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Breast cancer (BC) is the second most common cause of cancer mortality of women 
worldwide. BC is a systemic disease with a highly heterogeneous course of disease. 
Therefore, prognostic and diagnostic biomarkers are required to improve the clinical risk 
management. Cancer-derived or cancer-associated extracellular vesicles (EVs) procured 
from the bloodstream of BC patients offer a novel platform for the qualitative and quan-
titative screening and establishment of biomarkers. Here, we focus on common aspects 
of EVs, on the function of BC-derived EVs and their translational potential considering 
the EV abundancy, intravesicular as well as outer membrane-anchored composition and 
current challenges of implementation in clinical practice.
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iNtrODUctiON: BreAst cANcer (Bc) PrOGNOsis  
AND DiAGNOsis

Breast cancer is the second most common cause of cancer mortality of women worldwide and the 
most prevalent type of cancer among woman. It is a highly heterogeneous disease and subclas-
sified according to the status of the hormone receptors progesterone (PR) and estrogen (ER), 
overexpression/amplification of the human epidermal growth factor receptor 2 (HER-2), and the 
basal-like mostly triple-negative (PR−/ER−/HER-2−) subtypes (TNBC) (1). PR and ER status 
give information about the responsiveness to adjuvant hormonal therapy (2), whereas HER-2/neu 
amplification is associated with tumor aggressiveness and chemoresistance (3). TNBC subtypes 
have the worst overall and disease-free survival compared with other subtypes (4), whereas non-
metastatic BC is associated with a long-term survival (5, 6). Conventional screening methods 
encompassing mammography and tissue biopsy investigations and the consequential multi-
modality therapy approaches including surgery, chemo-, radiation-, and hormone therapy, and 
antigen-targeted treatments with monoclonal antibodies, have definitely improved BC survival 
of low-grade and endocrine-responsive tumors (7). For these BC subtypes, the timeline of early 
detection is less critical than for high-grade or highly proliferating BC subtypes. Although the 
BC classification is informative, further molecular markers considering alterations in systemic 
proteomic, glycoproteomic, immune, and nucleic acid profiles, generally observed in BC and 
other solid malignancies (8) should be established for a better personalized risk management. 
Ideally, biomarkers should allow refining (i) early detection of BC, (ii) early prediction of relapse, 
and (iii) chemotherapy response. Heterogeneity of BC evolution within BC patients with tumor 
spread often leads to mixed clinical responses. Here a molecular profiling of metastatic tumors 
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and a monitoring of metastatic disease response would help to 
overcome tissue-based diagnostics, especially considering that 
BC metastasis are commonly localized at relatively inacces-
sible anatomic sites, such as bone, liver, and lung. Thus, liquid 
biopsy, procured from the bloodstream, offers as a non-invasive 
screening source a platform for the qualitative and quantita-
tive detection of cancer-derived or cancer-associated entities,  
e.g., extracellular vesicles (EVs), circulating tumor DNA 
(ctDNA), or circulating tumor cells (CTCs). Principally, the 
genetic information and molecular composition of entities 
acquired by liquid biopsy should be equal to tissue biopsy, 
though complications of the latter are avoided (9, 10). In 
addition, the repeated sampling permits the monitoring of 
clonal dynamics throughout the course of therapy and early 
identification of therapeutic resistance drivers or early relapse 
(9). Analysis of EVs encompasses several advantages over CTCs 
and ctDNA due to their higher abundancies and stability in the 
bloodstream, and their functionality in supporting tumor-host 
cross talk or tumorigenesis in BC. Here, we focus on common 
aspects of EVs, on the function of BC-derived EVs, their trans-
lational potential considering abundancy, intravesicular as well 
as outer membrane-anchored composition, and challenges of 
implementation in clinical practice.

