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Abstract

The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic
Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed
partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we
modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the
individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations
that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus’
genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of
therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the
Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors
included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic
susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate
analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and,
with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB
outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for
suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has
potential to improve the interpretation of genotypic drug resistance tests.
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Introduction

Despite an increasing arsenal and improved potency of

antiretroviral drugs, the optimal use of combination antiretroviral

therapy against HIV-1 infection remains challenging [1]. Com-

plicating factors include drug interactions and toxicities, adherence

to therapy, and development of drug resistance [2]. Because

genotypic drug resistance testing is performed on a routine basis

today and because mutational patterns are unique for each

patient, treatment choices are, in principle, highly personalized. In

practice, however, it can be difficult to identify an optimal drug

combination for each individual patient due to the combinatorial

complexity of both the set of feasible drug combinations and of

viral mutational patterns.

In addition to controlled clinical trials, analyzing data from

large observational cohort studies is a promising way to identify

predictors of treatment outcome, even if the availability of drugs

and therapeutic strategies change over time [3]. This approach

can be based on modeling the risk of acquiring additional

mutations [4], on estimating future drug options [5], on predicting

the time to virological failure [6,7], or on classifying the regimens

of treatment change episodes (TCEs) as successful versus failing,

depending on the patient’s response to therapy. A TCE consists of

predictor variables including the applied drug combination, viral

genotype, treatment history, demographic and clinical parameters,

and a response variable such as the change in viral load.

HIV-1 genotype has been shown to be a strong predictor of

therapeutic success in retrospective and prospective studies [8–14],

but the large number of mutations complicates prediction. TCE

classification is a noisy, high-dimensional prediction problem with

unobserved confounding factors and sparse data. It has been

addressed by several statistical learning methods [15–25]. Com-

parative studies have emphasized the importance of selection and

representation of features, especially of the viral genotype, over the

choice of the learning algorithm [26–28]. In order to directly

correlate genotype with clinical response, rules-based approaches,

such as the genotypic susceptibility score (GSS) [29–34] and

statistical models [23,26,28] have been proposed, often outcom-

peting human experts [35].

Drug resistance development is driven by viral evolution and

thus models of viral evolutionary escape from drug pressure have

been proposed to improve therapy response prediction [16,22,36].

Specifically, the individualized genetic barrier (IGB) to drug

resistance has been suggested as a predictor of treatment outcome.

The IGB is defined as the probability of the virus not to become

resistant to a certain drug [37–39]. A high IGB means that viral

evolutionary escape from the selective pressure of the drug is

unlikely. Related quantities are the average number of mutations

and the average time to reach drug resistance derived from

simulated HIV-1 evolutionary trajectories on an estimated fitness

landscape [36,40,41]. This approach has been explored for

treatment with zidovudine plus lamivudine and with nelfinavir

[42], but it does not scale to the variety of combination therapies

observed in clinical databases, because sufficient data for

estimating fitness landscapes is available only for a few drug

combinations. Earlier, the term ‘calculated genetic barrier’ has

been used to assess the number of mutations necessary to acquire

specific drug resistance-associated mutations, which were found to

be similar among HIV-1 subtypes [43].

In the present study, we apply a simplified definition of the IGB

which can be computed efficiently for any drug combination based

on a statistical model that captures the order and the dynamics of

accumulating mutations and the associated levels of phenotypic

drug resistance [44]. The IGB to resistance to a certain drug is the

probability that the virus will not accumulate additional mutations

leading to a resistant strain. This drug-specific IGB has been

demonstrated to be a strong predictor of virological response in

two large observational cohort studies [26,28]. Here, we derive a

novel predictor, the IGB to the entire drug combination which

measures the genetic potential for evolutionary escape of the virus

from the selective pressure of combination therapy.

In order to assess the performance of the IGB as a predictor of

treatment outcome, we analyzed TCE data from the Swiss HIV

Cohort Study (SHCS) database, a large, long-term observational,

multi-center, clinical database with integrated results of genotypic

drug resistance tests [45,46]. We identified risk factors of

therapeutic failure and constructed models of treatment outcome

considering as predictors the applied regimen, treatment history,

viral genotype, GSS, drug-specific IGBs, IGB to regimen, and

demographic and clinical variables including patient adherence.

Overall, we found the IGB to the entire regimen to be the

strongest and most significant predictor. Our results demonstrate

that the viral genotype is represented efficiently by the IGB to

regimen, a single, interpretable probability summarizing the

predicted dynamics of viral evolutionary escape.

Results

For each drug, viral evolutionary escape from its selective

pressure was modeled using Isotonic Conjuctive Bayesian

Networks (I-CBNs). In these probabilistic graphical models,

dependencies among mutations are described by a partial order,

which defines the genotype lattice, i.e., the set of genotypes

compatible with the order constraints, and hence the set of

possible mutational escape pathways (Figure 1). To each genotype,

its level of phenotypic drug resistance is associated using isotonic

regression, such that drug resistance is monotonically non-

decreasing along any mutational pathway from the wild type

towards the genotype carrying all mutations. Using cross-sectional

matched genotype-phenotype pairs from the Stanford HIV Drug

Resistance Database, I-CBN models were learned for a total of 18

antiretroviral drugs (Supporting Figures S4, S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21,

Supporting Table S2). Each model includes up to eleven pre-

selected mutations (see Methods).

