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ABSTRACT
Background. Clear Cell Renal Cell Carcinoma (CCRCC) is themost aggressive subtype
of Renal Cell Carcinoma (RCC) with high metastasis and recurrence rates. This study
aims to find new potential key genes of CCRCC.
Methods. Four gene expression profiles (GSE12606, GSE53000, GSE68417, and
GSE66272) were downloaded from the Gene Expression Omnibus (GEO) database.
The TCGA KIRC data was downloaded from The Cancer Genome Atlas (TCGA).
Using GEO2R, the differentially expressed genes (DEG) in CCRCC tissues and normal
samples were analyzed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed inDAVID database. A protein-
protein interaction (PPI) network was constructed and the hub gene was predicted
by STRING and Cytoscape. GEPIA and Kaplan-Meier plotter databases were used for
further screening of Key genes. Expression verification and survival analysis of key genes
were performed using TCGA database, GEPIA database, and Kaplan-Meier plotter.
Receiver operating characteristic (ROC) curve was used to analyze the diagnostic value
of key genes in CCRCC, which is plotted by R software based on TCGA database.
UALCAN database was used to analyze the relationship between key genes and clinical
pathology in CCRCC and themethylation level of the promoter of key genes in CCRCC.
Results. A total of 289 up-regulated and 449 down-regulated genes were identified
based on GSE12606, GSE53000, GSE68417, and GSE66272 profiles in CCRCC. The
upregulated DEGs were mainly enriched with protein binding and PI3K-Akt signaling
pathway, whereas down-regulated genes were enriched with the integral component of
the membrane and metabolic pathways. Next, the top 35 genes were screened out from
the PPI network according to Degree, and three new key genes ITGAX, LAPTM5 and
SERPINE1 were further screened out through survival and prognosis analysis. Further
results showed that the ITGAX, LAPTM5, and SERPINE1 levels in CCRCC tumor
tissues were significantly higher than those in normal tissues and were associated with
poor prognosis. ROC curve shows that ITGAX, LAPTM5, and SERPINE1 have good
diagnostic value with good specificity and sensitivity. The promoter methylation levels
of ITGAX, LAPTM5 and SERPINE1 in CCRCC tumor tissues were significantly lower
than those in normal tissues. We also found that key genes were associated with clinical
pathology in CCRCC.
Conclusion. ITGAX, LAPTM5, and SERPINE1 were identified as novel key candidate
genes that could be used as prognostic biomarkers and potential therapeutic targets for
CCRCC.
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INTRODUCTION
Kidney cancer is a complex disease composed of a variety of cancers, showing different
histology, clinical course, genetic changes, and response to treatment (Linehan et al., 2019).
Renal Cell Carcinoma is the most common tumor in the kidney, Whose morbidity and
mortality are rising worldwide. Renal cell carcinoma is divided into different subtypes,
including clear cell renal cell carcinoma (CCRCC), chromogenic cell renal carcinoma
(chRCC), and papillary renal cell carcinoma (pRCC) (Linehan & Ricketts, 2019). CCRCC
is ametabolic disease (Wettersten et al., 2017), accounting formore than 80%of all renal cell
carcinomas (Makhov et al., 2018). It is the most aggressive subtype of renal cell carcinoma
with a high rate of metastasis and recurrence (Jiang et al., 2020; Yuan et al., 2018). Although
some progress has beenmade in the treatment of CCRCC, the current treatments of CCRCC
still focus on surgical treatment and traditional chemotherapy (Loo et al., 2019; Bex et al.,
2019). At the same time, there is a lack of effective early diagnosis methods in the clinic, and
some patients still have a relapse and targeted drug tolerance, leading to poor prognosis of
radiotherapy and chemotherapy. Therefore, finding new targeted biomarkers relevant to
the diagnosis and treatment of CCRCC remains of paramount importance.

In this study, bioinformatics methods were used to obtain CCRCC gene expression
data from GEO database, and normal samples and CCRCC samples were selected for
grouping processing. Next, 738 DEGs were screened, including 289 up-regulated genes and
449 down-regulated genes. And then, GO enrichment analysis and KEGG signal pathway
analysis were performed by DAVID. The up-regulated DEGs are mainly concentrated on
protein binding, plasma membrane, inflammation, signal transduction, and PI3K-Akt
signaling pathways, while the down-regulated genes are mainly concentrated on the
extracellular exosome, oxidation–reduction process, integral component of membrane,
protein homodimerization activity, and metabolic pathways. Finally, the top 35 hub genes
were screened by PPI network. Based on the novelty of ITGAX, LAPTM5 and SERPINE1
that have not been reported in CCRCC, the expression of these three genes is significantly
associated with survival prognosis and all have high degrees. Therefore, ITGAX, LAPTM5,
and SERPINE1 were finally selected as key genes. Further analysis showed that ITGAX,
LAPTM5, and SERPINE1 are highly expressed in CCRCC, which are significantly related to
the survival prognosis of CCRCC. The methylation level of ITGAX, LAPTM5, SERPINE1
in CCRCC is reduced. Moreover ITGAX, LAPTM5 and SERPINE1 are related to the
Clinical pathology of CCRCC and have good diagnostic value for CCRCC. In conclusion,
we provided a systematic and comprehensive analysis of CCRCC and is the first to suggest
that ITGAX, LAPTM5, and SERPINE1 might be used as biomarkers for the new clinical
diagnosis and treatment of CCRCC.

