory
factor (SARAF) and Homer. It was recently shown that the
expression of SARAF was increased in balloon injured arteries
along with STIM1 and Orai1. SARAF was shown to specifically
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regulate Orai1-mediated VMSC proliferation in response to
balloon injury (Martin-Bornez et al., 2022). Homer has also
been shown to colocalize with STIM1/Orai1 and regulate
Orai1-mediated VSMC proliferation and neointimal growth in
the setting of balloon injured arteries (Jia et al., 2017).
Furthermore, VSMC remodeling in response to hypertension
is associated with a decrease in L-type Ca2+ channels (LTCC) and
a reciprocal upregulation of STIM1 and Orai1 (Johnson et al.,
2020). In addition, inhibition of LTCC was found to activate
STIM1/Orai1 Ca2+ entry potentially contributing to a
proliferative phenotype; however, the mechanism by which
this occurs is currently unknown (Johnson et al., 2020).
Interestingly, smooth muscle cell-specific KO of STIM1
resulted in smaller myocardial infarct size following coronary
artery occlusion and reperfusion (Mali et al., 2018), which was
associated with reductions in ER stress, reductions in both p38
and ERK1/2 signaling, reduced apoptosis, reduced fibrosis, and
reduced inflammation (Mali et al., 2018). However, the
mechanisms by which smooth muscle cell STIM1 contributes
to these processes following myocardial I/R remain to be
determined. Mice with smooth muscle cell-specific KO of
STIM1 have also been shown to have reduced myogenic tone
with higher plasma levels of catecholamines and significant
dysregulation of the cytoskeleton (Pichavaram et al., 2018).
Recently, it was shown that mice with inducible VMSC-
specific STIM1-KO had reductions in colocalization of Ca2+

clusters between the SR and PM. In addition, these mice were
shown to be hypotensive with reduced contractility in resistance
arteries (Krishnan et al., 2022). Collectively, these studies
highlight the importance of STIM/Orai signaling in VMSCs
which should be expanded upon in future studies including
determining the roles of other isoforms (i.e., STIM2, Orai2,
and Orai3) and their splice variants.

Evidence suggests that STIM/Orai-mediated SOCE may
regulate cardiac fibroblast activity during induction of cardiac
hypertrophy and the development of heart failure. Increased
SOCE has been observed in fibroblasts from failing hearts
which was associated with an increase in Orai1 expression,
increased colocalization with STIM1, and associated with
increased fibrosis (Ross et al., 2017). In addition, Zhang et al.,
(Zhang et al., 2016), have shown that upregulation of fibronectin,
connective tissue growth factor, smooth muscle α-actin, and
smad2/3-dependent signaling seen in response to Ang II
treatment could be blocked independently using both the
SOCE inhibitor, SKF-96365, and STIM1/Orai1 knockdown in
cardiac fibroblasts. Collagen synthesis and fibroblast proliferation
have both been shown to be reduced in the setting of reduced
Orai-mediated SOCE in human cardiac fibroblasts (Chen et al.,
2021). This study suggests that STIM1/Orai1 may regulate
cardiac fibroblast activity and activation. It has been shown
that SOCE may increase in aged human cardiac fibroblasts
which was associated with a reduction in the expression of
pro-fibrotic sprouty homologue 1 (Spry1) possibly
contributing to senescence-mediated fibrosis in the heart;
however, in these studies expression levels of STIM/Orai were
not changed (Mohis et al., 2018) so the catalyst driving the
increase in SOCE in this study remains unclear. Moving

forward, it will be important better understand the different
functions and roles of STIM and Orai isoforms in the various
cell types of the heart and whether these STIM/Orai isoforms
contribute to crosstalk between these cell types during
physiological and pathophysiological instances.

