
Harmful stimuli at the periphery of the body are detected 
by nociceptive, polymodal sensory neurons with afferents that 
project from the dorsal root ganglia (DRG) and the trigeminal 
ganglia (TG). Nociceptive fibers line the epithelium of the 
esophagus, gut, intestine, and bladder, and are involved in the 
transmission of pain to the central nervous system. Currently, 
opiates, which target central pain pathways, are the dominant 
therapy addressing pain. These treatments are often addictive 
[1] and only moderately effective [2], yet are still used, in 
part because we have few useful tissue models with which 
to research molecular mechanisms transducing pain at the 
periphery. The mouse cornea is a highly accessible tissue with 
which to develop such a preparation and has been shown with 

electrophysiological methods to contain the temperature-
sensitive TRP channels TRPV1, TRPA1, and TRPM8 [3-5]. 
The capsaicin receptor, TRPV1, is activated endogenously 
by heat (>42 °C), extracellular protons, and the endocan-
nabinoid anandamide. These signals are perceived centrally 
as heat and pain [6,7]. In some species, TRPA1 also responds 
to heat [8]. TRPM8 and TRPA1 respond to cold, although 
cold-dependent activation of TRPA1 remains controversial 
[8-18]. These channels also detect chemical stimuli. TRPM8 
is activated by menthol and icillin, and TRPA1 is activated 
by pungent compounds like mustard oil and cinnamaldehyde 
[5,19]. During inflammation, many chemicals are released 
that increase the number of functional TRP channels. This 
results in nociceptor sensitization, the cellular correlate of 
central hyperalgesia [20-22].

The cornea is richly innervated, but the distribution of 
TRP channels and their localization within sensory neuronal 
neuropeptide vesicles has not been fully explored. There 
are two main types of sensory neurons, large-diameter A 
fibers and small-diameter C fibers. Typically, A fibers are 
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the cornea: TRPV1 axons contain CGRP and secretogranin II; 
TRPA1 axons contain secretogranin 3
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Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and 
TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a con-
cise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea.
Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and 
monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further 
colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament 
protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from 
mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy 
and image analysis were performed.
Results: In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers 
extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex 
terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize 
to separate intracellular vesicular structures and were primarily found in axons containing components of large dense 
vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed 
similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface.
Conclusions: The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides 
an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular 
mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in 
the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed 
in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of 
these ion channels in higher mammalian corneal physiology.
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myelinated; however, in the cornea, to preserve transparency, 
no fibers are myelinated upon entering the stroma. Bundles 
containing Aδ and C fibers enter the midstromal region 
equally distributed around the corneal periphery and branch 
perpendicularly toward the surface through several epithelial 
layers. The small-diameter C fibers extend through tightly 
packed epithelial cells to the corneal surface, much like the 
sensory fibers in the glabrous skin of the rodent hind paw. 
Some axon terminals are highly branched (complex); others 
are T-shaped (ramifying) or not branched at all (simple) [3].

The complex degree of innervation makes the cornea 
highly susceptible to pain, and studies have shown that with 
recent cornea procedures such as photorefractive surgery, 
and with the development of dry eye in an increasing elderly 
population, eye pain has become a significant health issue 
[23,24]. Immediate damage to the eye, as with surgical 
procedures, results in acute inflammation and hyperalgesia. 
In DRG neurons in culture, exposure to nerve growth factor 
(NGF), a growth factor released during inflammation, results 
in an increase in functional TRPV1 channels on the cell 
surface causing sensitization [22]. Others have noted a release 
of the neuropeptide CGRP in response to inflammation and 
report that TRPV1 and CGRP are localized to the same axons 
[25,26]. A recent study found that TRPV1-induced sensitiza-
tion triggers the release of the neuropeptide substance P from 
TRPM8-expressing sensory neurons to signal cold nocicep-
tion [27]. TRPA1 was also proposed to play a role in dry eye 
in rats [28], although the normal development of dry eye in 
TRPA1 knockout mice suggested that TRPA1 does not play 
a significant role in corneal cold nociception in mice [27]. 
Understanding the expression patterns and interplay of these 
TRP channels within the cornea will further elucidate their 
role in corneal pain and cold nociception.