Sui et al. (2021), PeerJ, DOI 10.7717/peerj.11272 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.11272


MATERIALS & METHODS
Data collection
Four gene expression profiles ; (GSE12606, GSE53000, GSE68417, and GSE66272) were
downloaded from the GEO (Barrett et al., 2013) database (http://www.ncbi.nlm. nih.gov/
geo/). The TCGAKIRC data was downloaded from TCGA (https://www.cancer.gov/about-
nci /organization /ccg/research/structural-genomics/tcga). The GSE12606 (Stickel et al.,
2009) data set was obtained by GPL570 platform, including three adjacent normal kidney
specimens, and threeCCRCC samples. TheGSE53000 (Gerlinger et al., 2014) andGSE68417
(Thibodeau et al., 2016) data sets were based on GPL6244 Platforms. GSE53000 data set was
comprised of 60 samples including 6 adjacent normal kidney specimens and 54 CCRCC
samples and GSE68417 data set was comprised of 43 samples including 14 adjacent normal
kidney specimens and 29 CCRCC samples. GSE66272 (Wotschofsky et al., 2016; Liep et
al., 2016) data set was obtained by GPL5029 platform and contained 27 CCRCC tumor
samples and 26 normal kidney samples. The TCGA KIRC data contained 539 CCRCC
tumor samples and 72 normal kidney samples.

Study design and data processing
In order to clarify our study, we designed a flow chart to demonstrate data collection,
processing, analysis and verification (Fig. 1). The online tool GEO2R (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga) is an online analysis
of GEO series based on the R programming language, which is used to screen DEGs
between normal kidney and CCRCC samples from the GSE data sets. The data was
standardized and filtered to select significant DEGs. P-value < 0.05, log Fold Change (|log
FC|) ≥1 were chosen as the cutoff criteria. log Fold Change (| log FC |) ≥ 1 means that
the multiple of change is greater than or equal to 2. It is generally considered that there is
a difference between 2 times and more. Then, DEGs were further screened according to
cutoff criteria: P-value < 0.05, log FC ≥1 as up-regulated genes, P-value < 0.05, log FC ≤1
as down-regulated genes. Finally, importing all the up-regulated genes or down-regulated
genes in the 4 datasets into Funrich 3.1.1 software, and taking the intersection of the
up-regulated genes or down-regulated genes in the 4 datasets respectively. TCGA RNA-seq
simple converter was used to standardize and log2 conversion of TCGA KIRC data. TCGA
KIRC data were used for expression verification and ROC curve analysis of Key genes.

Enrichment analysis of DEGs
DAVID 6.8 (Database for Annotation, Visualization and Integrated Discovery, https:
//david.ncifcrf.gov/) (Huang da, Sherman & Lempicki, 2009b; Huang da, Sherman &
Lempicki, 2009a) database was used to analyze Gene Ontology (GO) (The Gene Ontology
Consortium, 2017) such as the biological process (BP) (Berchtold, Csaba & Zimmer, 2017),
cellular component (CC) (Borg & Baudino, 2011) andmolecular function (MF), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) pathway
enrichment analysis of important DEGs, which promoted the visualization of gene and
protein function (Dennis Jr et al., 2003). Among them, the count value represents the
number of genes enriched in the pathway. The cutoff value was P < 0.05.
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Figure 1 Flow chart of data collection, processing, analysis and verification in this study.
Full-size DOI: 10.7717/peerj.11272/fig-1

Protein-Protein Interaction (PPI) Network construction and hub gene
screening
The online tool STRING (Von Mering et al., 2003) (http://string-db.org) was utilized for the
analysis of protein-protein interactions . Importing all DEGs (including up-regulated genes
and down-regulated genes) into the STRING database for analysis, and the confidence
level≥0.4 is considered to be significant for PPI. STRING and Cytoscape software (version
3.6.1) were used to construct the PPI network, which is regarded as a network software
platform for visualizing protein molecular interactions. Using the degree algorithm in the
cytohubba plug-in of Cytoscape, the degree value could be calculated and thus the hub
genes could also be screened from PPI network. The importance of genes is directly related
to the degree of protein. According to the degree value (degree≥37), the first 35 genes were
selected as hub genes. Three key genes ITGAX, LAPTM5 and SERPINE1with high degree
were screened through survival and prognosis analysis as well as the novelty of genes.