9 STIM/ORAI IN NEURODEGENERATION

In the adult mouse brain, STIM1 exhibits the highest expression
in cerebellum and relatively lower expression in the cerebral
cortex, whereas STIM2 is predominantly expressed in the cortex
(Moccia et al., 2015). In addition, all three Orai isoforms can be
detected in the mouse brain (Moccia et al., 2015). Orai1 appears
to be expressed at low levels across multiple brain regions. Orai2,
on the other hand, exhibits increased expression levels in the
cerebellum as well as the hippocampus. Orai3 is strongly
expressed in the cerebellum (Lein et al., 2007). In 2009,
Venkiteswaran and Hasan demonstrated that STIM1 and
Orai1 were necessary for normal flight and rhythmic firing of
the flight motoneurons inDrosophila (Venkiteswaran and Hasan,
2009). Following this study there was growing evidence that
STIM/Orai plays an important role in neuronal physiology.
Interestingly, there are a couple of studies showing that
STIM1 regulates Cav1.2, a voltage-gated calcium channel
ubiquitously expressed in neurons, cardiac muscles, and
smooth muscle cells (Park et al., 2010; Wang et al., 2010).
Neuron-specific roles for STIM/Orai include regulating axonal
growth, maintaining synaptic plasticity, as well as modulation of
memory formation. The role of SOCE in neuronal function has
been extensively reviewed elsewhere (Kraft, 2015; Moccia et al.,
2015). Here, we review current understandings of STIM/Orai
proteins in neurodegenerative processes with a specific highlight
on transgenic models.

9.1 Trauma induced neurodegeneration
Two phases of damage can be caused by trauma to the brain.
Primary damage occurs at the time of injury whereas secondary
damage can last hours to months following the initial impact
(Algattas and Huang, 2013). Our current understanding of the
mechanism(s) underlying secondary traumatic brain damage
emphasizes increased Ca2+ influx induced by substantial
release of excitatory neurotransmitters, primarily glutamate
(Weber et al., 1999). Previous studies have demonstrated the
significance of both voltage-gated calcium channels and store-
operated calcium entry in mediating trauma-induced cell damage
in the brain (Weber, 2012). In an in vivo diffuse axonal injury
model, neuronal STIM1 protein levels showed a time-dependent
increase peaking at 12 h after injury (Li Y. et al., 2013). The
authors speculated that this increase in STIM1 might contribute
to neuronal necrosis via an increase in SOCE. This concept was
supported in an in vitro traumatic neuronal injury model by Hou
et al. who showed that following traumatic injury induced by
stainless steel punch cut, STIM1 expression in mouse cortical
neurons significantly increased and peaked between 6 and 12 h
(Hou et al., 2015). The role of STIM1 in neuronal injury in this
model was confirmed by the observation that knockdown of
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STIM1 decreased neuronal apoptosis, increased viability, and
attenuated glutamate receptor 1 (GluR1)-mediated increase of
Ca2+ in the cytoplasm (Hou et al., 2015). On the other hand, Rao
et al. showed that in an in vivo cortex injury model STIM2
expression was increased up to 12 h following injury whereas,
STIM1 expression remained unchanged (Rao et al., 2015).
Moreover, they showed that knockdown of STIM2, but not
STIM1, provided protective roles in neuronal survival
following injury (Rao et al., 2015). These findings are similar
to reports that STIM2 rather than STIM1 contributes to
ischemia-induced neuronal injury (Berna-Erro et al., 2009).
The differences between these studies may be in part due to
different in vitro and in vivomodels for inducing neuronal injury.
However, different cell distribution as well as potentially different
functions of STIM1 and STIM2 may also be contributing factors.
For example, STIM2 has been implicated in regulating basal
neuronal Ca2+ levels, whereas it has been suggested that STIM1 is
an important regulator of mGluR1-mediated Ca2+ signaling
(Zhang and Hu, 2020). Similar to the cardiomyocyte studies,
targeting the balance between STIM1 and STIM2 levels should be
explored in more detail. Clearly, more studies are warranted to
further understand how STIM1 and STIM2 are involved in
trauma induced brain damage.