From the I-CBN models, transition probabilities among

genotypes were derived and the individualized genetic barrier

(IGB) to resistance development to each drug was computed as the

probability of the observed genotype not acquiring additional

mutations that would transform it into a genotypic state predicted

Author Summary

Drug resistance remains a challenge in the management of
HIV-infected patients. The accumulation of mutations
during ongoing viral replication is the origin of drug
resistance development. Understanding this evolutionary
process in a quantitative manner is an important prereq-
uisite for minimizing the risk of resistance development
and for the optimal selection of drug combinations for
each individual patient. We present probabilistic graphical
models for describing the evolution of drug resistance, and
we derive the individualized genetic barrier (IGB), a single
quantity summarizing the genetic potential of the virus for
evolutionary escape from selective drug pressure. The
predictive power of the IGB is demonstrated on a large
well characterized clinical cohort of HIV patients and
compared to classical predictors.

Individualized Genetic Barrier
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to be resistant. For a drug combination, the IGB was obtained as

the sum over all drugs of the regimen of the drug-specific IGBs.

Thus, the IGB to regimen can be regarded as the expected

number of active components in the drug cocktail taking viral

evolutionary escape mechanisms into account. To assess the

predictive power of the IGB in a clinical setting, we analyzed a

large cohort of HIV-1-infected patients and compared the IGB to

several known predictors of therapy response (Figure 2), including

the GSS, obtained from the Stanford HIV Drug Resistance

Database website (HIVdb 6.2.0).

TCEs from the time period 1988–2010 were derived from the

SHCS database (Table 1 and 2) and labeled as either failure or

success (see Methods). Therapy success was defined as viral load

reduction below 50 cps/ml (400 cps/ml) during treatment. We

obtained 2185 (2631) genotype-therapy pairs, including 73%

(63%) failures. The usage of individual drugs and the 30 most

frequent drug combinations are shown in Supporting Figures S2

and S3, respectively. The historical development of drug usage

patterns is reported in Supporting Table S3, where the regimens

are annotated as either being recommended as first-line or

alternative regimens according to current treatment guidelines

[47], or as past first-line or second-line recommended regimens

that are still in use in developing countries or occasionally used if

drug resistant virus is present at baseline or as salvage regimens, or

as regimens that are not in use anymore as first-line regimens but

were before, including those still used under special circumstances,

such as unusual tolerability.

In order to predict the outcome (failure versus success) of each

therapy, we considered applied drugs, demographic and clinical

variables, viral genotype, IGBs to received drugs, and IGB to

regimen (Figure 2, Table S1). Univariate logistic regression

resulted in a total of 50 (44) features that were significantly

associated with therapy outcome (Figure S22). Among the

predictive drugs, the use of ZDV, d4T, 3TC, and NFV were

Figure 1. Schematic illustration of I-CBN model and individualized genetic barrier (IGB). (A) A partially ordered set of three mutations, A,
B, and C, is considered with the two relations A[B and C[B, resulting in two possible escape pathways of the virus, namely A?C?B or
C?A?B. (B) The partial order constraints give rise to the genotype lattice consisting of genotypes 000, 001, 100, 101, and 111 indicated with bold
arrows, where genotypes are encoded as binary strings such that 000 is the wild type 1 (no mutations), 100 is defined by mutation A and identified

with fAg, 101 with fA,Cg, etc. The genotype lattice G is shown inside the embedding hypercube f0,1g3^2fA,B,Cg . For each antiretroviral drug,
genotypes are labeled as either susceptible (green) or resistant (red). (C) Genotype lattice isolated from the embedding hypercube. The IGB is the
probability of the virus not reaching a resistant state.
doi:10.1371/journal.pcbi.1003203.g001

Figure 2. Data flow. Matched pairs of viral genotype and drug resistance phenotype from the Stanford HIV Drug Resistance Database (top right)
were used to learn I-CBN models for all drugs separately. The drug-specific individualized genetic barriers (IGBs) are derived from these models. The
IGB to regimen is computed for each genotype-therapy pair in the Swiss HIV Cohort Database and its predictive power is assessed in prediction
models that also account for classical demographic, clinical, and genetic covariates.
doi:10.1371/journal.pcbi.1003203.g002

Individualized Genetic Barrier
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associated with increased risk of therapeutic failure, while ABC,

TDF, FTC, EFV, RTV, LPV/r, ATV, and ATV/r increased the

odds of therapeutic success. Most of the significant amino acid

changes in the viral protease (PR) gene (10I, 30N, 33F, 46I, 54V,

71V, 82A, 84V, 90M) and reverse transcriptase (RT) gene (39A,

41L, 44D, 67N, 74V, 103N, 118I, 123S, 210W, 215Y, 297R) have

been associated with resistance to multiple PR inhibitors (PIs) and

RT inhibitors (RTIs), respectively, and all except PR 30N and RT

123S increased the risk of treatment failure. A higher IGB to any

of 15 (16) individual drugs increased the chance of successful

virological response. The IGB to the entire drug combination and

the GSS were also significant predictors.