Key genes analysis and verification
Three key genes were analyzed and verified comprehensively by using TCGA, GEPIA,
Oncomine, Kaplan–Meier plotter and UALCAN databases. Similarly, TCGA database also
applied to ROC curve analysis. ROC curve was plotted by R software, which could be used to

Sui et al. (2021), PeerJ, DOI 10.7717/peerj.11272 4/21

https://peerj.com
https://doi.org/10.7717/peerj.11272/fig-1
http://string-db.org
http://dx.doi.org/10.7717/peerj.11272


analyze the diagnostic value of key genes in CCRCC. GEPIA (http://gepia.cancer-pku.cn/)
analyzed the expression of key genes in CCRCC. Oncomine (Rhodes et al., 2007)
(http://www.on comine.org) was a database consisting of microarray data of various
tumors, which verified the expression of key genes in CCRCC. Kaplan-Meier Plotter
(https://kmplot.com/analysis/) was used to analyze the survival of key genes in CCRCC.
UALCAN (Chandrashekar et al., 2017) (http://ualcan.path. uab.edu/index.html) online
database was used to analyze the relationship between key genes and Clinical pathology in
CCRCC, and the promoter methylation level of key genes in CCRCC was analyzed.

Statistical analysis
Statistically significant differences between the normal tissues group and tumor tissues
group were determined using Student’s t tests. Also, Kaplan–Meier analysis was used to
assess OS. ROC curve is a graphical plot (Cao & López-de Ullibarri, 2019) that reflects the
sensitivity and specificity of continuous variables. P < 0.05 was considered to be statistically
significant for all the tests. All the statistical analyses applied GraphPad prism 6.0 or R
software.

RESULTS
Volcano plots of the differentially expressed genes in four datasets
The data sets of CCRCC, which were GSE12606, GSE53000, GSE68417 and GSE66272,
were downloaded from the GEO database (Table 1) and analyzed by GEO2R separately. A
total of 9,560 DEGs were screened from the GSE12606 data sets, among which 1568 genes
were up-regulated and 5436 genes were down-regulated instead. A total of 1,286 DEGs
were screened from the GSE53000 data sets, among which 583 were up-regulated and
708 were down-regulated. A total of 1,890 DEGs were screened from the GSE68417 data
sets among them 726 up-regulated and 1,164 down-regulated genes were selected. There
were 3,627 up-regulated genes and 5,170 down-regulated genes among the 8,797 DEGs
screened from the GSE66272 data sets. The screening criteria were P-value 0.05, log Fold
Change (| log FC |)≥ 1. All of the DEGs from the four data sets were presented in Volcano
plots (Figs. 2A–2D). Among them, red represents high-expressed genes, green represents
low-expressed genes, and black represents genes whose expression levels are not significant
in each data set. We gained the intersection of four independent data sets through Funrich
3.1.1 software and made a visualization analysis of Venn Diagram. After being overlapped,
the common 738 genes (Fig. S1) were identified, including 289 up-regulated and 449
down-regulated genes (Figs. 2E–2F).

GO and KEGG enrichment analysis of DEGs
To further explore the function of DEGs, enrichment analysis of up-regulated genes and
down-regulated genes were displayed respectively. DAVID 6.8 was used to performGO and
KEGG analysis of DEGs in CCRCC (Table 2). In biological processes, up-regulated DEGs
are mostly involved in cell adhesion, signal transduction, immune response, especially
the regulation of inflammatory response (Fig. 3A); while down-regulated DEGs are
mostly involved in oxidation–reduction process proteolysis, ion transmembrane transport,
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Table 1 Summary of TCGA and GEO Clear Cell Renal Cell Carcinoma datasets.

Author, year Sample GEO no. Platform Normal Tumor (Refs.)

Stickel JS et al, 2009 CCRCC GSE12606 GPL570 3 3 Stickel et al. (2009)
Gerlinger M et al, 2014 CCRCC GSE53000 GPL6244 6 54 Gerlinger et al. (2014)
Thibodeau BJ et al, 2016 CCRCC GSE68417 GPL6244 29 14 Thibodeau et al. (2016)
Wotschofsky Z et al, 2016 CCRCC GSE66272 GPL5029 27 26 Wotschofsky et al. (2016)
TCGA CCRCC – – 72 539

Notes.
TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.

Figure 2 Screening of differentially expressed genes. (A–D) The volcano plot of all DEGs respectively
in GSE12606, GSE53000, GSE68417, and GSE66272 datasets. Red and green nodes represent up-regulated
genes and down-regulated genes, respectively. (E–F) 738 DEGs were identified in four profile datasets
(GSE12606, GSE53000, GSE68417, and GSE66272), 289 upregulated genes, 449 downregulated genes.