tHe stAtUs QUO OF cOMMON  
AsPects OF evs

the Four categories of evs
Extracellular vesicles are bi-lipid membrane vesicles secreted by 
a broad range of cells including tumor cells. The cell of origin 
controls EV assembly making them highly heterogeneous in size, 
membrane composition, and molecular content of protein and 
genetic information (11). According to their size and biogenesis, 
EVs can be classified in several subtypes: small EVs designated 
as exosomes (70–150 nm) are secreted via a multivesicular-body 
endocytic process (12); microvesicles (100–1,000 nm) are formed 
by outward budding and scission of the plasma membrane 
(13); apoptotic bodies (>500  nm) are generated from plasma 
membrane blebs of apoptotic tumor cells (14) and oncosomes 
are non-apoptotic membrane blebs of amoeboid cancerous 
cells (>1,000–10,000  nm) (15). Hitherto, discrimination relies 
primarily on their size as the exclusive identification of a specific 
subtype is virtually impossible by certain invariant housekeeping 
markers.

the Outer Membrane-Anchored and 
intravesicular composition of evs
The outer membrane-anchored composition includes trans-
membrane or lipid-bound extracellular proteins. The intrave-
sicular or rather the inner content encompasses proteins, lipids, 
metabolites, and nucleic acids as DNA, mRNA, microRNA, and 
other non-coding RNAs. Both compositions reflect their parent 
cell and their activating/health status at time point of generation 
(16, 17). In general, the lipid membrane of EVs prevents their 
cargo from enzyme degradation, preserves their functionality 
and facilitates their transfer even over a long distance (18, 19). 

Current characterization and verification of EVs is based on the 
detection of typical EV markers including (i) transmembrane or 
lipid-bound extracellular proteins, e.g., tetraspanins, cell adhe-
sion molecules, integrins (20–22) and (ii) cytosolic proteins 
with membrane- or receptor-binding capacity as members of 
endosomal sorting complexes required for transport of EVs as 
the tumor susceptibility gene 101 (20, 23). According to recom-
mendation of the international society for EVs (20) EV prepa-
rations should be semiquantified for at least one EV-enriched 
protein of each group mentioned earlier and one appropriate 
negative control, being an intracellular protein not associated 
with the plasma membrane or endosomes.

the Functional implication of evs
Extracellular vesicles can exert their functions via three mecha-
nisms: (i) receptor–ligand interaction, (ii) direct fusion with 
plasma membrane, and (iii) internalization of EVs from target 
cells by phagocytosis, clathrin- and caveolin-mediated endocyto-
sis or micropinocytosis, to transfer genetic information/bioactive 
molecules to target cells or to participate in intracellular signaling 
(24). Horizontal transfer of genetic information allows EVs to 
regulate the recipient cell at a posttranscriptional level, retaining 
features of the originating tissue or of its microenvironment (11). 
Depending on their composition, EVs can orchestrate multiple 
systemic processes such as cell-to-cell communication, and 
participate in the maintenance of normal physiology (25, 26). 
Furthermore, EVs can induce gene expression modifications, 
and activate or suppress immunological responses introducing 
homeostasis of immune tolerance (27–29). In tumorigenesis, 
EVs can promote tumor progression by inducing normal cell 
transformation, remodel the surrounding parenchymal tissue, 
and modulate the immune system (25, 26, 28). Interestingly, EVs 
can mediate radiation-induced bystander signaling transferring 
radiation effects to non-targeted cells (30, 31), and composition 
of EVs can be modified upon environmental stress such as radia-
tion (32, 33).

the challenge to isolate Pure ev Fractions
Extracellular vesicle purification bears challenges due to their 
small size and physicochemical properties (34). So far, the 
choice of purification technique clearly depends on the scientific 
issue being addressed and on further downstream applications 
used. Methods for purification encompass precipitation kits, 
size-exclusion chromatography, and sequential centrifugation 
followed by an ultracentrifugation step, with the latter being 
the current gold standard in the field (35, 36). Disadvantages 
such as reproducibility, potential vesicular disruption impairing 
the functionality of EVs, or contamination with non-vesicular 
components, impede the establishment of a standardized method 
(37). A novel method based on a commercially available bind-
elute size-exclusion chromatography might revolutionize EV 
purification (37).

tHe stAtUs QUO OF evs iN Bc

Extracellular vesicles resemble cancer-derived characteristics and 
a plethora of proteins is often enriched compared with their cell of 
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origin (38). Hence, recent cancer research is focusing on defining 
EV subpopulations based on their cargo as an enrichment of a 
specific cargo in EVs promotes a wide-range of cellular functions 
in the context of malignancies.