In the multivariate analysis, only 12 (14) variables were

significant, nine (ten) of which are indicating the inclusion of

individual drugs in the regimen (Figure 3). The usage of the

nucleoside RTIs (NRTIs) ZDV, ddI, d4T, and 3TC, and of the

PIs APV and SQV, were associated with negative treatment

outcome, whereas the four boosted PIs (i.e., given together with

low-dose RTV to improve their bioavailability) SQV/r, IDV/r,

LPV/r, and ATV/r had positive predictive power. Among the

many genotype-derived predictors, only GSS and IGB to regimen

reached statistical significance at the 1% level in the multivariate

model. For the 50 cps/ml success definition, the odds ratio (OR) of

therapeutic success was ten-fold higher for the IGB (OR 23.6, 95%

confidence interval [CI] 12.21–45.4, pv10{19) as compared to

the GSS (OR 2.1, 95% CI 1.6–2.7, pv10{7), and similarly for

400 cps/ml (IGB OR 25.0, 95% CI 14.7–42.5, pv10{30 versus

GSS OR 1.8, 95% CI 1.5–2.2, pv10{7), indicating that the IGB

provides an effective summary of the risk of treatment failure due

to viral genetic changes. In addition, increased overall maximum

(peak) viral load before treatment remained a significant predictor

of therapy outcome in the multivariate logistic regression model.

For optimal treatment outcome prediction, we also explored the

use of regularized logistic regression models. Specifically, the

elastic net, which combines L1 and L2 regularization was applied

to identify sparse classifiers of therapy outcome. Classifier

performance was evaluated in ROC curves summarized by the

area under the ROC curve (AUC), and analyzed according to the

historical drug usage patterns (Table S3).The competitive models

(high AUC) are only those using all clinical and demographic

Table 1. Characteristics of the numerical predictors in the SHCS database.

50 cps/ml 400 cps/ml

Numerical variables median (IQR) median (IQR)

Age 40 (35–46) 40 (35–46)

Minimum CD4 T cell count (cells/mm3) 108 (40–200) 110 (40–206)

Maximum viral load (log10 copies/ml) 5.17 (4.72–5.63) 5.15 (4.66–5.61)

doi:10.1371/journal.pcbi.1003203.t001

Table 2. Characteristics of the categorical predictors in the SHCS database.

50 cps/ml 400 cps/ml

Categorical variables frequency (%) frequency (%)

Gender female 562 (25.72%) 705 (26.8%)

male 1623 (74.28%) 1926 (73.2%)

AIDS no 1461 (66.86%) 1775 (67.46%)

yes 724 (33.14%) 856 (32.54%)

Transmission group blood 16 (0.73%) 27 (1.03%)

heterosexual 719 (32.91%) 881 (33.49%)

IDU 491 (22.47%) 598 (22.73%)

male homosexual 879 (40.23%) 1033 (39.26%)

mother-to-child 12 (0.55%) 16 (0.61%)

others/unknown 68 (3.12%) 76 (2.88%)

Ethnic Group 9 (0.41%) 10 (0.38%)

asian 41 (1.88%) 58 (2.2%)

black 281 (12.86%) 347 (13.19%)

hispano american 34 (1.56%) 46 (1.75%)

white 1743 (79.77%) 2080 (79.06%)

unknown 77 (3.52%) 90 (3.42%)

Adherence to treatment low 496 (22.7%) 610 (23.19%)

high 1586 (72.59%) 1899 (72.18%)

others/unknown 103 (4.71%) 122 (4.64%)

doi:10.1371/journal.pcbi.1003203.t002

Individualized Genetic Barrier
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variables, mutations, and drugs (Tables S5, S6, Figure 4). When

comparing IGB to GSS as predictors in this setting, we found a

significant advantage of the IGB for 400 cps/ml if all other

features are included in the models (p~0:01, Wilcoxon rank sum

test). Furthermore, the IGB also improves treatment outcome

prediction if added to models that already contain the GSS

(p~0:0002). For 50 cps/ml, we did not find significant differences

in AUC between IGB and GSS when used in prediction models

that included all other covariates, nor did the GSS-containing

model improve upon adding IGB. The significant increase for the

larger dataset with the 400 cps/ml success definition demonstrates

the predictive power of the IGB and indicates that GSS and IGB,

although correlated, contain some orthogonal information, which,

if combined, can further improve treatment outcome prediction.

A B

Figure 3. Multivariate analysis of predictors of response to antiretroviral combination therapy in the SHCS database. Associations
have been tested using a logistic regression model and odds ratios of therapeutic success, defined as viral load reduction below 50 cps/ml (A) and
400 cps/ml (B), are reported together with their 95% confidence intervals on a logarithmic scale. Benjamini-Hochberg-corrected p-values are
represented as black (pv0:001) and grey (pv0:01) symbols. Only predictors with a p-value smaller than 0.01 are included.
doi:10.1371/journal.pcbi.1003203.g003

A B

Figure 4. ROC curves quantifying the performance of elastic net regularized logistic regression models in predicting treatment
outcome, defined as a reduction of viral load below 50 cps/ml (A) and 400 cps/ml (B). The areas under the ROC curves (AUC values) are
reported in Table S5 and Table S6. Prediction models are encoded by the sets of predictors used, where C refers to the demographic and clinical
variables, D refers to drugs, and M to mutations. For example, the model IGB+CDM includes as predictors IGB to regimen, clinical and demographic
predictors, applied drugs, and mutations. The models with all predictors perform significantly better than all other models.
doi:10.1371/journal.pcbi.1003203.g004

Individualized Genetic Barrier
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Discussion

We have comprehensively analyzed factors of therapy outcome

in the SHCS database using univariate, multivariate, and

regularized multivariate logistic regression models. As predictors

of therapeutic success we identified the applied drugs, the GSS,

and as the strongest predictor the IGB to regimen, a novel

predictor derived from viral genotype.

