
Introduction

The highly-conserved exocyst complex comprises eight 
proteins, Exoc1-8 (originally named Sec3, Sec5, Sec6, 
Sec8, Sec10, Sec15, Exo70, and Exo84). The exocyst was 
first identified in the budding yeast, Saccharomyces cere-
visiae. The six Sec proteins, named because mutations 

inhibited secretion (or exocytosis), were discovered by 
Novick, Field, and Schekman almost four decades ago 
in their classic genetic screen. These investigators had a 
simple, yet elegant idea, that if the mother cell could not 
secrete into the daughter cell, then S. cerevisiae mutant 
cells that were temperature-sensitive for secretion and 
cell surface growth would become heavier during incu-
bation at the non-permissive temperature (37°C). This 
would allow for the selection of mutants by sedimenta-
tion of mutagenized cells on a Ludox density gradient [1]. 
This work was at least partially responsible for Dr. Randy 
Schekman being awarded the Nobel Prize in Physiology 
or Medicine in 2013. TerBush and Novick [2] later puri-
fied the exocyst protein complex containing Exoc1-6 
(the six Sec proteins) and two additional subunits, Exoc7 
and Exoc8 (Exo70 and Exo84, respectively). Mamma-
lian homologues of all eight yeast exocyst proteins were 
identified from rat brains by Hsu et al [3] in 1996. All of 
the exocyst components are hydrophilic proteins which 
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mutually interact to form a 19.5S complex peripherally 
associated with the plasma membrane [4]. The exocyst is 
thought to act as a holocomplex.

Regulation of the exocyst complex

In yeast, mutants of individual exocyst proteins accu-
mulate vesicles in the cells because the vesicles cannot 
dock or fuse with the plasma membrane. The exocyst 
proteins localize to regions of active cell surface expan-
sion, the bud tip at the beginning of the cell cycle and 
the mother-daughter cell connection during cytokinesis. 
Therefore, the exocyst complex is considered involved in 
directing vesicles to their precise sites of fusion [5-8].

The exocyst plays a central role in exocytosis; how-
ever, how the exocyst is regulated remains unclear. The 
exocyst, due to its complexity and ubiquity, potentially 
integrates many different inputs. Recent data from our 
laboratory and other studies have shown multiple small 
GTPases regulate the exocyst, including members of the 
Rab [6], Rho [9-14], Ral [15-18], and Arf [19,20] families 
(Table 1). Guanine nucleotide exchange factors (GEFs) of 
the small GTPases, such as Tuba, a GEF for Cdc42 [14,21], 
and Sec2 (mammalian homolog is Rabin8), a GEF for 
Sec4 (mammalian homolog is Rab8) [22], have also been 
shown to regulate exocyst (Table 1).

The first small GTPase found to interact with the exo-
cyst complex was Sec4 (mammalian homolog Rab8), the 
founding member of the Rab family (Fig. 1) [6]. Rabs are 
important regulators of all vesicular trafficking events 
and Sec4 is essential for a post-Golgi event in yeast secre-
tion. Genetic analysis indicated Sec4 functions upstream 
of the exocyst. The exocyst component Exoc6, specifically 
associates with secretory vesicles and interacts with Sec4-

GTP, which is found on the surface of the vesicular mem-
brane. The interaction of Sec4-GTP with Exoc6 triggers 
further interactions between Exoc6 and other exocyst 
components, eventually leading to docking and fusion of 
vesicles with specific domains in the plasma membrane.