the Functional implication of evs Derived 
From Bc cell Lines
Different BC cell lines secrete EVs with distinct protein signatures 
in quantities correlating with increasing metastatic potential, 
likely facilitating cell migration and metastasization. EVs from 
murine BC cell lines with metastatic features harbor a distinct set 
of membrane-anchored proteins including Ceruloplasmin and 
Metadherin which promote cancer metastasis (39). A potential 
mediator of BC cell activity, motility, and metastasis seems to 
be exosomal CD81 secreted from human fibroblasts triggering 
activation of the autocrine Wnt-planar cell polarity signaling 
pathway (40). Accordantly, mesenchymal stem-cell-derived EVs 
promote migration of MCF-7 BC cells by activation of the Wnt-
signaling pathway (41). Furthermore, EVs released by human 
BC cell lines containing the epidermal growth factor receptor 
(EGFR) ligand amphiregulin increase invasiveness of recipi-
ent cancer cells (42). Interestingly, EVs carrying the apoptosis 
inhibitor Survivin—a protein overexpressed in BC tissues and 
associated with chemo- and radiotherapy resistance—are linked 
to tumor recurrence and reduced patient’s survival. The TNBC 
cell line MDA-MB-231 releases elevated numbers of Survivin-
rich EVs upon chemotherapy, thereby promoting tumor survival 
(43). Furthermore, glutathione S-transferase P1-containing 
EVs derived from chemoresistant cells seem to induce a drug-
resistant phenotype (44). Consistently, therapeutic-induced 
senescent TNBC cells release enhanced levels of EVs containing 
key factors linked to cell proliferation, ATP depletion, apoptosis, 
and the senescence-associated secretory phenotype (45). EVs 
secreted by tumor-associated macrophages (TAM) can promote 
BC invasion and metastasis formation, whereas BC-EVs carrying 
miR-16 inhibit TAM infiltration and polarization of the tumor-
supportive M2 macrophage phenotype (46, 47). In addition, 
compared with EVs from non-tumorigenic cells, miRNA are 
enriched in BC-EVs, and these EVs can actively convert pre-
miRNA into mature miRNA (48). Cells of the non-malignant 
mammary epithelial cell line HMLE transform into tumorigenic 
cells upon exosomal uptake of MDA-MB-231-derived miR-10b. 
Strikingly, EVs can contain double-stranded DNA which repre-
sents the entire genome mirroring the mutational status of the 
parental tumor cell (49, 50). Together, these and other studies 
(51–53) provide the concept of EVs being a central player in the 
pathogenesis of BC. Due to the miscellaneous decisive roles of 
EVs in tumor-promoting processes great efforts have been made 
to investigate its translational potential as a circulating biomarker 
in blood of BC patients.

the translational Potential of circulating 
Blood ev counts in Bc
Likely due to the extracellular acidity of malignant tumors, 
BC and other tumor entities produce EVs in relative high 
abundance compared with normal cells which can be locally 

restricted or systemically released (24, 54–57). Hence, EV 
count may serve as a surrogate marker for disease detection, 
whereas EV biochemistry may provide molecular markers 
to assess tumor severity (58). Systemically released EVs are 
detectable in nearly all body fluids including blood and ascites 
fluids, or pleural effusions (59). In primary, non-metastatic, 
locally advanced BC patients undergoing neoadjuvant chemo-
therapy (NACT) EV counts are associated with nodal status 
before NACT suggesting that tumor cells resident in lymph 
nodes release enhanced EV levels into circulation (54). In 
addition, EV counts strongly correlate with tumor size before 
NACT (54). As enhanced EV count before NACT is associated 
with therapy failure, it is likely that high amounts of EVs nega-
tively impact therapy response. Post NACT high EV levels are 
associated with a reduced 3-year progression-free and overall 
survival (54). Interestingly, high EV levels are inversely associ-
ated with presence of CTCs (54). Here, it can be hypothesized 
that CTCs consume EVs for maintaining their BC phenotype 
in the periphery. Thus, EVs and CTCs isolated from one patient 
at the same time point uncover different, but yet complemen-
tary information on BC disease status and prognosis (60). 
Consequently, EVs and CTCs should be analyzed simultane-
ously from liquid biopsies to evaluate minimal residual disease 
and to improve the understanding of the underlying biology of 
BC heterogeneity (54).