Including genotype information into treatment outcome

prediction is challenging because of the large number of

observed mutations and the complexity of the genotype-

phenotype relationship. Here, we have explored the IGB to

drug resistance as a summary measure of the escape dynamics

of the virus under treatment. The underlying idea of this

modeling approach is that the IGB captures how difficult it is

for the virus to escape from the selective pressure of individual

drugs or from the entire drug combination. This piece of

information is different from assessing the current genotypic or

phenotypic drug resistance state of the virus, as intended, for

example, by the GSS. The IGB makes a prediction about the

expected escape dynamics of the virus population given its

current genetic state.

The computation of the IGB involves an evolutionary model of

genetic progression under selective drug pressure along multiple

mutational pathways and a notion of evolutionary escape, which

was based here on the predicted level of phenotypic drug

resistance. We applied I-CBN models for jointly describing genetic

progression and associated phenotypic change of the virus. In

particular, phenotype predictions are non-linear in the mutations,

which allows for capturing epistatic effects, i.e., the same mutation

can have different effects on the resistance phenotype depending

on the genetic background of the virus (Figure 1). The I-CBN

models were estimated from independent genotype-phenotype

data. Using these models, the complex, high-dimensional,

genotypic data of each virus can be summarized efficiently by

the IGB to resistance to each drug. Thus, rather than modeling

interactions between drugs and individual mutations, the IGB

provides a comprehensive model of drug-genotype interaction.

In the present study, we have extended the concept of the IGB

to the entire regimen in a fashion that allows for computing this

quantity for any drug combination and hence for large clinical

datasets. The IGB to regimen can be regarded as the expected

number of active drugs in the regimen. Assuming independent

effects among drugs, we compute the regimen IGB from the drug

IGBs. These simplifying assumptions are made for computational

feasibility. They present a conceptual limitation of the approach

and more elaborate models are conceivable. In addition, other

variables not included in this study might be important, for

example, pharmacological properties of drug combinations and

host genetic factors. Here, the IGB, a single interpretable quantity,

was found to be the strongest genotype-derived predictor of

virological response and hence the most efficient representation of

the viral genotype with respect to therapy outcome.

We have used throughout two definitions of virological success

of treatment, namely reduction of viral load below 50 cps/ml and

below 400 cps/ml. The latter less stringent cutoff was included

because in the past it represented the limit of detection of viral

load assays. Today viral load values of 50 cps/ml and lower can

be measured and reduction below 50 cps/ml (or below the limit

of detection) is an accepted therapeutic goal. We generally found

very similar results for the two datasets, but the advantage of

using IGB over GSS (the de facto standard genotype interpre-

tation tool) reached statistical significance only for 400 cps/ml,

but not for 50 cps/ml. This finding may, in part, be due to the

larger dataset and hence increased statistical power for 400 cps/

ml as compared to 50 cps/ml. In the future, larger datasets will

be required to further evaluate the IGB and its potential to

predict treatment outcome without the need for expert rules. This

property of the IGB is particularly appealing for new drugs, for

which reliable rules are not readily available before evidence has

accumulated in published studies. Larger datasets and more

elaborate statistical variable importance methods [48] will also

increase the power to detect other factors of therapeutic outcome,

but the general consistency between the 50 cps/ml and 400 cps/

ml success definitions suggests that a sizable fraction of important

variables have been identified. In addition, larger TCE databases

will allow for analyzing alternative endpoints, such as time to

virological failure or virological response after a fixed period of

time.

In the univariate analysis, most drugs had a positive effect on

treatment outcome, with the exception of ZDV, d4T, 3TC, and

NFV. The negative associations might be due to the prominent

use of the drug combinations (ZDV or d4T) +3TC+ (IDV or

NFV), 90% of which were failures. The four drugs were among

the first to be approved for antiretroviral therapy and used in

early suboptimal regimens. Moreover, they were poorly

tolerated and therefore one can expect a general lower

adherence to treatment. A similar observation was made in

the multivariate analysis, where ZDV, ddI, SQV, 3TC and d4T

were significant predictors decreasing the odds of therapeutic

success. This effect might also be due to the common early use

of these drugs in mono therapy and their later use in salvage

regimens, even if multiple resistance mutations had already

accumulated [49]. Among PIs, a pronounced trend was that

boosting with RTV increased the odds of successful treatment.

The fraction of PI boosting in the dataset is reported in

Supporting Table S4.

A few variables did not show significant association with

therapy outcome although they might have been expected to. For

example, adherence is a well-known predictor of treatment

success [50,51], but it failed to reach significance in the

multivariate model, most likely due to lack of adherence data

for about 45% of the patients. The missing data resulted from

collecting adherence data within the SHCS only since January

2003. Indeed, in a multivariate analysis restricted to the subset of

1183 TCEs with observed adherence a more pronounced effect

can be observed. We have not included a set of variables in this

study that are known to be predictors because of the construction

of the dataset. The definition of the dataset of genotype-therapy

pairs allows for including several sequential TCEs from the same

patient. Most TCEs are actually derived from unique patients,

but some patients occur multiple times. Each TCE gives rise to

two therapy cases, a failure, which had given rise to the switch,

followed by a salvage regimen, which can be a failure or a

success. Therefore, we did not include variables that are affected

by the sequential ordering of therapies, such as the total time a

patient was under therapy with a certain drug or the calendar

year of treatment.