Because the exocyst localizes specifically to regions of 
active secretion and cell growth, how this localization 
is controlled is important. The second class of GTPases 
found to interact with the exocyst are members of the 
Rho family. Several rho1 mutant alleles were identified in 
a search for mutants regulating the localization of green 
fluorescent protein (GFP)-tagged exocyst subunits in 
budding yeast [11]. The best-known Rho family function 
is organizing the actin cytoskeleton; however, Rho1 ex-
erts different effects on the exocyst via direct interaction 
between Rho1-GTP and the exocyst component Exoc1, 
which has been proposed as a “landmark” for defining 
polarized domains in the plasma membrane [5]. Another 
Rho family protein, Cdc42, was also shown to interact 
with Exoc1 and was required for the initial targeting of 
Exoc1 to the emerging yeast bud. Both Rho1 and Cdc42 
interact with the Exoc1 N-terminus and mutually com-
pete for Exoc1 binding in vitro. Possibly, Cdc42 and Rho1 

Figure 1. Model showing the involvement of the exocyst in cilio-
genesis. Genes are transcribed into messenger RNA (mRNA) in the 
nucleus, and mRNA is translated into proteins in the endoplasmic 
reticulum. Proteins destined for the primary cilium are packaged 
in vesicles in the trans-Golgi network and trafficked to the primary 
cilium by the exocyst complex. The small GTPase Cdc42 localizes 
the exocyst to the primary cilium. Exoc5 is a central exocyst member 
because it connects Exoc6 (bound to the vesicle via Rab8) to the 
rest of the exocyst complex. Adapted from reference [36].

Table 1. Small GTPases and GEFs shown to regulate the exocyst
GTPase Family Reference

Rab8 (Sec4) Rab [6]
Rabin8 (Sec2) GEF for Rab8 [22]
Arf6 Arf [19]
Arl13 Arf [20]
RalA Ral [15-18]
Rho1 Rho [5]
Rho3 Rho [9,12]
Cdc42 Rho [13]
Tuba GEF for Cdc42 [14,21]

GEF, guanine nucleotide exchange factor.
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interact with Exoc1 at different stages of the yeast cell 
cycle in vivo [13].

In addition to the direct interaction of Rho1 and Cdc42 
with Exoc1, another Rho family protein, Rho3, was 
shown to associate with Exoc7, a different exocyst sub-
unit [9,12]. The interaction between Rho3 and Exoc7 was 
greatly reduced when mutations were introduced into the 
Rho3 effector domain. The interaction between Rho3 and 
Exoc7 was dependent on the presence of Rho3-GTP [12]. 
Mutations in the Rho3 effector domain revealed roles 
in the regulation of actin organization, transport of exo-
cytic vesicles to the bud, and docking of vesicles with the 
plasma membrane. Reportedly, Exoc7 mediates vesicle 
docking [9].

The mammalian exocyst (Sec6/8 complex) also local-
izes to areas of active exocytosis. In developing neurons, 
the exocyst localizes to growth cones and the tips of 
growing neurites [23]. In renal epithelial cells, the exocyst 
is concentrated near the tight junctions, a postulated re-
gion of active basolateral membrane addition [4], and the 
primary cilium [24], and regulates transport of vesicles 
between the trans-Golgi network (TGN) and plasma 
membrane [25]. When cultured in three-dimensional 
(3D) collagen gels, Madin-Darby canine kidney (MDCK) 
epithelial cells form multicellular cysts and, in response 
to hepatocyte growth factor, form tubules. This in-vitro 
system is a good model for studying the molecular path-
ways by which epithelial cells form these higher order 
structures [26,27]. Using this system, we showed the exo-
cyst complex relocalized concomitant with changes in 
cell polarity that occur during these processes. Moreover, 
overexpression of the exocyst subunit Exoc5 specifically 
increased the synthesis of secretory and basolateral pro-
teins, as well as the formation of cysts and tubules, in-
dicating the exocyst is centrally involved in these higher 
order processes [28].

The exocyst is centrally involved in ciliogenesis

As stated above, the exocyst is involved in multiple cel-
lular processes including basolateral transport [4,28], 
ciliogenesis [29], and protein translation in the endoplas-
mic reticulum [30,31]. Therefore, determining the mech-
anism by which the exocyst is involved in these processes 
is important. The involvement of the exocyst in primary 
ciliogenesis is particulary important because primary cil-

ia are centrally involved in the pathogenesis of autosomal 
dominant polycystic kidney disease (ADPKD), the most 
common, potentially lethal genetic disease in humans, 
affecting 12,000,000 patients worldwide. In ADPKD, mas-
sive cystogenesis mechanically destroys the kidneys [32].