Full-size DOI: 10.7717/peerj.11272/fig-2
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response to drug, and ion transport (Fig. 3E). In terms of cellular components, up-
regulated DEGs are mainly distributed in the plasma membrane, integral component of
the membrane, extracellular exosome, and membrane (Fig. 3B); down-regulated DEGs
are mainly distributed in integral component of membrane, plasma membrane, cellular
exosomes, and integral component of plasma membrane (Fig. 3F). In terms of molecular
function, up-regulated DEGs generally have protein binding, identical protein bind, ATP
binding capacity, and protein homodimerization activity (Fig. 3C); down-regulated DEGs
generally have identical protein homodimerization activity, calcium ion binding, sequence-
specific DNA binding, and oxidoreductase activity (Fig. 3G). In the KEGG signal pathway,
the up-regulation of DEGsmostly involved in the PI3K-Akt signaling pathway, pathways in
cancer, focal adhesion, and HIF-1 signaling pathway (Fig. 3D); while the down-regulation
of DEGs mainly involved in the metabolic pathway, Biosynthesis of antibiotics, Carbon
metabolism, and Aldosterone-regulated sodium reabsorption (Fig. 3H). CCRCC is a
kind of metabolic disease. Metabolic reprogramming covers different processes including
aerobic glycolysis, fatty acid metabolism and the utilization of tryptophan, glutamine as
well as arginine (Lucarelli et al., 2019), which has also been proved by the results of KEGG
pathway enrichment analysis in the work. KEGG pathway results show that down-regulated
DEGs are enriched in metabolic pathways, Glycolysis/Gluconeogenesis, Glycine, serine and
threonine metabolism and so on.

In addition, GO and KEGG enrichment analyses were performed for all DEG (up-
regulated and down-regulated genes) (Fig. S2). Finally, 11 common enrichment results
were found from the three analyses (including up-regulated DEG, down-regulated DEG
and all DEG enrichment analyses). The common enrichment results are as follows:
response to drug, plasma membrane, integral component of membrane, extracellular
space, extracellular exosome, cell surface, cell surface, protein homodimerization activity,
identical protein binding. The results of enrichment analysis were consistent with previous
studies (Wang, Yu & Chai, 2019; Tian et al., 2019). It suggests that these 11 pathways may
be important in CCRCC.

Construction of PPI network and screening of key genes
To identify the key genes, the STRING online database and Cytoscape software were used to
analyze all DEGs (including up-regulated genes and down-regulated genes)and construct
PPI network (Fig. 4A). Based on the main role of proteins in biological functions, their
interaction determines the molecular and cellular mechanisms that control the health
and disease state of the organism (Safari-Alighiarloo et al., 2014). Next, using the degree
algorithm in the cytohubba plug-in of Cytoscape to screen the hub genes in PPI network.
The gene whose degree≥37 could be defined hub gene, therefore the first 35 genes (Table 3)
in the PPI network were chosen to be hub genes (Fig. 4D). Next, GO enrichment analysis
was conducted for all DEGs and the first 35 DEGs in the PPI network. The result showed
that all DEGs mainly enriched in signal transduction, oxidation–reduction process, cell
adhesion, inflammatory response, plasma membrane, integral component of membrane,
extracellular exosome, integral component of plasma membrane (Figs. 4B–4C). The top 35
DEGs were enriched in extracellular space, extracellular exosome, inflammatory response,
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Table 2 GO and KEGG analysis of differentially expressed DEG associated with CCRCC.