The colocalization pattern of the TRP channels TRPV1, 
TRPA1, and TRPM8, and the neuropeptide CGRP, has been 
reported in the axon terminals and cell bodies of several 
tissues [29-31]. The majority of studies were performed at the 
level of the DRG cell soma or DRG cell cultures and demon-
strated coexpression of two or more TRP channels; many also 
expressed CGRP. The cornea is innervated by the axon termi-
nals of the ophthalmic branch of the trigeminal ganglia, which 
resides at the base of the brainstem. The mouse cornea has 
been used extensively as a model system for understanding 
human physiology, with modern genetic approaches allowing 
the role of specific proteins to be readily addressed. However, 
there are some differences in morphology between mouse 
and monkey corneas. In mice, there are unmyelinated nerves 
in the deeper layers of the cornea within micrometers of the 
endothelium, whereas monkey corneas do not have nerve 

fibers found deeper than 50 μm from the epithelium [32]. To 
determine whether the cornea would serve as a representative 
peripheral tissue model for functional studies to explore the 
role of inflammatory mediators and hyperalgesia, the expres-
sion pattern and colocalization of CGRP and TRP channels 
were examined in young adult mouse and monkey corneas.

METHODS

Corneal tissue: Mouse corneas were obtained from C57BL/6J 
mice and TRPM8EGFP mice, described by Dhaka [33], 6–9 
weeks of age (The University of Washington Institutional 
Animal Care and Use Committee approved the study). 
Corneas were fixed in 4% paraformaldehyde (PFA) in PBS 
(10 mM phosphate buffered saline, 138 mM NaCl, 2.7 mM 
KCl, pH 7.4; Sigma, St. Louis, MO) solution at room tempera-
ture for 5 min before dissection. Isolated corneas were fixed 
5–10 min longer. Fixed corneas were placed at 4 °C in PBS 
until used for wholemount immunostaining. Monkey corneal 
tissue from Macaca nemestrina was obtained through the 
Tissue Distribution Program of the Washington National 
Primate Research Center. Monkey corneas were isolated 
within 4 h of acute euthanasia of the animal and fixed as 
a wholemount for 2 h at room temperature, 4% PFA/PBS, 
and stored at 4 °C in PBS until use. Mice were euthanized 
using application of carbon dioxide in a closed chamber at a 
rate of 20% of the chamber volume per minute for at least 5 
min, followed by decapitation. Primate samples were from 
Dr. Fred Rieke’s lab, who received tissues from the Distribu-
tion Program of the Regional Primate Research Center at the 
University of Washington following procedures approved by 
the Institutional Animal Care and Use Committee. Tissue 
was prepared for cryostat sectioning by sinking in 30% 
sucrose (EMD Millipore, Burlington, MA)/PBS followed by 
Tissue-Tek O.C.T. Compound (Sakura Finetek, Torrance, CA) 
and cryostat sectioned at 12 µm. All imaging was reproduced 
from at least three corneas.

Immunohistochemistry: Cornea wholemounts were placed in 
10% Triton X-100 (BioWorld, Dublin, OH) /2% bovine serum 
albumin (BSA, Sigma)/PBS rotating gently at room tempera-
ture for 2 h, rinsed with PBS, and placed in primary antisera 
in 1% Triton/2% BSA/PBS for 24 h at 4 °C. Antibodies used 
are described in Appendix 1. Corneas were washed five to 
six times for 10 min with PBS and placed in the appropriate 
secondary antisera in 1% Triton/2% BSA/PBS for 24 h at 
4 °C. Tissue was rinsed using 10 min successive washes with 
PBS once, 4’,6’-diamidino-2-phenylindole, dilactate (DAPI) 
once, and PBS three times, and then mounted in Fluoro-
mount G (Southern Biotech, Birmingham, AL). The cryostat 
sections were treated in a similar manner.
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Microscopy: Confocal scanned images were collected using 
a 63X oil immersion lens and a Zeiss LSM710 microscope 
using 405, 488, 561, and 633 nm laser lines to excite DAPI 
(405 nm) or the appropriate secondary antisera. Images were 
processed using Fiji [34].