In 2017, the crystal structure of the central exocyst 
component, EXOC5, was solved [33], and an in-vivo 3D 
integrative approach to the exocyst was performed [34]. 
The details of the exocyst complex structure using cryo-
elecron microscopy was recently reported [35]. EXOC5 
contains a VxPx ciliary targeting sequence that is highly 
conserved from yeast to humans. We analyzed solvent 
accessibility of the Val666, Ala667, and Pro668 residues of 
EXOC5 represented by the 5h11 structure [33]. Solvent-
accessible surface areas were 37, 49, and 52 Å2 and rela-
tive accessibilities were 32%, 73%, and 50%, respectively. 
Thus, all three residues are exposed to solvent and 
available for binding, although proline to a greater de-
gree than valine. Therefore, we performed site-directed 
mutagenesis of EXOC5-myc cDNA in a pcDNA3 vector, 
mutating the cytosine at position 2002 to a guanine (cca 
to gca), causing translation of alanine instead of proline. 
Successful site-directed mutagenesis was confirmed by 
sequencing the full cDNA transcript. The pcDNA3 vec-
tor containing the mutated human EXOC5-myc ciliary 
targeting sequence was transfected into MDCK cells and 
stable cell lines generated. Three clonal cell lines ex-
pressing the mutated human EXOC5-myc ciliary target-
ing sequence were identified (G5, G7, and G9) using an 
antibody we generated against human EXOC5 [29].

The EXOC5 ciliary targeting sequence-mutated protein 
was confirmed stable and able to bind other members 
of the exocyst complex. Next, stably controlled, EXOC5-
overexpressing (OE), Exoc5 knockdown (KD), and EXOC5 
ciliary targeting sequence-mutated MDCK cells, were 
cultured on Transwell filters. Results showed primary 
ciliogenesis was increased in EXOC5 OE cells and inhib-
ited in Exoc5 KD and EXOC5 ciliary targeting sequence-
mutated cells. Next, the EXOC5 OE, Exoc5 KD, EXOC5 
ciliary targeting sequence-mutated, and control MDCK 
cells, were grown in collagen gels until the cyst stage. 
Results showed EXOC5 OE cells formed mature cysts 
with single lumens more rapidly than control cysts, and 
Exoc5 KD and EXOC5 ciliary targeting sequence-mutated 
MDCK cells failed to form mature cysts, indicating the 
exocyst, acting through the primary cilium, is necessary 
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for cystogenesis. Hepatocyte growth factor was added 
to induce tubulogenesis in the EXOC5 OE, Exoc5 KD, 
EXOC5 ciliary targeting sequence-mutated, and control 
cell cysts. EXOC5 OE cell cysts formed tubules more ef-
ficiently than control MDCK cell cysts. EXOC5 ciliary 
targeting sequence-mutated MDCK cell cysts formed sig-
nificantly fewer tubules than control cell cysts, and Exoc5 
KD cysts did not undergo tubulogenesis, indicating the 
exocyst, acting through the primary cilium, is necessary 
for renal tubulogenesis. Finally, EXOC5 messenger RNA 
(mRNA) completely rescued the ciliary phenotypes in 
exoc5 mutant zebrafish, and the EXOC5 ciliary targeting 
sequence-mutated mRNA could no longer efficiently res-
cue the phenotypes. Taken together, these data showed 
the exocyst, acting through the primary cilia, was neces-
sary for renal ciliogenesis, cystogenesis, tubulogenesis, 
and development (Fig. 1) [36].