the translational Potential of 
intravesicular components in  
circulating Blood evs of Bc
Expression of the cancer marker focal adhesion kinase is signifi-
cantly elevated in BC-EVs in ascending order with disease stage 
(61). Similar, levels of carcinoembryonic antigen and cancer anti-
gen 15-3 in circulating EVs of BC patients are linked to cancer 
progression (62), but do not facilitate a marker of early stage (63). 
In addition, the proapoptotic splice variant Survivin-2B packaged 
into circulating serum EVs is discussed as an early diagnostic 
and/or prognostic marker in BC (64). HSP72 present in EVs from 
breast and other solid cancers interacts with the toll-like receptor 
2 on myeloid-derived suppressor cells which induces their activa-
tion and thus promotes an immunosuppressive pathway involved 
in tumor-induced tolerance (65). Besides intravesicular proteins, 
a plethora of microRNAs involved in BC progression has been 
identified in BC-derived EVs (62, 66). Of note, serum-derived 
EVs of BC patients can contain (i) the RNA-induced silencing 
complex-loading complex proteins, (ii) the enzyme Dicer, (iii) 
the transactivating response RNA binding protein (TRBP), and 
(iv) argonaute 2, which are essential compounds required for 
miRNA biogenesis. Thus, blood EVs have the potential capacity 
to convert pre-miRNAs to mature miRNAs (48). Indeed, levels 
of miR-21 and miR-1246 are elevated in plasma-EVs from BC 
patients (67) than in healthy controls. Moreover, higher levels 
of miR-105 in BC serum EVs are associated with metastasis 
formation representing a potential marker for advanced BC and 
prognostic outcome during course of disease (68). In serum of 
BC patients, vesicular, but not cell-free circulating, miR-101, 
miR-372, and miR-373 are increased compared with healthy 
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controls, the latter being suggested to be indicative for TNBC 
phenotype (69).

the translational Potential of Outer 
Membrane-Anchored components in 
circulating Blood evs of Bc Patients
Besides the vesicular packaging of cancer cell-specific cargoes, 
diverse cancer markers are increased on the outer surface of 
EVs derived from BC patients compared with healthy controls. 
Expression of the oncogenic marker CD24 on EVs might be 
clinically relevant in BC and ovarian carcinoma (70). In addition, 
expression levels of EGFR are increased in BC-EVs in a disease 
stage dependent manner (61). Not only the tumor-derived 
molecules MUC1, EGFR, and EpCAM but also the matrix metal-
loproteinase inducer EMMPRIN are identified in blood-derived 
EVs of patients with BC and other solid tumor entities (38). 
Presence of these molecules was significantly associated with 
a reduced overall survival. Furthermore, the transient recep-
tor potential channel (TRCP5) integrated in the membrane of 
EVs can mediate chemoresistance to chemo-sensitive BC cells. 
Indeed, levels of BC plasma-derived EVs carrying TRCP5 cor-
related with its expression levels in BC tissues and with tumor 
response to chemotherapy (71). Interestingly, chemotherapy can 
increase the CD144 or CD62e EV subpopulation, which might be 
indicative for chemotherapy-related thrombogenicity or vascular 
damage (72). Glypican-1 (GPC1) is a membrane-anchored pro-
tein overexpressed in BC and pancreatic cancer (73) modulating 
mitogenic effects of various heparin-binding growth factors in 
these tumors (74, 75). Consequently, presence of GPC1-EVs in 
the blood of these patients is discussed as promising biomarker 
(73). Several additional cancer markers have been identified on 
BC-EVs including HER-2 and HLA-G, both being associated with 
tumor proliferation, invasiveness, drug resistance, and metastasis 
formation (76, 77). HER-2 serves as a prognostic indicator for 
tumor aggressiveness and chemoresistance. EVs derived from 
HER-2-overexpressing BC cells have been suggested to contrib-
ute to this, as they express active HER-2 which potentially binds 
to the HER-2 antibody, thereby impairing therapy outcome (76). 
Moreover, resistance to HER-2-targeted therapy seems to be asso-
ciated with increased levels of TGFβ1 levels in blood EVs derived 
from HER-2+ BC patients (78). HLA-G, which induces immune 
tolerance and mediates tumor escape (79, 80), is a biomarker for 
malignancies comparable to other immune checkpoint molecules 
(77, 81). High levels of HLA-G in EV fractions positively corre-
late with disease progression of primary, non-metastatic, locally 
advanced BC patients undergoing NACT (54). In addition, 
presence of stem-cell like CTCs is positively associated with high 
HLA-G levels in EV fractions (54).