9.2 Ischemia induced neurodegeneration
Cerebral ischemia can be induced by a variety of events that cause
inadequate oxygen delivery to the brain, including thrombotic
stroke, embolic stroke, or systemic hypoperfusion. Low oxygen
delivery to the brain leads to an increase in glutamate release and
subsequent stimulation of glutamate receptors, primarily
NMDARs, with the resulting Ca2+ overload leading to
neuronal death. In a transient cerebral ischemia model where
the middle cerebral artery was occluded for 1 h, infarct volume in
mice lacking STIM2 was significantly lower than that of control
mice 24 h later (Berna-Erro et al., 2009). Consistent with the in
vivo data, they also reported that in vitro culture of brain tissues
from STIM2 knockout mice exhibited increased survival
following hypoxia. These protective effects were not observed
in primary neuron cultures from either STIM1-deficient mice or
Orai1-deficient mice. Interestingly, however, in wildtype mice
that were transplanted with STIM1-deficient bone marrow, there
was a 70% reduction in infarct size following the same 1-h middle
cerebral artery occlusion, suggesting that the protective roles for
STIM1 in ischemia-induced brain damage are likely due to its
function in hematopoietic cells rather than neurons (Braun et al.,
2009). Similar protective results were observed in Orai1-deficient
bone marrow chimeras (Varga-Szabo et al., 2008).

Zhang et al. showed in a rat model of global cerebral ischemia
model that STIM1 and Orai1 expression significantly increased
following injury and peaked on day 4. Additionally, STIM1
siRNA injection significantly improved neurological functions
and decreased neuronal Ca2+ levels following ischemia,
suggesting a role for STIM1 in mediating ischemia-induced
brain damage (Zhang M. et al., 2014). Orai2-deficient mice
also exhibited diminished Ca2+ signals following oxygen
deprivation and were protected from neuronal damage
resulting from transient middle cerebral artery occlusion

(Stegner et al., 2019). Some of the injury that occurs with this
model involves T-cell mediated inflammation and Orai2 is
known to regulate Ca2+ influx in T-cells. However, bone
marrow transplant studies showed that the protective effects of
a lack of Orai2 was independent of T cells (Stegner et al., 2019),
suggesting a protective role for Orai2 in this setting.

While most reports link increased STIM/Orai levels to
neuronal injury, Secondo et al., reported that STIM1 and
Orai1 expression levels decreased both in an in vitro hypoxia/
reoxygenation model and an in vivo and focal ischemia model of
stroke (Secondo et al., 2019). In addition, an ischemic
preconditioning protocol prevented STIM1 and Orai1
downregulation. Moreover, siRNA knock down of either
STIM1 or Orai1 attenuated the protection associated with
ischemia preconditioning. It was proposed that the
neuroprotection resulting from increased STIM1 and Orai1
was due to maintaining ER Ca2+ homeostasis thereby reducing
ER stress (Secondo et al., 2019). There is increasing evidence of a
role for STIM/Orai protein in ischemic injury; however, as with
traumatic neuronal injury there are discordant results regarding
the role of specific isoforms. The use of global KO models has a
potentially confounding effects, given the different cell types in
the brain. The development of inducible cell type specific STIM/
Orai transgenic and KO models will be needed to improve our
understanding of their specific roles in ischemic brain injury.

9.3 Alzheimer’s Disease
Alzheimer’s disease is a progressively worsening
neurodegenerative disease that accounts for over 60% cases of
dementia. While most cases of Alzheimer’s disease are sporadic
and have a relatively late onset, around 1–2% of cases are a result
of an autosomal dominant genetic disease. In these familial cases
onset of disease is significantly earlier (early 50s vs. over 65) (Lane
et al., 2018). Although the pathological processes between
sporadic forms and familial Alzheimer’s disease are similar,
different disease associations do exist. For instance, ApoE2
allele is associated with decreased risk of sporadic Alzheimer’s
disease whereas individuals with ApoE4 allele have increased
disease risk. The familial form of Alzheimer’s disease is associated
with several proteins, including amyloid beta precursor protein,
presenilin 1 and presenilin 2 (Lane et al., 2018).