In summary, the IGB to regimen is a new predictor of treatment

outcome that captures, in a single quantity, the virus’ genetic

potential for developing drug resistance under the selective

pressure of the combination therapy. The IGB can be computed

efficiently for any viral genotype and any drug combination. It

may thus contribute to improved interpretation of genotypic drug

resistance tests and to the rational design of individualized

therapies. Future prospective studies are required to apply these

results to other patient populations and to eventually integrate

them into clinical practice.

Individualized Genetic Barrier
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Methods

Swiss HIV Cohort Study (SHCS) database
Founded in 1988, the SHCS is a nationwide, prospective,

multicenter, clinic-based cohort with continuous enrolment and

semi-annual study visits representing approximately 50% of all

HIV-infected and 75% of all treated patients in Switzerland [46].

The SHCS has been approved by ethical committees of all

participating institutions, and written informed consent has been

obtained from all participants. The SHCS drug resistance

database contains the results of 13,201 genotypic resistance tests

from 9,231 patients, stored in a central database [45]. Resistance

data stem from routine clinical testing (60%) and from tests

performed retrospectively from frozen repository plasma samples

(40%) (Table 1 and 2).

The SHCS has been approved by the following ethical

committees of all participating institutions: Kantonale Ethikkom-

mission Bern; Ethikkommission beider Basel; comité d’éthique du

département de médicine de Hôpitaux Universitaires de Genéve;

commission d’éthique de la recherche clinique, Lausanne;

comitato etico cantonale, Bellinzona; Ethikkommission des

Kanton St.Gallens; and Ethik-Kommission Zürich, all Switzer-

land. Written informed consent has been obtained from all

participants [46].

Treatment change Episode (TCE) data
TCEs were obtained from the SHCS database as follows. Each

TCE consists of a failing therapy followed by a salvage therapy

(Supporting Figure S1). We required that the failing therapy was at

least four month long and that the genotype was measured no

more than 90 days before and no more than 30 days after onset of

the uninterrupted salvage therapy [26]. In order to restrict to

failing regimens due to viral rebound and to exclude convenience

treatment changes or single determinations of low-level viremias

(blips), a failing therapy was defined by either two consecutive viral

load measurements above 500 cps/ml, or a single viral rebound

followed by therapy switch, or single rebound after 180 days and

lack of viral suppression below the limit of detection.

Therapies were labeled ‘success’ versus ‘failure’ as follows. Any

failing therapy was considered a failure. Salvage therapies were

considered successful, if viral load dropped below 50 cps/ml at

any time point during treatment, otherwise they were considered

failures. Because viral load assays with a sensitivity of 50 cps/ml

were not available for the whole observation period, we also

considered an alternative definition of therapy success as a viral

load reduction below 400 cps/ml. The TCE dataset spans the

time period 1988–2010, but 75% of TCEs date from 2000 or later.

Isotonic Conjunctive Bayesian Network (I-CBN) models
Genetic progression of the virus under selective drug pressure

and the resulting phenotypic drug resistance changes were

modeled jointly using I-CBNs [44]. In this model, mutations

occur subject to partial order constraints which define the

genotype lattice, the set of genotypes compatible with the

constraints, and drug resistance is non-decreasing along any

mutational pathway (Figure 1). Formally (see [44] for details), let

(E,[) be a partially ordered set of n mutations. Each genotype is

identified with the subset g(E of mutations it carries. The

genotype lattice G induced by (E,[) is the set of all genotypes g for

which it holds that e[g implies e’[g whenever e’[e in E. We

denote by Exit[(g) the set of accessible mutations from genotype

g under the given partial order constraints. The I-CBN is a

statistical model for the random variables X[2E^f0,1gn
,

describing observed genotypes, and Y[R, describing associated

drug resistance phenotypes, both of which are observed from true

hidden genotypes Z[G(2E subject to noise. The probability of an

unobserved genotype Z is defined as

P(Z~g)~ P
e[g

he
: P

e[Exit[(g)
(1{he) ð1Þ

where the parameters he denote the conditional probabilities of

mutation e[E given that all of its predecessor mutations have

occurred, he~P e[ZjVe0[Z, e0ve, e0=eð Þ. The observed random

variables X and Y are independent given Z. The genotype

observation error is modeled as

P(X DZ)~(1{e)n{d(X ,Z)ed(X ,Z) ð2Þ

where d denotes the Hamming distance and errors are assumed to

occur independently among sites at rate e. The observed drug

resistance phenotype Y is the log fold-change in susceptibility. For

each genotype Z, it follows a normal distribution

P(Y DZ)~Norm(mZ, s) ð3Þ

subject to the monotonicity contraints mgƒmh for all genotypes

g(h. The complete model for X and Y is then the marginal-

ization

P(X , Y )~
X

Z

P(Z)P(X DZ)P(Y DZ) ð4Þ

Parameter estimation for this model was performed using the EM

algorithm described in [44].