tHe cHALLeNGe tO estABLisH AND  
tO iNteGrAte ev-DeriveD Bc 
BiOMArKers iN tHe cLiNic

Hitherto, studies on circulating blood EVs dealing with EV 
counts and phenotypes in BC patients clearly demonstrated the 
translational potential. However, isolation and characterization 

methods and corresponding analysis instrumentation limit 
the translational power of EV research. Instrumentation used 
for determination of shape, size, and number include electron 
microscopy, nanoparticle tracking analysis, dynamic light scatter, 
and resistive pulse sensing. Although the three latter are suitable 
for high-throughput analyses, these techniques fail to distinguish 
BC-derived/associated EVs from the total EV population in the 
blood. Selective identification of discrete sets of EVs can only be 
achieved via BC-derived/associated molecules expressed on the 
outer EV membrane. The issue is that due to the small diameter 
size, the vast majority of EVs present only 10 copies of a protein, 
whereas cells express thousand copies (82). Thus, sensitivity of 
common flow cytometers reaches their limitation to detect EV 
populations (83), albeit labeling these few proteins with antibod-
ies conjugated with bright fluorescence dyes. In addition, as mul-
tiple small vesicles are simultaneously illuminated as a swarm, 
EV count within a distinct population is diminished (84, 85). 
Nevertheless, as accurate determination of EV-derived biomark-
ers and simple test performing are prerequisite for the successful 
integration into daily clinical practice, flow cytometric methods 
appear to be the best choice due to their high throughput and 
multiplexed capabilities. New methods such as flow cytometric 
scatter ratio (86) are promising approaches to overcome these 
difficulties.

A second issue is related to the design of clinical studies and 
how to define disease markers in BC. By comparing circulating 
blood EVs in BC patients at diagnosis, pre- and posttreatment, 
during follow-up, and correlating with clinical and pathologic 
development, we might be able to predict therapeutic response 
and patient prognosis. For the establishment of reliable early pre-
diction markers in BC, it is inevitable to analyze blood-derived 
EVs before tumor diagnosis. This implies a long-term obser-
vational study of continuous blood sampling enrolling women 
undergoing mammography with initial negative test results until 
tumor diagnosis. This study design, however, is only feasible in 
national study centers.

cONcLUsiON AND PersPective

At present, clinical studies clearly highlight the translational 
potential of blood-derived EVs in BC. In future, enumera-
tion and qualitative/qualitative evaluation of EVs, express-
ing a distinct set of tumor-derived/associated markers, 
will provide crucial information for the risk management 
of BC patients in conjunction with their physical exami-
nation. Due to the fact that different tumor entities share 
common phenotypes considering hypoxia, nutrient supply 
and extracellular acidity, it is likely that a set of certain EV 
subpopulations of BC patients are meaningful in the integra-
tion of risk management protocols for other malignancies. To 
guarantee a fast implementation of the translational power of 
blood EVs in clinical practice, it is essential (i) to establish 
innovative methods for EV isolation and characterization,  
(ii) to design and conduct clinical discovery and validation 
studies permitting the monitoring of clonal dynamics of 
BC and other solid malignancies throughout the course of 
therapy, and (iii) to establish long-term observational control 
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cohorts. The latter one can best be realized for BC as woman 
undergo serial preventive medical examination by mammog-
raphy. The translational power of EVs is not restricted to risk 
management of cancer patients regarding early identification 
of tumor development, therapeutic resistance drivers, or 
early relapse. Introduction of therapeutically engineered 
endogenous EVs represents promising novel strategies for 
the efficient and targeted delivery of therapeutics which 
reduce the cytotoxic side effects of current cancer treatments 
(87–89).
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