Expression Category Term Count P-value

Upregulated GO_BP GO:0006954∼inflammatory response 30 1.30E−12
GO_BP GO:0007165∼signal transduction 29 1.31E−02
GO_BP GO:0007155∼cell adhesion 26 5.33E−08
GO_BP GO:0006955∼immune response 24 1.76E−07
GO_BP GO:0042493∼response to drug 21 5.92E−08
GO_BP GO:0045087∼innate immune response 19 1.36E−04
GO_BP GO:0030198∼extracellular matrix organization 18 1.08E−08
GO_BP GO:0050900∼leukocyte migration 17 6.55E−11
GO_BP GO:0001525∼angiogenesis 17 4.06E−07
GO_BP GO:0008284∼positive regulation of cell proliferation 17 2.57E−03
GO_CC GO:0005886∼plasma membrane 108 1.13E−09
GO_CC GO:0016021∼integral component of membrane 107 2.03E−04
GO_CC GO:0070062∼extracellular exosome 66 2.68E−04
GO_CC GO:0016020∼membrane 64 4.11E−07
GO_CC GO:0005887∼integral component of plasma membrane 62 6.07E−14
GO_CC GO:0005576∼extracellular region 50 1.98E−06
GO_CC GO:0005615∼extracellular space 49 2.48E−08
GO_CC GO:0009986∼cell surface 31 1.08E−09
GO_CC GO:0005783∼endoplasmic reticulum 20 4.86E−02
GO_CC GO:0000139∼Golgi membrane 17 1.94E−02
GO_MF GO:0005515∼protein binding 154 6.05E−03
GO_MF GO:0005524∼ATP binding 36 6.15E−03
GO_MF GO:0042803∼protein homodimerization activity 21 7.66E−03
GO_MF GO:0042802∼identical protein binding 20 1.92E−02
GO_MF GO:0005102∼receptor binding 19 7.41E−06
GO_MF GO:0004872∼receptor activity 14 2.70E−05
GO_MF GO:0004672∼protein kinase activity 12 2.09E−02
GO_MF GO:0005215∼transporter activity 8 3.41E−02
GO_MF GO:0004888∼transmembrane signaling receptor activity 8 4.43E−02
GO_MF GO:0005201∼extracellular matrix structural constituent 7 5.17E−04
KEGG hsa04151: PI3K-Akt signaling pathway 19 2.01E−04
KEGG hsa04510: Focal adhesion 17 3.76E−06
KEGG hsa05200: Pathways in cancer 17 5.96E−03
KEGG hsa04066: HIF-1 signaling pathway 12 3.37E−06
KEGG hsa04015: Rap1 signaling pathway 12 3.56E−03
KEGG hsa04145: Phagosome 10 3.39E−03
KEGG hsa05205: Proteoglycans in cancer 10 2.05E−02
KEGG hsa05150: Staphylococcus aureus infection 9 1.14E−05
KEGG hsa04611: Platelet activation 9 4.86E−03
KEGG hsa05133: Pertussis 8 7.79E−04

(continued on next page)
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Table 2 (continued)

Expression Category Term Count P-value

Downregulated GO_BP GO:0055114∼oxidation–reduction process 33 3.33E−05
GO_BP GO:0034220∼ion transmembrane transport 19 5.29E−06
GO_BP GO:0042493∼response to drug 18 1.62E−03
GO_BP GO:0006811∼ion transport 14 1.66E−05
GO_BP GO:0055085∼transmembrane transport 14 8.16E−03
GO_BP GO:0007588∼excretion 13 4.97E−11
GO_BP GO:0010628∼positive regulation of gene expression 13 3.13E−02
GO_BP GO:0006814∼sodium ion transport 12 4.94E−06
GO_BP GO:0001822∼kidney development 12 8.92E−06
GO_BP GO:0008152∼metabolic process 12 3.22E−03
GO_CC GO:0016021∼integral component of membrane 171 4.63E−07
GO_CC GO:0070062∼extracellular exosome 170 1.01E−33
GO_CC GO:0005886∼plasma membrane 162 2.99E−12
GO_CC GO:0005887∼integral component of plasma membrane 76 3.16E−11
GO_CC GO:0005615∼extracellular space 50 1.87E−03
GO_CC GO:0016324∼apical plasma membrane 44 4.39E−22
GO_CC GO:0016323∼basolateral plasma membrane 28 2.05E−14
GO_CC GO:0009986∼cell surface 24 5.53E−03
GO_CC GO:0005759∼mitochondrial matrix 19 8.74E−04
GO_CC GO:0043025∼neuronal cell body 15 1.88E−02
GO_MF GO:0042803∼protein homodimerization activity 33 7.43E−04
GO_MF GO:0005509∼calcium ion binding 29 7.77E−03
GO_MF GO:0043565∼sequence-specific DNA binding 20 4.43E−02
GO_MF GO:0016491∼oxidoreductase activity 13 3.24E−03
GO_MF GO:0046983∼protein dimerization activity 11 3.31E−03
GO_MF GO:0008201∼heparin binding 11 5.22E−03
GO_MF GO:0005088∼Ras guanyl-nucleotide exchange factor

activity
10 1.78E−03

GO_MF GO:0003824∼catalytic activity 10 3.74E−02
GO_MF GO:0016787∼hydrolase activity 10 4.07E−02
GO_MF GO:0046934∼phosphatidylinositol-4,5-bisphosphate 3-