Over the past two decades or so, numerous studies have
demonstrated the involvement of Ca2+ homeostasis and
intracellular signaling in the development of Alzheimer’s
disease (Woods and Padmanabhan, 2012; Tong et al., 2018).
By comparing intracellular Ca2+ levels in hippocampal neurons
isolated from young and mid-aged mice, Raza et al. provided
evidence that aging neurons have significantly higher basal levels
of intracellular Ca2+, suggesting that altered Ca2+ homeostasis
may be a mediator for aging related neuronal deficits (Raza et al.,
2007). Ca2+ dysregulation has been associated with cascading
events of Alzheimer’s disease with evidence that it can precede
detectable pathological changes (Chakroborty et al., 2009; Muller
et al., 2011). Specifically, inositol triphosphate and ryanodine
receptor mediated Ca2+ signaling was shown to play pivotal roles
in AD of transgenic mouse models as well as human cells
(Stutzmann et al., 2007; Cheung et al., 2010). There is growing

Frontiers in Aging | www.frontiersin.org April 2022 | Volume 3 | Article 87678519

Collins et al. Role of STIM and Orai in Age-Related Diseases

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


evidence for decreased SOCE and downregulated STIM/Orai
proteins in both the sporadic form and the familial form of
Alzheimer’s disease. For example, there was up to 70% decrease in
STIM1 levels in brain tissues from sporadic Alzheimer’s disease
patients compared to control (Pascual-Caro et al., 2018). STIM1
knockout in a neuroblastoma cell line showed that although
STIM1 was not required for neuronal cell differentiation, it
was required for cell survival (Pascual-Caro et al., 2018). In
the familial form of Alzheimer’s disease, SOCE was found to
be attenuated and endogenous presenilin 1 interacted with
STIM1 in the ER (Tong et al., 2016). These results suggest
that STIM1 may be a therapeutic target for Alzheimer’s
disease which should be interrogated further. Of note, a recent
study from Niemeyer and colleagues identified a splice variant of
STIM1, STIM1B, and showed it was significantly decreased in
both familial and sporadic forms of AD (Ramesh et al., 2021).
Although possessing higher expression level in the cortex and
hippocampus, the role of STIM2 in the disease progression of
Alzheimer’s disease has been less studied. A body of work from
Bezprozvanny and colleagues, however, provided insights to the
role of STIM2 in disease models for Alzheimer’s (Zhang et al.,
2015b; Popugaeva et al., 2015). They showed both in vitro and in
vivo that overexpression of STIM2 attenuated mushroom spine
loss induced by Ab42 oligomers and provided evidence for
STIM2-mediated maintaining of calmodulin kinase II activity.
These studies provided support for targeting STIM proteins in
Alzheimer’s disease; although, several key questions remain such
as the role of Orai proteins in Alzheimer’s disease. There is
evidence that overexpression of both STIM2 and Orai1 increased
neuronal Ca2+ level; however, no sign of neurodegeneration was
observed, suggesting a dissociation of SOCE machinery with
Alzheimer’s disease progression as determined by
amyloidogenesis and immunohistochemistry (Majewski et al.,
2020). Of note, another study showed, in a cell model of
Alzheimer’s disease, that downregulation of Orai2 increases
SOCE and decreases amyloid-beta accumulation, which
suggests a potential benefit for Orai2 knockdown in
Alzheimer’s disease (Scremin et al., 2020). In addition,
although the majority of current evidence suggest relationships
between STIM proteins and Alzheimer’s disease progression,
more work needs to be done to decipher the roles of STIM/
Orai-mediated calcium entry as well as STIM/Orai independent-
SOCE in Alzheimer’s disease.

9.4 Huntington’s and Parkinson’s Disease
Huntington’s disease is a progressive neurodegenerative disorder
that typically presents as chorea, depression, and dementia. It is
caused by an expansion of CAG trinucleotide repeats in the
resulting in mutant huntingtin (mHTT) gene. It is well
acknowledged that overstimulation of glutamate receptors as
well as the downstream effects on Ca2+ signaling plays a major
role in neuronal death in Huntington’s disease (Mccolgan and
Tabrizi, 2018). Studies have shown that SOCE is involved in the
pathogenesis of Huntington’s disease and that abnormal SOCE
leads to dysregulated synaptic response (Wu et al., 2011; Wu
et al., 2016; Wu et al., 2018). Of note, STIM2 appears to play an
important role in the disease process. Wu et al. showed increased