The model was applied separately to 18 antiretroviral drugs,

using between 280 and 2303 (median 1448) cross-sectional

genotype-phenotype pairs, i.e., observations of (X ,Y ), obtained

from the Stanford HIV Drug Resistance Database, restricted to

subtype B sequences and to Phenosense or Antivirogram assays

[52]. For each drug, we selected its resistance-associated mutations

reported on the Stanford HIVdb website lumping together

mutations occurring at the same site, or if unavailable, applied

L1-penalized (lasso) linear regression [53,54] to select from all PR or

RT mutations occurring at least ten times a sparse set E of n~10
predictor mutations. The performance of the models is reported as

the Pearson correlation coefficient between true and predicted

phenotypes, estimated from a separate, random subset of 20% of the

data. Phenotypic cutoff values were derived from the distribution of

fold-change values as described previously [15,26] and used to

dichotomize resistance predictions (Supporting Table S2).

Individualized Genetic Barrier (IGB)
Given an I-CBN model, transition probabilities among geno-

types g, h[G can be computed as

P(g?h)~ P
e[h\g

he
: P

e[Exit[(g)\h
(1{he) ð5Þ

Using these transition probabilities and the predicted drug

resistance phenotypes mg, we define the IGB of genotype g[G to

resistance to drug d as the probability of the virus not reaching any

genotypic state predicted as resistant,

IGBd (g)~1{
X
h[Gd

P(g?h) ð6Þ

Individualized Genetic Barrier
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where Gd5G is the subset of all genotypes g predicted to be

resistant to drug d , i.e., for which mg is greater than the resistance

cutoff (Supporting Table S2).

Genotypes outside the lattice G (not complying with the partial

order constraints) are regarded as erroneous observations of the

genotypes in the lattice. The IGB of such a genotype f is

IGBd (f )~1{
X
g[G

P(gDf ) 1{IGBd (g)½ � ð7Þ

where P(gDf ) is the probability of the actual genotype being g

given that f has been observed. By Bayes’ theorem,

P(gDf )~
P(f Dg)P(g)P
h[G P(f Dh)P(h)

ð8Þ

where P(f Dg)~(1{e)n{d(f ,g)ed(f ,g) is modeled as in Eq. 2.

The genetic barrier to escape from a regimen R is defined as the

sum of the drug-specific barriers over all drugs in the regimen

IGBR(g)~
X
d[R

IGBd (g) ð9Þ

Because the IGB to each drug can be regarded as an estimate of

the activity of the drug (the probability of not escaping), the IGB to

a regimen may be interpreted as the expected number of active

drugs in the regimen. Note that 0ƒIGBR(g)ƒDRD, that

IGBR(g)&0 means that evolutionary escape is almost certain,

and that adding a drug to a regimen can only increase the genetic

barrier to the regimen.

Statistical analysis
For classifying therapies as failures versus successes, univariate,

multivariate, and regularized multivariate logistic regression was

used. For a set of precitors x1, . . . ,xm, the therapeutic success

probability p is modeled by the regression

log
p

1{p

� �
~b0zb1x1z . . . zbmxm ð10Þ

where bj are the regression coefficients. The odds ratio of

therapeutic success associated with a one-unit increase in predictor

j is ebj . P-values for the predictors are corrected for multiple testing

using the Benjamini-Hochberg procedure. For regularization, we

applied the elastic net [55], which combines an L1 (lasso) penalty

encouraging sparse solutions with an L2 (ridge) penalty that tends to

average across correlated features. Classifier performance was

evaluated using ROC curves and is reported as the area under the

ROC curve (AUC). The data was ten times randomly split into 40%

for estimation of the two hyperparameters (one for the degree of

each type of regularization) and 60% for model fitting and testing,

which was done by 10-fold cross-validation [56].

The R language for statistical computing (http://www.r-project.

org/) was used for all analyses, including the R packages icbn,

glmnet, and ROCR. An R script for computing the IGB is

available at: http://www.cbg.ethz.ch/software/igb. The Stanford

HIVDB Sierra web service was used for GSS computation.
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Supporting Information

Figure S1 Treatment change episode (TCE). Each TCE

consists of a failing therapy followed by a salvage therapy. The

failing therapy gives rise to a failure, whereas the salvage therapy

can be either a success or a failure, depending on whether viral

load suppression below 50 cps/ml (400 cps/ml) was achieved

during treatment or not (see Methods). Genotypes are measured

prior to or at the beginning of the salvage regimen. Examples of

successful salvage therapy and failing salvage therapy are given in

part (A) and (B) of this figure, respectively.

(EPS)

Figure S2 Drug usage in the SHCS database. Drug

frequencies among successful (green) and failing (red) regimens

for the TCEs of the SHCS database. Successful treatment was

defined as a reduction in viral load below 50 cps/ml (A) or

400 cps/ml (B).

(EPS)

Figure S3 Most abundant drug combinations in the
SHCS database. Frequencies of the 30 most abundant drug

combinations in the SHCS database. Successful treatment was

defined as a reduction in viral load below 50 cps/ml (A) or

400 cps/ml (B).