Exoc5 floxed mice

Because Exoc4 global knockout mice die very early dur-
ing embryogenesis (during gastrulation) [37], a floxed 
exocyst mouse line was generated to study the func-
tion of the exocyst in murine kidneys. To the best of our 
knowledge, in 2015 we generated the first and only exo-
cyst floxed mouse, Exoc5fl/fl [38]. Kidney-specific Exoc5 
knockout mice that survived for 30 days had cystic kidney 
disease [39].

The exocyst is involved in other renal processes 
and diseases

We hypothesized that different small GTPases found at 
different locations in the cell, give the exocyst specific-
ity of function. Using cell culture, zebrafish, and kidney-
specific knockout mice, Cdc42, a Rho family member, 
was found at the primary cilium and shown to regulate 
the exocyst [10]. Similarily, Tuba, a ciliary Cdc42 GEF, 
regulates the exocyst and is necessary for proper cilio-
genesis, cystogenesis, and tubulogenesis [14,21]. Arl13b, 
an Arf family member, in its GTP form was shown to 
regulate the exocyst. Arl13b and Cdc42 genetically inter-
act in zebrafish, and knockout of Arl13b in mice leads to 
renal cystogenesis, which phenocopies mice surviving 
for 30 days after kidney-specific knockout of Exoc5 [20]. 
Because multiple small GTPases appear to regulate the 

exocyst at the primary cilium, the exocyst, in addition to 
trafficking vesicles to the primary cilium, may have other 
function(s) in the primary cilium (e.g., secretion or re-
trieval of small extracellular vesicles). We have previously 
shown the exocyst, as well as regulators of the exocyst, 
are found in human urinary extracellular vesicles [40].

Another function of the exocyst in the kidney may be a 
role in the injury and/or recovery of renal tubule epitheli-
al cells. Exoc5 overexpression in MDCK cells protects the 
cells from injury, which is mediated through the MAPK 
pathway [41-43]. This may involve primary cilia because 
unilateral nephrectomy in mice elongates primary cilia 
in the remaining kidney [44]. We are currently generating 
proximal-tubule specific Exoc5 OE and knockout mice to 
test this hypothesis. Preliminary results show that proxi-
mal tubule-specific Exoc5 knockout mice are significantly 
more susceptible to ischemia/reperfusion injury than 
control littermate mice (unpublished data).

In addition, we examined the role of the exocyst in 
podocyte development and disease. We identified two 
patients with exocyst deletions. In addition, all podocyte-
specific Exoc5 knockout mice died with 30 days and ex-
hibited severe proteinuria and renal failure. This was a 
cilia-independent exocyst effect, as podocyte-specific in-
traflagellar protein 88 (Ift88) knockout mice did not have 
proteinuria or a phenotype [45].

The exocyst in other organs

Due to the ubiquitous expression of the exocyst com-
plex, we hypothesized the exocyst affects ciliogenesis in 
other organs. After examining exoc5 knockout zebrafish 
[46], and generating photoreceptor-specific Exoc5 knock-
out mice (photoreceptors are modified primary cilia) 
[47], the exocyst, regulated by Cdc42, was shown to be 
necessary for eye development. Photoreceptor-specific 
knockout of Exoc5 in mice resulted in blindness [47]. Our 
collaborators in South Korea showed the exocyst also ap-
peared necessary for cilia development in the ear [48]. 
Finally, patients with ADPKD have abnormal cardiac 
valves [49], especially biscuspid aortic valves (BAV) [50]. 
We recently showed that cardiac valves have cilia during 
development, but not in adulthood [51], and endocardi-
al-specific Exoc5 knockout mice have BAV (unpublished 
data).



Kidney Res Clin Pract   Vol. 38, No. 3, September 2019

264 www.krcp-ksn.org

Summary

The exocyst is a very important complex that targets and 
docks vesicles translocating from the TGN to various sites 
in renal cells, including the primary cilium. This complex 
appears to have many functions in the kidney that are 
likely a result of different small regulatory GTPases act-
ing on the exocyst. By manipulating the exocyst and/or 
its regulators, many renal diseases and possibly diseases 
affecting other organs, could be treated.
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