RESULTS

TRPV1 was expressed throughout sensory axons terminating 
in the epithelial layers of the mouse cornea: To determine 
the pattern of TRPV1-expressing axons in the mouse cornea, 
wholemount coimmunolabeling was performed, with an anti-
TRPV1 antibody and an antibody raised against the axonal 
marker neuronal β-tubulin (TUJ). All fiber bundles entering 
the cornea around the periphery contained TRPV1-positive 
axons that branched as they entered the midstroma and the 
sub-basal epithelial region (the basal cell layer of the corneal 
epithelium at the stroma interface). Many of the TRPV1 
fibers appeared to be the thin, varicose C fibers extending 

all the way through the epithelial cell layers to the corneal 
surface (Figure 1).

TRPA1 was not expressed in TRPV1-containing mouse 
corneal axons: TRPA1 activity in response to allyl isothio-
cyanate has been reported in the cornea [35]. Double immu-
nolabeling for TRPV1 and TRPA1 revealed that fiber bundles 
entering the periphery of the cornea and midstromal fibers 
contained axons expressing both TRP channels, but they 
were in separate axons (Figure 2A–C). The axons expressing 
TRPA1 appeared to be of a larger diameter compared to the 
TRPV1-expressing axons, suggesting TRPA1 is confined 
to Aδ fibers. Coimmunolabeling with TRPA1 and the 
Aδ-specific neurofilament protein, NF200, completely 
overlapped (Figure 2D–F). The labeling for TRPA1 and 
TRPV1 appeared punctate, suggesting much of the protein is 
likely located in intracellular compartments (Figure 2B,C,F, 
arrows). Aδ fibers terminate as simple terminals primarily 
in the stroma and sub-basal regions. In agreement with this, 

Figure 1. TRPV1 is expressed in axons throughout the cornea. A, B: Neuronal β-tubulin (TUJ) and TRPV1 antisera labeled axons in a 
mouse cornea wholemount. C: Merged section from the wholemount in A, B (boxed area in A) demonstrating many of the axon fiber bundles 
entering the cornea express TRPV1. D–F: Three-dimensional x,y projection from the sub-basal level to the cornea surface; arrowheads point 
to small-diameter fibers expressing TRPV1 extending to the surface. Scale bars: (AB) 500 μm; (C) 350 μm; (D–F) 10 μm.
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no TRPA1 expression was observed in the epithelial layers 
of the cornea.

TRPM8 was expressed in mouse corneal C fibers that did not 
contain TRPV1: The ion channel TRPM8 has been reported 
to be involved in sensing osmolality and regulation of corneal 
blinking [36] and is expressed in C fibers in the mouse cornea 
[5]. Cold and chemical stimuli were found to enhance TRPM8 
responses when TRPV1 was coexpressed in TRPM8-positive 
fibers [27], although the evidence that TRPM8 and TRPV1 
colocalize is controversial [3,37]. To determine whether 
TRPM8 expression overlaps with TRPV1, wholemount, fixed 
corneas obtained from TRPM8EGFP mice were immunolabeled 
with TRPV1 antisera and imaged. TRPV1 and TRPM8EGFP 
were found primarily in C fibers and not in fibers immuno-
labeled with NF200 (Figure 3A). In all corneas imaged, fewer 
axons expressed TRPM8 compared to TRPV1, and these TRP 
channels were found in different neurons (Figure 3D,F).

TRPV1 mouse corneal axons contained the neuropeptide 
CGRP: The neuropeptide CGRP is also reported to be 
expressed in C fibers of other sensory neuronal populations, 
in the DRG and throughout the gut, and has been shown to 
colocalize with TRPV1 [26]. Almost all TRPV1-positive 

axons also contained CGRP throughout the cornea from 
their entry at the periphery to their termination at the corneal 
surface (Figure 3C,F). Neither TRPV1 nor CGRP expression 
appeared to localize to TRPM8EGFP-expressing axons (Figure 
3F).

The axon terminal morphology of TRPM8 axons differed 
from that of TRPV1 axons in mice: TRPV1-/CGRP-containing 
axon terminals extended throughout the cornea to the corneal 
surface either as simple or ramifying terminals (Figure 4A,B). 
TRPM8 axons terminated at the corneal surface as well, 
as simple, ramifying, or complex termini (Figure 5B–D). 
Although there was some variability between corneas, simple 
terminals were seen mostly toward the center of the cornea, 
ramifying terminals were mostly in the pericentral region, 
and complex terminals were mostly closer to the periphery 
(Figure 5A).