activity of IP3/IP3R1 pathway and overexpression of STIM2 in
neurons of a mouse model of Huntington’s disease (Wu et al.,
2016). Upregulated STIM2 senses ER Ca2+ content and leads to
further dysregulation of SOCE (Wu et al., 2016). Efforts have
been made to investigate the possibilities of targeting SOCE in
Huntington’s disease. Wu and colleagues showed that the SOCE
inhibitor, 6 amino 4 (4-phenoxyphenethylamino) (EVP4593),
quinazoline normalized motor behavior in a fly model of
Huntington’s disease. In addition, the application of EVP4593
provided protective effects in a glutamate toxicity assay in culture
(Wu et al., 2016). Importantly, in vivo administration of EVP4593
in mice rescued age-dependent striatal spine loss (Wu et al.,
2011). Ongoing efforts are directed to understanding the
molecular targets of EVP4593. Interestingly, efforts have been
made to elucidate SOCEmachinery in Huntington’s disease using
patient specific iPSC derived neurons. iPSCs were made from
fibroblasts of Huntington’s disease patients and healthy donors
and were subsequently differentiated into GABA-ergic neurons.
SOCE was significantly enhanced in neurons derived from
Huntington’s disease patients (Vigont et al., 2018). The same
group of researchers later demonstrated that in a juvenile form of
Huntington’s disease, there was increased SOCE that was
mediated by STIM2 (Vigont et al., 2021). It is important to
note that in this study all iPSCs were derived from a single donor
of juvenile Huntington’s disease so additional studies are
required.

Parkinson’s disease is currently the second most common
neurodegenerative disease affecting more than 10 million people
worldwide. Although currently the mechanisms for the loss of
dopaminergic neurons in the substantia nigra remains unclear, it
has been shown that mitochondrial dysfunction and alterations in
Ca2+ homeostasis play a large part in the process. Two studies by
Singh and colleagues demonstrated the functional role of SOCE
in dopaminergic neurons in the substantia nigra. Interestingly,
however, they reported that SOCE in these neurons were
mediated by STIM1 and TRPC1 rather than Orai1 (Selvaraj
et al., 2012; Sun et al., 2017). Dopaminergic neurons in the
substantia nigra utilize Cav1.3 as the subunit for L type
voltage gated calcium channel and following TRPC1
activation, L type Ca2+ current as well as the open probability
of Cav1.3 were reduced (Sun et al., 2017). They also reported that
silencing STIM1 and TRPC1 led to increased Cav1.3 current.
Further, application of the neurotoxin that mimics Parkinson’s
disease, 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine
(MPTP), led to increased activity of Cav1.3, and decreased
expression of TRPC1 and inhibited thapsigargin mediated
STIM1-Cav1.3 interactions (Sun et al., 2017). Zhou et al.
found that in fibroblasts from idiopathic Parkinson’s disease
patients SOCE was impaired, but there was no change in
STIM1 or Orai1 protein levels; however, the levels of PLA2g6
a Ca2+ independent phospholipase, which activates SOCE were
significantly reduced (Zhou et al., 2016). Interestingly, mutations
in PLA2g6 are associated with familial Parkinson’s disease and
they found that knockout of PLA2g6 in mice resulted in
Parkinson’s disease like symptoms. Loss of PLA2g6 was
associated with dysfunctional autophagy in dopaminergic
neurons, which was similar to that seen in Orai1-KO mice
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(Zhou et al., 2016). This study indicated that defects in PLA2g6
mediated SOCE, possibly via decreased Orai1 activity, could be a
novel mechanism contributing to Parkinson’s disease.

Currently, most studies on STIM/Orai in Huntington’s and
Parkinson’s disease have originated from only very few research
groups and clearly much remains to be learned about the role of
STIM and Orai proteins these diseases. For example, it remains
unclear why STIM2 appears to play a predominant role in
Huntington’s, whereas the STIM1-TRPC1 interactions have
been identified in models of Parkinson’s disease. Moreover, it
is surprising that there have been no reports of potential roles of
Orai proteins in these diseases, even though STIM-Orai
interactions are more commonly recognized as mediating
SOCE. Future studies on iPSCs from Huntington’s and
Parkinson’s disease patients represent a potentially valuable
area of future investigation.