kinase activity
9 1.10E−04

KEGG hsa01100: Metabolic pathways 68 8.56E−08
KEGG hsa01130: Biosynthesis of antibiotics 19 5.17E−05
KEGG hsa01200: Carbon metabolism 11 1.83E−03
KEGG hsa04960: Aldosterone-regulated sodium reabsorption 9 1.45E−05
KEGG hsa04978: Mineral absorption 9 3.69E−05
KEGG hsa00010: Glycolysis / Gluconeogenesis 9 7.57E−04
KEGG hsa04610: Complement and coagulation cascades 8 4.14E−03
KEGG hsa04966: Collecting duct acid secretion 7 1.11E−04
KEGG hsa00260: Glycine, serine and threonine metabolism 7 9.10E−04
KEGG hsa00280: Valine, leucine and isoleucine degradation 7 2.46E−03
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Figure 3 Enrichment analysis of GO and KEGGwith up-regulated DEG. (A) The biological process of
GO analysis showed that the up-regulation of DEGs was mainly related to cell adhesion, inflammatory re-
sponse, signal transduction, and immune response. (B) The enrichment analysis of up-regulated DEGs cell
components is mainly related to the cellular exosomes, integral component of membrane, plasma mem-
brane, and integral component of plasma membrane. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.11272/fig-3
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Figure 3 (. . .continued)
(C) The molecular function of GO analysis showed that the up-regulation of DEGs was mainly related
to protein binding, identical protein bind, ATP binding capacity, and protein homodimerization activ-
ity. (D) The KEGG pathways related to the up-regulation of DEGs expression mainly include the PI3K-
Akt signaling pathway, focal adhesion, pathways in cancer, and HIF-1 signaling pathway. (E) The biolog-
ical process of GO analysis showed that the downregulation of DEGs was mainly related to oxidation–
reduction process proteolysis, ion transmembrane transport, response to the drug, and ion transport. (F)
The enrichment analysis of down-regulated DEGs cell components is mainly related to integral compo-
nents of membrane, plasma membrane, cellular exosomes, and integral component of plasma membrane.
(G) The molecular function of GO analysis showed that the downregulation of DEGs was mainly related
to protein homodimerization activity, calcium ion binding, oxidoreductase activity, and sequence-specific
DNA binding. (H) The KEGG pathways related to the down-regulation of DEGs expression mainly in-
clude metabolic pathway, Biosynthesis of antibiotics, Carbon metabolism, and Aldosterone-regulated
sodium reabsorption.

Table 3 The top 35 DEGs identified with the degree in the PPI network (Degree≥ 37).

Expression Genes Degree Genes Degree

Upregulated EGFR 110 C3AR1 52
VEGFA 100 CYBB 51
PTPRC 93 LCP2 50
FN1 90 TLR7 49
ITGB2 70 C3 45
TLR2 67 CCL5 44
MMP9 66 TIMP1 43
CD86 64 HCK 43
CXCR4 62 FCGR2A 42
ICAM1 62 CD53 41
CCND1 61 CTSS 41
TYROBP 59 LAPTM5 40
CSF1R 58 LOX 38
PLEK 55 SERPINE1 37
ITGAX 53 CAV1 37

Downregulated ALB 134 KNG1 52
EGF 80 KIT 44
ERBB2 67

an integral component of the plasma membrane, and cell surface (Fig. 4E). By comparison,
it turned out that the enrichment analysis results of all DEGs in PPI network contained
the results of the top 35’s. In the end, three new key genes with high degree which were
ITGAX, LAPTM5 and SERPINE1, could be screened by using GEPIA and Kaplan–Meier
plotter database.

The expression of key genes
Among the 35 genes, we focused on ITGAX, LAPTM5, and SERPINE1, which have
not been reported to be related to the occurrence and development of CCRCC. Firstly,
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Figure 4 PPI network and GO enrichment analysis of key genes. (A) The PPI network is constructed,
including up-regulated genes and down-regulated genes, and considers that the confidence level ≥ 0.4 is
significant for PPI. (B–C) GO enrichment analysis of all DEGs in PPI network. (D) PPI network of the top
35 DEGs according to the degree (degree ≥ 37). (E) GO enrichment analysis of the top 35 DEGs.

Full-size DOI: 10.7717/peerj.11272/fig-4
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the expression levels of ITGAX, LAPTM5, and SERPINE1 in CCRCC tumor tissues are
significantly higher than those in normal tissues adjacent to cancer according to GEPIA
database (Figs. 5A–5C). Furthermore, the data of TCGA KIRC showed that compared with
adjacent normal tissues, the mRNA expressions of ITGAX, LAPTM5, and SERPINE1 in
72 pairs of CCRCC tissues were significantly increased (Figs. 5D–5F). In the Oncomine
Gumz renal database, the mRNA levels of ITGAX, LAPTM5 and SERPINE1 were also
upregulated in CCRCC tissues when compared with adjacent normal kidney tissues (Figs.
5H–5G). According to the UALCAN database, the promoter methylation levels of ITGAX,
LAPTM5 and SERPINE were decreased in CCRCC (Figs. 5J–5L). To sum up, according to
the GEPIA database, Oncomine Gumz renal database and TCGA database, the expression
levels of these three genes in CCRCC tumor tissues are significantly higher than those in
normal tissues adjacent to cancer. It could be further speculated that the high expression of
ITGAX, LAPTM5, and SERPINE1 in CCRCC tumor tissue might be related to the decrease
of promoter methylation.