Monkey cornea contained simple TRPV1/CGRP axon termi-
nals extending to the corneal surface: As there are some 
morphological differences between monkey and mouse 
corneas, we examined whether the TRPV1 and CGRP 
neurons are distributed similarly in mice and monkey 
corneas. The expression pattern and terminal morphology of 

Figure 2. TRPV1 and TRPA1 are in separate axons in the cornea. A–C: TRPV1 and TRPA1 antisera labeled axons in the stromal region 
of the cornea. Boxed region of A is shown in B, C. D-F: TRPA1 and NF200 immunolabeling colocalize to the same axons. Arrowheads 
indicate punctate, intracellular immunostaining in B, C and F. Scale bars: (A, D–F) 5 μm; (B, C) 2 μm.
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TRPV1/CGRP-positive axons appeared roughly similar for 
the mouse (Figure 4) and monkey (Figure 6) tissues. Within 
the resolution of the confocal microscopy, they appeared to 
largely localize to the same neurons and to the same intra-
cellular compartments within neurons (Figure 6C). Limited 
access to monkey tissue prevented further characterization 
within monkey corneas.

The secretogranins ScgII and SCG3 were expressed in 
mouse corneal sensory neurons: As shown in Figure 2A–C, 
TRPV1 (red) and TRPA1 (green) appeared intracellular and 
punctate, indicating their likely localization to intracellular 
vesicles. Neuropeptides, including CGRP, are packaged in 
chromogranin or secretogranin containing large dense core 
vesicles (LDCVs) [38]. Secretogranins are a diverse group of 
LDCV proteins, some of which, like secretogranin II (ScgII), 
are cytoplasmic and are proteolyzed into several smaller 
peptides in vesicles [39]. Others, such as SCG3, are small 
transmembrane protein components of LDCVs [38]. ScgII and 
SCG3 were shown to be expressed in nociceptive, TRPV1-
containing neurons with RNA sequencing and proteomic 
studies [40]. Using antisera directed against ScgII and SCG3, 
we found that these secretogranins were expressed in separate 
axon populations within the mouse cornea, that ScgII labeling 

colocalized to TRPV1-expressing axons (Figure 7E), and 
that SCG3 appeared to be contained in NF200-positive Aδ/
TRPA1 fibers (Figure 7F).

DISCUSSION

The mouse cornea is densely innervated and contains sensory 
neurons expressing TRPV1, TRPA1, and TRPM8 primarily 
in a non-overlapping manner. TRPV1 was found to colocalize 
with CGRP and with the ScgII member of the secretogranin 
family. In contrast, TRPA1 colocalized with SCG3 (Figure 8). 
TRPM8 expression was not directly measured, as the avail-
able antisera tested were not sufficiently specific. Instead, 
expression was determined using corneas from TRPM8EGFP 
mice [34]. Three different morphologies were observed 
for TRPM8 axonal terminals, whereas all TRPV1 axons 
observed terminated in a simple or ramifying manner at the 
cell surface, and TRPA1 Aδ fibers contained simple termina-
tions in the sub-basal epithelium.

The expression pattern of TRPV1, TRPA1, and TRPM8 
varies in different species and in different neuronal popu-
lations. In rat DRG, there are reports of colocalization of 
TRPV1 and TRPA1 in C fibers and in Aδ fibers [30]. In 
guinea pig gastrointestinal tract and esophagus, C fibers 