(EPS)

Figure S4 I-CBN model for resistance development to
ZDV. Partially ordered set of RT mutations 41L, 67N, 70R, 74I,

74V, 184V, 210W, 215F, 215Y, 219Q associated with resistance

to ZDV (A) and induced genotype lattice (B). Genotypes are

colored green if predicted susceptible and red if predicted resistant.

(EPS)

Figure S5 I-CBN model for resistance development to
DDI. Partially ordered set of RT mutations 41L, 65R, 69Ins,

74VI, 151M, 184VI, 210W, 215FY associated with resistance

to DDI (A) and induced genotype lattice (B). Genotypes are

colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S6 I-CBN model for resistance development to
DDC. Partially ordered set of RT mutations 41L, 65R, 67N,

75M, 75T, 116Y, 151M, 184V, 210W, 211N associated with

resistance to DDC (A) and induced genotype lattice (B). Genotypes

Individualized Genetic Barrier
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are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S7 I-CBN model for resistance development to
D4T. Partially ordered set of RT mutations 41L, 65R, 67N,

69Ins, 70R, 151M, 184VI, 210W, 215FY, 219QE associated with

resistance to D4T (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S8 I-CBN model for resistance development to
3TC. Partially ordered set of RT mutations 41L, 67N, 70R,

181C, 184V, 190A, 210W, 215F, 215Y, 219Q associated with

resistance to 3TC (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S9 I-CBN model for resistance development to
ABC. Partially ordered set of RT mutations 41L, 65R, 69Ins,

74VI, 115F, 151M, 184VI, 210W, 215FY associated with

resistance to ABC (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S10 I-CBN model for resistance development to
TDF. Partially ordered set of RT mutations 41L, 65R, 69Ins,

70R, 74VI, 115F, 151M, 184VI, 210W, 215FY associated with

resistance to TDF (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S11 I-CBN model for resistance development to
FTC. Partially ordered set of RT mutations 65R, 69Ins, 151M,

184VI associated with resistance to FTC (A) and induced genotype

lattice (B). Genotypes are colored green if predicted susceptible

and red if predicted resistant.

(EPS)

Figure S12 I-CBN model for resistance development to
EFV. Partially ordered set of RT mutations 100I, 101EP, 103NS,

106AM, 181CIV, 188LHC, 190ASE, 230L associated with

resistance to EFV (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S13 I-CBN model for resistance development to
NVP. Partially ordered set of RT mutations 100I, 101EP, 103NS,

106AM, 181CIV, 188LHC, 190ASE, 230L associated with

resistance to NVP (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S14 I-CBN model for resistance development to
RTV. Partially ordered set of PR mutations 24I, 30N, 32I, 46I,

46L, 54V, 73S, 82A, 84V, 90M associated with resistance to RTV

(A) and induced genotype lattice (B). Genotypes are colored green

if predicted susceptible and red if predicted resistant.

(EPS)

Figure S15 I-CBN model for resistance development to
SQV. Partially ordered set of PR mutations 48VM, 54VTALM,

82AT, 84V, 88S, 90M associated with resistance to SQV (A) and

induced genotype lattice (B). Genotypes are colored green if

predicted susceptible and red if predicted resistant.

(EPS)

Figure S16 I-CBN model for resistance development to
IDV. Partially ordered set of PR mutations 32I, 46IL, 47V,

54VTALM, 76V, 82AFTS, 84V, 88S, 90M associated with

resistance to IDV (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S17 I-CBN model for resistance development to
NFV. Partially ordered set of PR mutations 30N, 46IL, 47V,

48VM, 54VTALM, 82AFTS, 84V, 88DS, 90M associated with

resistance to NFV (A) and induced genotype lattice (B). Genotypes

are colored green if predicted susceptible and red if predicted

resistant.

(EPS)

Figure S18 I-CBN model for resistance development to
LPV. Partially ordered set of PR mutations 32I, 46IL, 47VA,

48VM, 50V, 54VTALM, 76V, 82AFTS, 84V, 90M associated

with resistance to LPV (A) and induced genotype lattice (B).

Genotypes are colored green if predicted susceptible and red if

predicted resistant.

(EPS)

Figure S19 I-CBN model for resistance development to
APV. Partially ordered set of PR mutations 24I, 32I, 46I, 46L,

48V, 53L, 54V, 82A, 84V, 90M associated with resistance to APV

(A) and induced genotype lattice (B). Genotypes are colored green

if predicted susceptible and red if predicted resistant.

(EPS)

Figure S20 I-CBN model for resistance development to
ATV. Partially ordered set of PR mutations 10I, 32I, 33F, 46I,

48V, 54V, 71V, 82A, 84V, 90M associated with resistance to ATV

(A) and induced genotype lattice (B). Genotypes are colored green

if predicted susceptible and red if predicted resistant.

(EPS)

Figure S21 I-CBN model for resistance development to
TPV. Partially ordered set of PR mutations 32I, 46IL, 47VA,

54VAM, 82TL, 84V associated with resistance to TPV (A) and

induced genotype lattice (B). Genotypes are colored green if

predicted susceptible and red if predicted resistant.

(EPS)

Figure S22 Univariate analysis of predictors of re-
sponse to antiretroviral combination therapy in the
SHCS database. Associations have been tested using logistic

regression models and odds ratios of therapeutic success, defined

as viral load reduction below 50cps/ml (A) and 400cps/ml (B), are

reported together with their 95% confidence intervals on a

logarithmic scale. Benjamini-Hochberg-corrected p-values are

represented as black (pv0:001) and grey (pv0:01) symbols. Only

predictors with a p-value smaller than 0.01 are included.