The association of key genes expression with clinical pathology
in CCRCC
Furthermore, the relationship between the mRNA expression of ITGAX, LAPTM5 and
SERPINE1 and different clinical pathology grades were measured. The results showed that
their mRNA expression was significantly related to pathological grades (Figs. 6A–6C).
And the expression of ITGAX, LAPTM5, and SERPINE1 mRNA in CCRCC samples are
also significantly correlated with severe clinical staging (Figs. 6D–6F). Among them, the
expression levels of ITGAX, LAPTM5, and SERPINE1 were higher in stage 4 and grade 4.
In conclusion, ITGAX, LAPTM5, and SERPINE1 are significantly associated with clinical
pathology.

Survival and diagnostic value of ITGAX, LAPTM5, and SERPINE1 in
CCRCC
According to the Kaplan–Meier plotter database, the overall survival of ITGAX, LAPTM5,
and SERPINE1 genes was tested (Figs. 7A–7C). The results showed that the high expression
of three key genes in CCRCC was negatively correlated with prognosis. Then, the ROC
curve was used to evaluate the difference between CCRCC and the normal tissues in the
TCGA KIRC data. The ROC curves (Figs. 7D–7E) of these three genes showed that their
area under the curve (AUC) and the 95% confidence intervals (CI) are as follows: ITGAX
(AUC= 96.315, CI= 0.9423–0.9840), LAPTM5, (AUC= 94.808 CI= 0.9243–0.9719), and
SERPINE1(AUC = 76.272, CI [0.7068–0.8186]). Since ROC curves had good specificity
and sensitivity, ITGAX, LAPTM5, and SERPINE1 had excellent diagnostic efficiency for
distinguishing tumors and normal tissues.

DISCUSSION
Clear Cell Renal Cell Carcinoma (CCRCC) is a metabolic disease whose morbidity is rising
worldwide. The feature of kidney cancer is to participate in the target genes’ mutation of
metabolic pathways (Lucarelli et al., 2019). Recently, with the application of bioinformatics,
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Figure 5 Key gene expression between normal kidney and CCRCC tissues. (A–C) Box plot showing the
expression of ITGAX, LAPTM5, SERPINE1 in GEPIA database. These three genes are highly expressed in
CCRCC. (D–F) In the TCGA database, compared with adjacent normal tissues, the expression of ITGAX,
LAPTM5, SERPINE1 mRNA in 72 pairs of CCRCC tissues increased significantly. (G–I) The expression of
ITGAX, LAPTM5, SERPINE1 are significantly increased in Oncomine Gumz renal database. * P < 0.05, **
P < 0.01, *** P < 0.001. (J–L) The box plot showing the promoter methylation levels of ITGAX, LAPTM5
and SERPINE1 in the UALCAN database. P < 0.01.

Full-size DOI: 10.7717/peerj.11272/fig-5
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Figure 6 The relationship between ITGAX, LAPTM5, and SERPINE1 expression and clinical
pathology of CCRCC. (A–C) Boxplot showing that ITGAX, LAPTM5, and SERPINE1 mRNA expression
were significantly related to pathological grades, and patients in grade 4 have the highest expression
in CCRCC according to UALCAN databases. (D–F) Boxplot showing that the expression of ITGAX,
LAPTM5, and SERPINE1 mRNA in CCRCC samples are significantly correlated with severe clinical
staging and the mRNA expression of ITGAX, LAPTM5, and SERPINE1 were higher in patients with stage
4 according to UALCAN databases. * P < 0.05, ** P < 0.01, *** P < 0.001.