10 ROLE OF STIM AND ORAI PROTEINS IN
CELLULAR AGING

While dysregulation in Ca2+ homeostasis is a hallmark of many
age-related diseases such as cardiovascular and
neurodegenerative diseases, the effect of aging itself on Ca2+

homeostasis has not received extensive investigation
(Angenendt et al., 2020). Progerin, which is caused by a
mutation in the Lamin A/C gene causes a premature aging
syndrome called Hutchinson-Gilford progeria syndrome, and
may also play a role in normal aging and in age related
diseases (Ashapkin et al., 2019). Overexpression of progerin in
myoblasts, resulted in the increased colocalization of STIM1 and
Orai1 and enhanced SOCE (Wang et al., 2020), suggesting a
potential link between aging and altered regulation of STIM and
Orai mediated SOCE. STIM and Orai function have been widely
studied in relation to the immune system and an age-related
decline in immune system function is well established across
many species (Nikolich-Zugich et al., 2012). Age-related
decreases in Ca2+ signaling have been linked to dysfunction in
aged lymphocytes. However, although the main Ca2+ signaling
pathway in lymphocytes is mediated by STIM-activated Orai
channels, little was known about the role during lymphocyte
aging. Angenendt et al., recently reported reduced SOCE in
quiescent and activated lymphocytes from 18 to 24-month-old
mice compared to 3–6-month-old mice (Angenendt et al., 2020).
This reduction in SOCE was associated with reduced mRNA and
protein levels of STIM1 and STIM2 under both conditions. On
the other hand, in an ex vivo long term cell culture model
designed to mimic aspects of aging, such as oxidative stress
and DNA damage, the amplitude of SOCE was unchanged in
aged lymphocytes although the Ca2+ dynamics following
stimulation were altered (Rivet et al., 2016). The authors
concluded that these changes in Ca2+ signaling were
potentially a consequence of increased thiol oxidation of STIM1.

Aging is known to lead to vascular dysfunction in part by
altered Ca2+ homeostasis and signaling in both VSMC as well as
endothelial cells (Harraz and Jensen, 2021). However, even
though STIM1 has been shown to be essential for regulating

smooth muscle cell Ca2+ homeostasis and growth (Mancarella
et al., 2013), little appears to be known about the role of STIM or
Orai proteins in the aging process. Aortic medial degeneration,
which is feature of both aortic dissection and aortic aneurysm is
closely associated with aging (Nesi et al., 2009). Interestingly,
microarray studies on human samples suggested that this might
be due in part to lower STIM1 expression (Butt et al., 2016). In a
murine model of aortic medial degeneration, inhibition of STIM1
exacerbated the development of medial degeneration (Hong et al.,
2019). Of note, the effects of aging on VSMCs function appears to
be dependent on specific vascular beds. For example, in 22-
month-old rats, SOCE-induced vasoconstriction was enhanced
in mesenteric arteries compared to 3-month-old rats; in contrast,
it was decreased in the aorta. These changes in vasoconstriction
were paralleled with changes in STIM1 and Orai1 protein
expression in the different arterial beds (Yang et al., 2015).
Despite the limited number of studies on the role of STIM1
on aging of the vasculature system, it appears complex and
variable depending on the location of the vascular beds.

In skeletal muscle there have been some contradictory reports,
where SOCE was maintained in muscles from aged mice despite
reduced STIM1 levels (Edwards et al., 2011) while in another
study SOCE was markedly reduced in aging muscle, but with no
changes in either STIM1 or Orai1 expression (Zhao et al., 2008).
It has also been reported that SOCE plays no role in the decrease
in fiber force that occurs in senescent mouse muscle fibers (Payne
et al., 2009). On the other hand, Thornton et al., concluded that
impaired SOCE contributed to the decrease in contractile force
characteristic of aging skeletal muscle (Thornton et al., 2011).
Tubular aggregate myopathy (TAM) is a rare disorder skeletal
muscle disorder associated with gain of function mutations in
both STIM1 and Orai1. Tubular aggregates have also been
described in extensor digitorum longus (EDL) muscles from
24-month-old male mice compared to 4–6 month-old mice
(Boncompagni et al., 2020). The increase in tubular aggregates
in aged muscle was associated with an increased accumulation of
STIM1 and Orai1 and this was prevented by voluntary running
from 9 to 24 months of age.