(EPS)

Table S1 Complete list of all variables analyzed with
respect to treatment outcome. Groups NRTI, NNRTI, and

PI consist of binary variables, one for each drug, indicating the

presence of the respective drug in the regimen. For PIs, boosted

(given together with low-dose RTV) and unboosted formulations

are distinguished, except for LPV which is always applied boosted.

The variable RTV refers to the use of ritonavir as the only PI in

the regimen. Demographic and clinical variables include age and

Individualized Genetic Barrier

PLOS Computational Biology | www.ploscompbiol.org 9 August 2013 | Volume 9 | Issue 8 | e1003203



gender of the patient, whether he or she had AIDS, the maximum

viral load and the minimum CD4 T cell count measured anytime

before treatment onset, transmission group (BLOOD, HET, IDU,

MSM, or OTHER), and adherence. Patient adherence was

assessed in questionnaires and measured as the percentage of

missed dosages [50,51] for 1183 (45%) of the patients, and then

dichotomized. For the multivariate analysis only, unobserved

values of patient adherence were imputed by a logistic regression

model (one for each dataset) from all remaining variables except

the response (treatment outcome). For each drug, the individual-

ized genetic barrier (IGB) is the probability of the virus not

escaping from the selective pressure of the drug. The IGB to

regimen is defined as the sum of the drug-specific IGBs over all

drugs in the regimen. Mutations in the PR and RT of HIV-1 are

denoted by the sequence position followed by the amino acid.

Each variable is binary indicating the presence of the respective

amino acid at the respective position in the protein. Only

mutations that occurred in at least 5% of the samples are

considered.

(PDF)

Table S2 Construction of I-CBN models. For each drug, is

reported the number N of genotype-phenotype pairs the model

has been learned from, the correlation coefficient R between

predicted and true drug resistance phenotypes, the list of selected

mutations, and the cutoff value C defining resistant versus

susceptible viruses. The correlation coefficient has been estimated

from an independent test set consisting of 20% of the data that was

not used for training. For ZDV, DDI, D4T, 3TC, ABC, TDF,

FTC, EFV, NVP, SQV, IDV, NFV, LPV, and TPV, the

corresponding drug resistance-associated mutations reported on

the Stanford HIV Drug Resistance Database website were used,

while for DDC, RTV, APV, and ATV, we selected ten mutations

using L1-penalized linear regression (lasso).

(PDF)

Table S3 Different categories of drug combinations in
SHCS databse. The first category includes drug combinations

currently recommended as first-line or alternative regimens

according to the JAMA recommendations [42]. Category 2

includes regimens that were recommended as first-line or

second-line regimens in the past, regimens that are still in use in

developing countries or are used sometimes if drug resistant virus

is present at baseline, or salvage regimens. Category 3 includes

older regimens that are not in use anymore as first-line regimens

but were before, regimens that are not corresponding to

guidelines, including those that are sometimes used in special

circumstances, such as unusual tolerability, etc. To evaluate the

prediction performance (sensitivity and specificity) of each

category, leave-one-out cross-validation experiments were per-

formed.

(PDF)

Table S4 PI usage and boosting fraction. Reported is the

total number of regimens in the SHCS database that include the

respective PI, and in parenthesis, the percentage that the PI is

boosted, i.e., given together with low-dose ritonavir (RTV).

(PDF)

Table S5 Comparative performance in predicting treat-
ment outcome, defined as a reduction of viral load below
50cps/ml, for different elastic net regularized logistic
regression models. Comparative performance in predicting

treatment outcome, defined as a reduction of viral load below

50cps/ml, for different elastic net regularized logistic regression

models. In columns 3–8, the p-value of a two-sided Wilcoxon rank

sum test for differences in the area under the ROC curve (AUC;

column 2) is reported. Prediction models (column 1) are encoded

by the sets of predictors used, where C refers to the demographic

and clinical variables, D refers to drugs, and M to mutations. For

example, the model IGB+CDM includes as predictors IGB to

regimen, clinical and demographic predictors, applied drugs, and

mutations.

(PDF)

Table S6 Comparative performance in predicting treat-
ment outcome, defined as a reduction of viral load below
400cps/ml, for different elastic net regularized logistic
regression models. Comparative performance in predicting

treatment outcome, defined as a reduction of viral load below

400cps/ml, for different elastic net regularized logistic regression

models. In columns 3–8, the p-value of a two-sided Wilcoxon rank

sum test for differences in the area under the ROC curve (AUC;

column 2) is reported. Prediction models (column 1) are encoded

by the sets of predictors used, where C refers to the demographic

and clinical variables, D refers to drugs, and M to mutations. For

example, the model IGB+CDM includes as predictors IGB to

regimen, clinical and demographic predictors, applied drugs, and

mutations.

(PDF)
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The calculated genetic barrier for antiretroviral drug resistance substitutions is

largely similar for different hiv-1 subtypes. J Acquir Immune Defic Syndr 41:

352–360.

44. Beerenwinkel N, Knupfer P, Tresch A (2011) Learning monotonic genotype-

phenotype maps. Stat Appl Genet Mol Biol 10: 3.
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