Figure 3. TRPV1/CGRP and TRPM8 do not colocalize and are not in NF200-positive axons. A: Stromal fiber bundle from a TRPM8EGFP 
mouse entering the cornea labeled with antisera directed against NF200 in Aδ fibers and TRPV1. Stromal fiber (B, C) and central-pericentral 
(D–F) region from the TRPM8EGFP mouse cornea wholemount immunolabeled with CGRP (cyan) and TRPV1 (red). Scale bars: (A–C) 2 
μm; (D–F) 10 μm.
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Figure 4. TRPV1 axons terminate in 
a simple or ramifying morphology. 
A: The top panel shows axon termi-
nals expressing TRPV1 and CGRP 
at the surface of the cornea. The 
orthogonal view below is generated 
by projecting the z-series below in 
the x-plane. The arrowhead to the 
right of the y,z panel below indi-
cates the location of the section 
above containing ramifying termi-
nals. B: Cross section of the cornea 
epithelium (12 µm cryosection), 
sub-basal to surface, demonstrates 
the colocalization of TRPV1 and 
CGRP in an axon terminal with 
simple morphology. As in A, the 
green arrowhead indicates the 
surface epithelium, the blue bar 
indicates the epithelial layers, and 
the red arrowhead points to the 
sub-basal epithelium. (A, B) Scale 
bar: 5 µm.
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Figure 5. TRPM8 axons terminate in simple, ramifying, and complexed branches. A: Wholemount of TRPM8EGFP mouse cornea central-
pericentral region. B–D: Terminal morphology; the small panels under each image show orthogonal views generated by projecting the 
z-series above it in the x-plane. Simple (B), ramifying (C), and complex (D) morphologies are demonstrated. Scale bars: (A) 20 μm; (B–D) 
5 μm.
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coexpress TRPV1,TRPA1, and TRPM8 with CGRP [31]. In 
human axons, Aδ fibers were reported to contain TRPA1 and 
TRPV1, as are mouse dural afferents [29]. A recent paper 
showed colocalization of TRPV1 and TRPM8 in cell bodies 
whose axons project to the cornea in mice [27]. In contrast to 
these results, in the mouse cornea we observed the expres-
sion of TRPV1, TRPA1, and TRPM8 to be in separate axons, 
and CGRP expression was confined to TRPV1 axons and not 
TRPM8 C fibers or TRPA1 Aδ fibers.

It is difficult to evaluate the meaning of the reported 
variability in TRP channel expression patterns because 
studies used different species and tissues [29-31] along with 
different techniques, including in situ hybridization [3,30], 
IHC of cell bodies in the ganglion of retrograde labeled 
peripheral afferents [3,27], and IHC of the axon terminals 
[5]. In addition, discrepancies have been shown with IHC of 
the soma versus immunolabeling of the axon terminals [41]. 
The different antibodies used may also explain differences 
among studies.

It is somewhat surprising that TRPA1 is not found in 
the epithelial nerves, where sensory transduction typically 
takes place. It is always possible that the TRPA1 protein in 
the epithelial regions could have undergone proteolysis or 
exists in a conformation inaccessible to the primary antibody, 
or that there are trace amounts of TRPA1 in the epithelium 
below the threshold of detection. Consistent with the low 
expression of TRPA1 observed in the epithelium, functional 
studies have found that TRPA1 activators activate only a few 
polymodal terminals from mouse and guinea pig corneas 
[42,43]. As the mouse cornea contains unmyelinated nerves 
deep in the cornea close to the endothelium, it is also possible 
that these fibers can respond to stimuli from the anterior 
direction. However, it was recently demonstrated that TRPA1 
is not important for cold nociception in the cornea, as no 
difference in reflex blinking or eye closing was observed in 
Trpa1−/− mice [27]. The exact role that TRPA1 plays in fibers 
in the stroma is not yet known, although a role in mediating 
neovascularization and macrophage infiltration following 
injury has been identified [44].

Figure 6. TRPV1 and CGRP are 
expressed in epithelial C fibers in 
the monkey cornea. A: Neuronal 
β-tubulin (TUJ) immunolabeling 
of monkey wholemount cornea. B: 
Boxed area of A, small-diameter 
C fibers extending to the surface 
(asterisks). C: TRPV1 and CGRP 
are expressed in C fibers at the 
corneal surface. Scale bars: (A) 50 
μm; (B) 20 μm; (C) 5 μm.
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Figure 7. TRPV1 and TRPA1 are colocalized to axons containing the LDCV proteins ScgII and SCG3, respectively. A, C, E: TRPV1 and 
ScgII expression in stromal axons. B, D, F: TRPA1 and SCG3 expression in stromal axons. Scale bars: (A, C, E) 5 μm; (B, D, F) 2 μm.