While there is some evidence that STIM1/Orai1 mediated
SOCE is affected during normal aging the data are somewhat
contradictory and gain or loss of function with aging appears to
be tissue specific. It is also unknown whether aging leads to
changes in the stoichiometry of STIM/Orai oligomers and if that
would lead to changes in Ca2+ signaling. Given the relative
paucity of studies examining how STIM and Orai proteins
change during normal healthy aging it is premature to draw
any firm conclusions. Nevertheless, the data that is available
suggests that this could be a rich and important area for
future research.

11 CONCLUSION

In the years since STIM1 and Orai1 were identified as the
essential mediators of SOCE, the molecular mechanisms by
which they facilitate Ca2+ entry into the cell have been
explored in detail. While the canonical roles of STIM1 and
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Orai1 are broadly accepted in non-excitable cells, arguably there
is much less consensus regarding the roles of their isoforms,
STIM2, Orai2 and 3; moreover, the identification of an increasing
number of splice variants further complicates the picture. In
excitable cells, such as neurons and cardiomyocytes, the function
of all STIM and Orai isoforms is much less clear; however, the use
of cell-specific knockout or mutant models have clearly shown
that they play an essential role in maintaining cellular
homeostasis. The observations that STIM and Orai isoforms
are subject to redox regulation has broad implications into
how they might contribute to cellular dysfunction in the
setting of oxidative stress.

Despite the rapid growth in our understanding of the role of
STIM and Orai and the widely accepted notion that they are core
elements of a highly evolutionarily conserved Ca2+ signaling
pathway in all eukaryotes, numerous gaps in our knowledge
remain. Such gaps include the understanding of the role of
many post-translational modifications on the function
(Johnson et al., 2022). In addition, considerable uncertainty
remains regarding the composition of the Orai channel itself,
its regulation by STIM isoforms and little is known how this
stoichiometry changes in response to aging or pathology. The
Orai channel has long been considered to be a hexamer composed
of three Orai1 dimers with the ion pore located in the center and
its activation occurring primarily as a result of STIM1 C-terminus
coupling to the C-terminus of Orai1 (Derler et al., 2016a). While
this has been a valuable working model it has contributed to our
lack of understanding of the functions of other STIM and Orai
isoform. The studies by Trebak and coworkers, which have
suggested that all five STIM/Orai isoforms may work together
to regulate the Ca2+ signaling responses (Yoast et al., 2020;
Emrich et al., 2021) are intriguing and could help to explain
the wide ranging differences in STIM-Orai Ca2+ signaling
observed across different tissues and cell types. A better
consensus as to the specific stoichiometry of STIM and Orai
isoforms will be critical in helping to understand their role in
aging and age-related diseases.

As we have described here, STIM and Orai proteins are
increasing recognized as regulating cellular functions beyond
the classic Ca2+ meditated transcription pathways. In addition
to metabolic and mitochondrial regulation and cell survival, a
protein complex including STIM1 is responsible for trafficking
of early and late endosomes (Villari et al., 2020), consistent with
its identification as a microtubule plus-end tracking protein.
This could have wide ranging implications given the numerous
fundamental functions of the endolysosomal system including
metabolic signaling, plasma membrane remodeling autophagy
and cell migration (Bonifacino and Neefjes, 2017). Clearly,
given their potential role in cellular dysfunction in aging and
age-related diseases, targeting STIM and Orai mediating
signaling as a potential therapeutic target is of interest.
However, as noted in the earlier section there are many
knowledge gaps that currently limit the development of such
therapeutics. However, these knowledge gaps provide
considerable opportunity for future research and as they are
filled will be improve our understanding of how defects in their
function contribute to multiple disease processes, ultimately
leading to development of novel therapeutic approaches to
modulate their function.
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