Full-size DOI: 10.7717/peerj.11272/fig-6

the molecular characteristics of CCRCC have been greatly improved and the development
of targeted therapy has been promoted. These advances have significantly improved the
median survival of patients with advanced disease. However, about 30% of CCRCC local
patients will still relapse or metastasize after surgical removal of the tumor (Li et al., 2019).
Around 1/3 of themetastatic patients had poor prognosis and rare high drug resistance rate.
Under the circumstance of different treatment, the identification of biomarkers was needed
urgently so as to predict the drug’s effects (Deleuze et al., 2020). Therefore, identification
of CCRCC key genes and prognostic judgment is still very crucial. In our research, some
reported genes related to CCRCC, such as VEGFA (Zeng et al., 2016), EGFR (Cossu-Rocca
et al., 2016), were also screened out. Vascular Endothelial Growth Factor A (VEGFA) is
a member of the PDGF/VEGF growth factor family. VEGFA has a potential role in the
diagnosis and treatment of CCRCC. VEGFA can inhibit the proliferation of CCRCC 786-O
cells, promote cell apoptosis, and inhibit cell migration and invasion (Zeng et al., 2016).
Epidermal growth factor receptor (EGFR) is closely related to the progression of many
epithelial malignancies and is an important therapeutic target (Cossu-Rocca et al., 2016).
EGFR is a cell surface protein, belonging to the ERBB family. EGFR binds to epidermal
growth factor to induce receptor dimerization and tyrosine self phosphorylation, which
eventually leads to cell proliferation (Mitsudomi & Yatabe, 2010). EGFR can activate a
variety of signaling pathways, mainly MAPK / ERK and PI3K / AKT pathways (Yarden &
Sliwkowski, 2001). Compared with the former 4 studies, this study found three new key
genes which were ITGAX, LAPTM5 and SERPINE1, and applied several methods to do
functional analysis and systematic research to key genes such as methylation level analysis,
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Figure 7 Survival and diagnostic value of ITGAX, LAPTM5, and SERPINE1 in CCRCC. (A–C) The
overall survival of ITGAX, LAPTM5, and SERPINE1.The results showed that the high expression of three
key genes in CCRCC was negatively correlated with prognosis. (D) ROC curve of ITGAX (AUC= 96.315,
cutoff value= 8.836, Sensitivity= 92.579 Specificity= 91.667). (E) ROC curve of LAPTM5, (AUC=
94.808, cutoff value= 12.983 Sensitivity= 85.158 Specificity= 94.444). (F) ROC curve of SERPINE1,
AUC= 76.272, cutoff value= 12,646, Sensitivity= 66.234 Specificity= 75).

Full-size DOI: 10.7717/peerj.11272/fig-7

survival analysis, ROC curve analysis and so on. In previous studies, GSE12606 mainly
focused on the functional analysis of HLA ligand in CCRCC, while GSE5300mainly focused
on the structure and revolution of CCRCC genome, and GSE66272 mainly focused on
the role of miRNA in CCRCC and GSE68417 mainly focused on the analysis to the gene
expression profile of CCRCC. On the contrary, this study put emphasis on screening the
biomarkers used to do early diagnosis in CCRCC and analyzing the intersection of DEGs
in four datasets.

Besides, three new potential marker genes ITGAX, LAPTM5, SERPINE1 were also
screened out and proved. Integrin alpha x (ITGAX) is a member of the integrin family,
commonly function as a receptor for extracellular matrix. It is reported that ITGAX is
involved in the angiogenesis of dendritic cells and tumor angiogenesis (Wang et al., 2019).
In addition, ITGAX is identified as a new type of aggressive prostate cancer susceptibility
gene (Williams et al., 2014). Lysosomal protein transmembrane 5 (LAPTM5), known
as E3 protein, may play a role in hematopoiesis and prevent excessive activation of
lymphocytes (Cai et al., 2015). It is reported that LAPTM5 can regulate the proliferation
and viability of bladder cancer cells, leading to cell cycle arrest in the G0/G1 phase
(Chen et al., 2017). LAPTM5 is also associated with the spontaneous regression of
neuroblastoma (Inoue et al., 2009). Studies have shown that Serpin family E member 1
(SERPINE1 is a regulator of Glioblastoma (GBM) cell proliferation, and is related to poor
prognosis of patients and mesenchymal GBM. Down-regulation of SERPINE1 in primary
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GBM cells inhibited the growth and invasiveness of tumors in the brain, and SERPINE1
plays a key role in the spread of GBM (Seker et al., 2019).

CONCLUSIONS
To sum up, the expression levels of ITGAX, LAPTM5, SERPINE1 in CCRCC tumor tissues
are significantly higher than those in normal tissues adjacent to cancer and are related to
the tumor stage and tumor grade. ITGAX, LAPTM5, and SERPINE1 have high diagnostic
efficiency for tumors and normal tissues, and their expressions are associated with poor
prognosis of CCRCC. The decrease of promoter methylation of ITGAX, LAPTM5 and
SERPINE1 in CCRCC tumor tissues indicates that the high expression of key genes in
CCRCC might be relevant to the low methylation level. The limitation of this study
lied in that the internal molecular mechanisms where key genes played a role remained
unclear, which need a further research. Further studies are needed to explore the detailed
mechanisms of these key genes in CCRCC. In conclusion, we identified ITGAX, LAPTM5,
and SERPINE1 as potential marker genes of CCRCC by bioinformatics methods, providing
insights for future therapeutic design. Meanwhile, we conducted a relatively systematic
and comprehensive analysis on CCRCC data, thereby providing a theoretical basis for
identifying therapeutic targets of CCRCC, promoting early detection, and monitoring
tumor progression.
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