Figure 8. Schematic of TRP channel and neuropeptide vesicle expression in the cornea. Neurons expressing TRPM8 extend to the periphery 
with complex terminals, but are also found in ramifying terminals in the pericentral region and simple terminals in the center of the cornea. 
Neurons expressing TRPV1 colocalize with CGRP and ScgII and extend to the corneal surface as ramifying and simple termini. Neurons 
expressing TRPA1 colocalize with SCG3 and NF200 and terminate in the stroma and sub-basal regions.
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The three different terminal morphologies described by 
Alamri et al. [3] were observed in this study: simple, rami-
fying, and complex. The morphology of TRPM8 afferents and 
TRPV1/CGRP terminals was distinctly different, possibly 
due to the different functional roles of the TRPs in the cornea. 
TRPM8 functions as a humidity sensor, detecting eye wetness 
involved in tear production, whereas TRPV1 axons are more 
sensitive to heat and chemical mediators. TRPM8 terminals 
were complex around the periphery and ramifying pericen-
trally. The receptive field of each terminal is very small 
[45,46]; by increasing the surface area of functional recep-
tors by complex branching, minute decreases in temperature 
due to evaporation are likely to result in the transmission of 
a signal [36,47]. TRPV1/CGRP C-terminals also protruded 
through the epithelial layers to the corneal surface, winding 
between the cells and increasing their surface area to chemical 
mediators from the environment, released from the epithelial 
cells or from resident or infiltrating immune cells. A similar 
morphology for TRPV1-positive fibers in the cornea of the 
guinea pig was reported by Alamri et al. [3], although they 
did not find CGRP in simple fibers as we report in this study. 
This may be a species difference. TRPA1, unlike TRPV1 
and TRPM8, was not present in fibers extending to the cell 
surface and may serve more of a mechanosensory role rather 
than a chemical or thermal role in the cornea.

The TRP channel proteins in this study in the cornea 
appear to localize to intracellular compartments, as also 
reported for TRP channels in DRG neurons [48,49]. Func-
tional and IHC studies demonstrated that inflammatory 
mediators increase trafficking of functional TRPV1, TRPM8, 
and TRPA1 to the cell surface simultaneously with LDCV 
neuropeptides [20]. Chromogranin A and SCG3 are required 
for vesicle biogenesis in mast cells and have been shown to 
negatively regulate the inositol triphosphate (IP3) receptor 
Ca2+ transport [50,51]. To date, we have found no reports 
of SCG3 affecting TRPA1 activity, but the present study 
data demonstrating colocalization to the same axons in the 
cornea, just as TRPA1 and SCG3 are colocalized in mast 
cells, suggest that SCG3 and TRPA1 may be components of 
the same vesicular membrane compartments. SCG3 was not 
found in neuropeptide-containing C fibers (Figure 8).

ScgII is a prohormone processed into several other 
peptides, including secretoneurin, which has been shown to 
be present in CGRP-containing neurons in the spinal cord 
and the periphery [52]. IHC, electron microscopy (EM), and 
proteomic studies suggest colocalization of ScgII, CGRP, and 
TRPV1 in the same vesicles in C fibers. The present study 
data clearly suggested colocalization of TRPV1 and ScgII, 
and of CGRP and TRPV1, but a definitive result is beyond 

the limits of resolution with the confocal microscopy used 
(about 150 nm in x and y and about 350 nm in z), as the size 
of LDCVs ranges from 150 to 300 nm.

The present results suggest that the expression pattern 
of TRP channels in the mouse cornea is unique compared 
to other tissues innervated by polymodal sensory afferents. 
Whereas the colocalization of CGRP and TRPV1 in axon 
terminals is typically observed in other tissues, we did not 
find CGRP in TRPM8 axons (Figure 3) or TRPA1 in TRPV1-
positive C fibers (Figure 2), and we did not observe TRPV1 
in NF200-/TRPA1-positive Aδ fibers (Figure 2, Figure 3A). 
Mouse corneas from wild-type and appropriate transgenics 
will serve as an excellent model to study the effects of 
inflammatory mediators and their influence on neuropeptide 
vesicle and TRP channel trafficking to the cell surface in the 
separate populations of sensory neurons expressing TRPV1, 
TRPM8, or TRPA1.

APPENDIX 1. ANTIBODIES USED FOR 
IMMUNOHISTOCHEMISTRY.

To access the data, click or select the words “Appendix 1.”
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